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Abstract 
Minimum Cramér-Von Mises distance estimation is extended to a simulated 
version. The simulated version consists of replacing the model distribution 
function with a sample distribution constructed using a simulated sample 
drawn from it. The method does not require an explicit form of the model 
density functions and can be applied to fitting many useful infinitely divisible 
distributions or mixture distributions without closed form density functions 
often encountered in actuarial science and finance. For these models likelih-
ood estimation is difficult to implement and simulated Minimum Cramér- 
Von Mises (SMCVM) distance estimation can be used. Asymptotic properties 
of the SCVM estimators are established. The new method appears to be more 
robust and efficient than methods of moments (MM) for the models being 
considered which have more than two parameters. The method can be used as 
an alternative to simulated Hellinger distance (SMHD) estimation with a spe-
cial feature: it can handle models with a discontinuity point at the origin with 
probability mass assigned to it such as in the case of the compound Poisson 
distribution where SMHD method might not be suitable. As the method is 
based on sample distributions instead of density estimates it is also easier to 
implement than SMHD method but it might not be as efficient as SMHD me-
thods for continuous models. 
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1. Introduction 

In actuarial science or finance we often model losses or log-returns with distri-
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bution functions where neither the distribution function nor its corresponding 
density function has a closed form expression yet it is not complicated to draw 
random samples from these distributions. It is clear that likelihood methods are 
complicated in such a situation. 

For statistical inferences using models with these features, we shall assume to 
have independent and identically distributed (iid) observations 1, , nX X  
which have a common distribution as X  with model distribution and density 
given respectively by ( )F uθ  and ( )f uθ . Neither ( )F uθ  nor ( )f uθ  has a 
closed form expression but often its moment generating function (mgf) ( )M sθ  
has a closed form expression. The vector of parameters of interest is 

( )1, , mθ θ ′= θ  

The compound Poisson distribution used in actuarial sciences and jump dif-
fusion distribution in finance are typical examples for these types of models. 
Furthermore, in many circumstances distributions derived from the increments 
of Lévy processes also display these characteristics and it is of interest to make 
inferences for the vector of parameters. We shall illustrate the situation with 
example 1 and example 2 below. 

Example 1 
In this example, we shall consider the compound Poisson gamma distribution 

which is commonly used in actuarial science and it arises from the compound 
Poisson processes which also belong to the class of Lévy processes.  

The compound gamma distribution is the distribution of a random variable 
X  representable as a random sum, i.e., 

1
N

iiX Y
=

= ∑  with the iY ’s being iid with a common gamma distribution with 

the density function given by ( ) ( )
11 e , 0, 1, 0

y

Yf y y yα β
α α β

α β

−
−= > > >

Γ
 and 

the moment generating function is given by ( )
( )

1
1

YM s
s αβ

=
−

. The random 

variable N  follows a Poisson distribution with parameter 0λ >  and it is as-
sumed that the iY ’s and N  are independent. 

Note that the moment generating function of X  is 

( ) ( )( )1e YM sM s λ −=θ                        (1) 

and from the mgf ( )M sθ  the first there cumulants can be found and they are 
given by 

( ) ( )( )2 3
1 2 3, 1 , 1 2c c cαβλ αβ λ α αλ α α β= = + = + +          (2) 

The vector of parameters is ( ), ,α β λ ′=θ . 
It is not difficult to simulate from the distribution of X  but the density func-

tion of X  has no closed form, see Klugman et al. [1] (p. 143) for the series re-
presentation of this density and strictly speaking this is not a continuous model 
but a hybrid model where there is a probability mass assigned to the origin. 
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Furthermore, continuous distributions created using a mixing mechanism also 
leads to continuous mixture distributions without closed form density but simu-
lated samples often can be drawn from such distributions. These distributions 
are commonly used in actuarial science and they are given by Klugman et al. [1] 
(pp. 62-65); see Luong [2] for other distributions with similar features used in 
actuarial science. 

Lévy processes are also used in finance and they can be used as alternative 
models to the classical Brownian motion. The distributions of the increments of 
these processes can be more flexible than the normal distribution, they can be 
asymmetric and have fatter tail than the normal distribution. Consequently, they 
are more suitable to model log-returns of assets in finance. The following double 
exponential jump diffusion distribution is an illustration of an alternative dis-
tribution to the normal distribution which is the distribution of the increments 
of a Brownian motion.  

Example 2 
The double exponential jump diffusion model is a special case of a larger class 

of jump diffusion models where the distribution for the jumps follows an asym-
metric Laplace distribution instead of the classical normal distribution as in the 
classical jump-diffusion model introduced by Merton [3]. This distribution has 
six parameters and it has been studied by Kou [4], Kou and Wang [5]. A sub- 
model which is the double exponential jump diffusion model with only five pa-
rameters has been found very useful for modeling log-returns of stocks, see Tsay 
[1] (pp. 311-319). We shall call this model, the KWT model. Exact pricing for 
European call option for this model is also possible with the use of some special 
functions. The distribution can be represented as the distribution of X  with 

1
N

iiX Z Y
=

= +∑  

The iY ’s are iid with a common distribution and mgf given respectively by 

 ( ) 1; , e , , , 0,
2

x

Yf y x
ω

ηω η ω η
η

−
−

= −∞ < < ∞ −∞ < < ∞ >         (3) 

 ( ) 2 2

e
1

s

YM s
s

ω

η
=

−
.                       (4) 

The distribution function of the double exponential distribution is 

( ) 1 e
2

x

YF y
ω
η
−

=  for x ω≤  and ( ) 1 1 1 e
2 2

x

YF y
ω
η
−

− 
= + −  

 
 for x ω> .  (5) 

Since this distribution has an explicit expression, simulated samples drawn 
from the double exponential distribution can be based on the inverse method.  

Tsay [6] (p. 312) also gives additional properties of the distribution of Y , i.e., 
the mean and variance are given respectively by 

( ) ( ) 2, 2E Y V Yω η= =                      (6) 

It is assumed that the iY ’s, Z  and N  are independent, N  follows a Pois-
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son distribution with parameter λ  and Z  has a normal distribution 

( )2,N µ σ . 
It is easy to see that the mgf of X  is given by  

 ( )
2 2 2 2

e1 1
12e e

s

s s sM s

ω
λµ σ η

θ

 
 −+  − = .                   (7) 

From ( )M sθ , the first five cumulants can be found and they are given by 

 ( ) ( )2 2 2 2 3
1 2 3, 2 , 6c c cµ λω σ λ η ω λ η ω ω= + = + + = +         (8) 

and 

 ( ) ( )4 2 2 4 4 2 3 5
4 524 12 , 120 20 .c cλ η η ω ω λ η ω η ω ω= + + = + +       (9) 

The vector of parameters is ( )2, , , ,µ σ λ ω η ′=θ . 
For models introduced by these examples if we use methods of moments (MM) 

to estimate the parameters, the MM estimators will lack of robustness properties 
and they might not even be efficient as for models with more than two parame-
ters, MM estimators will depend on polynomials of degree higher or equal to 
three hence will be unstable in the presence of outliers. Estimators based on em-
pirical characteristic functions procedures such as the KL procedures of Feur-
verger and McDunnough [7] involves an arbitrariness of choice of points to 
match the empirical characteristic function with its model counterpart which 
motivates us in this paper to extend Cramer-von Mises estimation to a simulated 
version (version S). The classical Minimum Cramer Von-Mises estimators (ver-
sion D) are given by the vector θ̂  which minimize the objective function 

( ) ( ) ( )( )2

1

1 n
n n i iiQ F x F x

n =
= −∑ θθ  or equivalently         (10) 

( ) ( ) ( )( ) ( )2
dn n nQ F u F u F u

∞

−∞
= −∫ θθ                (11) 

as given by Duchesne et al. [8] with ( )nF u  and ( )F uθ  are respectively the 
sample and model distribution. The MCVM estimators are known to be robust, 

( ) [ ]1

1 n
n iiF u I x x

n =
= ≤∑  is the commonly used sample distribution and [ ].I  is  

the indicator function. Note that if it is easy to draw samples from ( )F uθ , we 
can construct the simulated sample distribution function ( )SF uθ  using S  ob-
servations drawn from ( )F uθ  similarly and minimize instead the following 
objective function 

( ) ( ) ( )( )2

1

1 n S
n n i iiQ F x F x

n =
= −∑ θθ                (12) 

to obtain estimators. We shall call these estimators simulated MCVM (SMCVM) 
estimators and denoted them by the vector ˆSθ  and we shall call this version, 
version S. The method is numerically relatively simple to implement using 
simplex direct search methods which are derivative free. Packages like R already 
have built in function to minimize a function using the Nelder-Mead simplex 
method. The SMCVM method does not require a proxy model like other simu-
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lated methods such as methods based on indirect inference, see Garcia et al. [9], 
also see Smith [10]. Therefore, the method appears to be useful for actuarial 
science and finance where there are needs to analyze data using these types of 
distributions. It can also be viewed as a natural extension of the classical MCVM 
methods proposed by Hogg and Klugman [11] (p. 83) where the asymptotic 
properties of the estimators have been established by Duchesne at al. [8]. Like 
Simulated minimum Hellinger (SMHD) method proposed by Luong and Bilo-
deau [12], the new method is robust and it is even easier to implement than 
SMHD method as it makes use of sample distribution functions instead of den-
sity estimates. Furthermore, it can handle models like the compound Poisson 
model which displays a probability mass at the origin where SMHD method 
might not be suitable but comparing to SMHD estimators, the SCVM estimators 
might not be as efficient as the SMHD estimators for continuous models. 

The paper is organized as follows. Following the approach in section 3 by 
Pakes and Pollard [13] (pp. 1037-1043) who make use of the Euclidean space 
and Euclidean norm to establish asymptotic properties of estimators, the Hilbert 
space 2l  is used in this paper with a natural norm extending respectively the 
Euclidean space and the commonly used Euclidean norm. Asymptotic properties 
for both the CVM estimators and the SCVM estimators can be established using 
a unified approach by considering minimizing the norm of a random function to 
obtain estimators and they are given in section 2. This approach also facilitates 
the use of the available results of their Theorems given in section 3 by Pakes and 
Pollard [13] as most of the results of their Theorems continue to hold in 2l . The 
SMCVM estimators are shown to be consistent and have an asymptotic normal 
distribution. Their asymptotic covariance can be estimated using the influence 
function approach which were used by Duchesne et al. [8]. An estimate for the 
covariance matrix is also given in section 2 and by having such an estimate, it 
will make hypotheses testing for parameters easier to handle. Section 3 displays 
results of a limited simulation study using the compound Poisson gamma model 
and the double exponential jump distribution where we compare the SMCVM 
estimators with methods of moment (MM) estimators. For both models, it ap-
pears that the SCVM estimators are much more efficient than MM estimators 
using the overall relative efficiency criterion.  

2. Asymptotic Properties of the SCVM Estimators 
2.1. The Space l2 and Its Norm 

We can make use elegant results of Theorem 3.1 and 3.2 in section 3 of the paper 
by Pakes and Pollard [13] (pp. 1037-1043) to investigate asymptotic properties of 
CVM estimators and simulated CVM estimators (SCVM). For asymptotic re-
sults of estimators using simulations in their seminal works, Pakes and Pollard 
[13] consider estimators obtained by minimizing the Euclidean norm of a vector 
of random functions. The vector of random functions in their set up belong to 
the Euclidean space. If we used their results to investigate CVM estimation it is 
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more convenient to consider the Hilbert space 2l  with infinite dimension 
which generalize the Euclidean space and the following norm .  defined below 
which generalizes the Euclidean norm. 

For an element ( ),1 ,2, ,l l lx x ′=x   which belongs to 2l , define  

( )
1

2 2
,1l l ii x∞

=
= ∑x  assumed to be finite. Clearly, .  is a norm for 2l  and it  

generalizes naturally the Euclidean norm. Also, a vector ( )1, , pu u ′=u   is of fi-
nite dimension p, hence belongs to the Euclidean space then it belongs to 2l  
with ( )1, , ,0,0,pu u ′=u   . The space 2l  and the norm .  have been stu-
died in functional analysis or real analysis, see Davidson and Donsig [14] (pp. 
137-141) for example. 

For a matrix ( ) , 1, 2, , 1, 2,ija i j= = =A  
 in 2l , define  

( )
1

2 2
1 1 iji j a∞ ∞

= =
= ∑ ∑A . With the space 2l , most of the results of their Theorems 

in section 3 are valid and only some minor changes are needed. 
For estimation, we assume that we have a random sample which consist of n 

iid observations 1, , nX X  from a continuous parametric family with distribu-
tion ( )F uθ . We also assumed that Fθ  has no closed form expression but si-
mulated samples can be drawn from ( )F uθ .The commonly used sample distri-
bution function is denoted by ( )nF u . The vector of parameters is denoted by 

( )1, , mθ θ ′= θ . 

Define the following vectors of random functions 

( ) ( ) ( ) ( )1 1( )
, , ,0,0,n n nn

n

F x F xF x F x
G

n n

′ −−
=  
 

 

θθθ
      

 (13) 

for version D and it is easy to see that 

 ( ) ( ) ( )( )22

1

1 n
n n i iiG F x F x

n
θ

=
= −∑ θ .              (14) 

Equivalently,  

( ) ( ) ( )( )2 2
dn n nG F u F u F

∞

−∞
= −∫ θθ ,               (15) 

if ( )F uθ  has support on the real line and 
( ) ( ) ( )( )2 2

0
dn n nG F u F u F

∞
= −∫ θθ , if ( )F uθ  is the distribution of a non-

negative random variable. Using the set up given by section 3 in Pollard and 
Pakes [13], the classical MCVM estimators can be viewed as the vector of values 
which minimize ( ) 2

nG θ  or ( )nG θ  as defined by expression (15). 
For the simulated version of MCVM estimation, i.e., version S, define  

 ( ) ( ) ( ) ( ) ( )1 1 , , ,0,0,
SS

n n nn
n

F x F xF x F x
G

n n

′ −−
=   
 

 

θθθ
      

 (16) 

with ( )SF uθ  being the sample distribution function based on the simulated 
sample of observations of size S drawn out ( )F uθ . Then the SCVM estimators 
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given by the vector ˆSθ  is obtained by minimizing 

( ) ( ) ( )( )22

1

1 n S
n n i iiG F x F x

n =
= −∑ θθ .              (17) 

Clearly, both versions of MCVM estimation can be treated in a unified way 
using this set up, we also have ( )G < ∞θ  in probability. For both versions, let 

( )
( ) ( ) ( ) ( )

0 01 1 , , ,0,0,n nF x F x F x F x
G

n n

′ − −
=   
 

 

θ θ θ θθ , 

( ) ( ) ( )( ) ( )
0

22
d nG F u F u F u

∞

−∞
= −∫ θ θθ  and we have ( ) ( )

0

p
nF u F u→ θ , 

( ) ( ) ( )1n pG G o− =θ θ , with ( )1po  being an expression which converges to 0 

in probability. 
We shall restate Theorem 3.1 given by Pakes and Pollard [13] (p. 1038) as-

suming the space 2l  and its norm as defined earlier are used so that it is more 
suitable for CVM estimation. The condition ii) which requires ( ) ( )0 1n pG o=θ  
in their Theorem 3.1 can be replaced by ( ) ( )0 1n pG o=θ  as only this condition 
is used in their proof. Note that the set up for their Theorem is very general, we 
only need to verify their conditions for estimators obtained by minimizing the 
objective function of the form 

( ) ( ) ( )2
orn n nQ G G=θ θ θ                  (18) 

Theorem 1: Under the following conditions, the estimators given by the vec-
tor θ  converges in probability to 0θ , the vector of the true parameters, i.e., 

0
p→θ θ . 

1) ( ) ( ) ( )1 infn p nG o G∈≤ +

θθ θΩ , Ω  is the parameter space assumed to be 
compact. 

2) ( ) ( )0 1n pG o=θ . 

3) ( ) ( )
0

1
sup 1n pG Oδ

−

− > =θ θ θ  for each 0δ > , ( )1pO  is an expression 

bounded in probability. 
Clearly for the SMCVM estimators given by the vector ˆSθ  which minimizes 

( ) ( ) 2
n nQ G=θ θ  will satisfy condition 1) and 2) of Theorem 1 as 

( ) 2
0p

nG →θ  only at 0=θ θ  if the parametric family is well parameterized  

which is the case in general. Note that the integrand of the integral defined by 
expression (10) is nonnegative and smaller or equal to one. Therefore, in proba-
bility,  

( )0 1nQ< ≤θ  for 0 , 0δ δ− > >θ θ  

The condition 3) is satisfied in general which implies consistency for the 
SCVM estimators, we then have 0

ˆ pS →θ θ . Note that since ( )nQ θ  is always 
bounded it is not surprising that it generates robust estimators. For more on ro-
bustness in the sense of bounded influence functions for the SMCVM estimators 
see section (2.2.2). Also, observe that ˆSθ  remains consistent even the parame-
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tric models are only hybrid, i.e., with some discontinuity points such as in the 
case of the compound Poisson models. Now we turn our attention to the ques-
tion of asymptotic normality for ˆSθ  and discuss informally the arguments used 
to establish asymptotic normality for ˆSθ  first and the formal arguments will 
follow subsequently from the proofs of Theorem 3.3 by Pakes and Pollard [13] 
(pp. 1040-1043). A version of their Theorem 3.3 is restated as Theorem 2 below.  

Since ( ) ( )( )2

n nQ G=θ θ  is not differentiable, the traditional Taylor expan-
sion argument cannot be used to establish asymptotic normality of estimators 
obtained by minimizing ( )( )2

nG θ . Here, we assume ( )G θ  is differentiable 
with derivative matrix ( )θΓ , it means Fréchet differentiable with respect to the 
norm .  for 2l ; see Luenberger [15] for the notion of Fréchet differentiability 
and see chapter 3 of the book by Luenberger [15] for the notion of Hilbert space.  

If the property of differentiability holds then we can define the random func-
tion ( )a

nQ θ  to approximate ( )nQ θ  with 

( ) ( )( ) ( ) ( ) ( )( )0 0

2

0,a
n n n nQ L L G= = + −θ θ θ θ θ θ θΓ         (19) 

Let ˆSθ  and *θ  be the vectors which minimize ( )nQ θ  and ( )a
nQ θ  re-

spectively. The ideas behind the proofs for asymptotic normality of Theorem 
(3.3) of Pakes and Pollard are if the approximation of the original objective 
function ( )nQ θ  which is not differentiable by a differentiable one namely 

( )a
nQ θ  is of the right order then the vector ˆSθ  which minimizes ( )nQ θ  and 

*θ , the vector which minimizes ( )a
nQ θ  are asymptotically equivalent, i.e., we 

have: 

1) ( ) ( ) ( )*
0 0

ˆ 1S
pn n o− = − +θ θ θ θ  or using equality in distribution,

( ) ( )*
0 0

ˆS dn n− = −θ θ θ θ  and it is easy to see that *θ  can be expressed 

explicitly as ( ) ( ) ( )1*
0 0,nG−′ ′= − =θ θ θΓ Γ Γ Γ Γ  since ( )nL θ  is an affine 

transformation. 
2) ( ) ( ) ( )* 1ˆS a

n n pQ Q o n−= +θ θ , ( )1
po n−  is an expression converging to 0 in 

probability at a faster rate than 1n− . 
Note that the matrix ( )0θΓ  is of rank m with m columns but infinite num-

ber of rows given by 

( ) ( )0
1

ijb
n

= =θΓ Γ  with 
( )

0 , 1, , , 1, ,i
ij

j

F x
b i n j m

θ
∂

= − = =
∂

 

θ  

and 

0, 1, , 1, ,ijb i n j m= = + =    

An estimate of this matrix ( )0= θΓ Γ  is ˆ
nΓ  and is defined by expression 

(33) in section (2.2), consequently we can estimate 
( )

0 i

j

F x
θ

∂

∂
θ  by its estimate 

 1, , ,, , 1 ,ijb i n j m− = = 
 using the corresponding elements ( )ˆ ,n i jΓ  ex-

tracted from ˆ
nΓ , 
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  ( )Γ̂ , , 1, , , 1, ,ij nb n i j i n j m− = − = = 
             (20) 

Under these conditions, it suffices to work with *θ  and ( )*a
nQ θ  to derive 

asymptotic distribution for of ˆSθ . A regularity condition for the approximation 
is of the right order given by their Theorem 3.3 which is the most difficult to 
check is given as 

( ) ( ) ( )

( ) ( )
( )

0

0
1
2

0

sup 1
n

n n
p

n n

o
n

δ− ≤
−

− −
=

+ +

G G G

G G
θ θ

θ θ θ

θ θ
 

by Pakes and Pollard [13] (p. 1040). 
A slightly more stringent condition which obviously implies the above regu-

larity condition is  

( ) ( ) ( ) ( )
0 0sup 1

n n n pn oδ− ≤ − − =G G Gθ θ θ θ θ .          (21) 

For simulated methods for this condition to hold, in general independent 
samples for each θ  cannot be used, see Pakes and Pollard [13] (p. 1048). Oth-
erwise, only consistency can be guaranteed for estimators using version S, see 
section 2.2.2 for the same seed issue. For version S, the simulated samples are 
assumed to have size U nτ=  and the same seed is used across different values 
of θ  to draw samples of size U . These two assumptions are quite standard for 
simulated methods of inferences, see section 9.6 for method of simulated mo-
ments (MSM) given by Davidson and McKinnon [16] (p. 384), also see Smith 
[10] (p. S66) for this assumption for his simulated quasi-likelihood estimators. 
For numerical optimization to find the minimum of ( )nQ θ , we rely on direct 
search simplex methods which are derivative free. Chong and Zak [17] (pp. 
273-278) provides a good overview of derivative free simplex algorithm.  

2.2. Asymptotic Normality 

In this section, we shall state Theorem 2 which is essentially Theorem (3.3) given 
by Pakes and Pollard [13] and comment on the conditions needed to verify 
asymptotic normality for the MCVM estimators for version D and S. 

Theorem 2 
Let θ  be a vector of consistent estimators for 0θ , the unique vector which 

satisfies ( )0 0=G θ . 
Under the following conditions: 

1) The parameter space Ω  is compact. 

2) ( ) ( )
1
2 infn p no n G

−

∈

 
≤ +  

 
G 

θθ θΩ  

3) ( ).G  is differentiable at 0θ  with a derivative matrix ( )0= θΓ Γ  of full 
rank 

4) ( ) ( ) ( ) ( )
0 0sup 1

n n n pn oδ− ≤ − − =G G Gθ θ θ θ θ  for every sequence { }nδ  of 
positive numbers which converge to zero. 

5) ( ) ( )0 1n pn O=G θ , ( )1pO  is an expression bounded in probability.  

https://doi.org/10.4236/ojs.2017.75058


A. Luong, C. Blier-Wong   
 

 

DOI: 10.4236/ojs.2017.75058 824 Open Journal of Statistics 
 

6) 0θ  is an interior point of the parameter space Ω , assumed to be compact. 
Then, we have the following representation which will give the asymptotic 

distribution of θ  in Corollary 1, i.e., 

( ) ( ) ( ) ( )1
0 0 1n pn n o−′ ′− = − + Gθ θ θΓ Γ Γ ,             (22) 

or equivalently, using equality in distribution, 

 ( ) ( ) ( )1
0 0

d
nn n−′ ′− = − Gθ θ θΓ Γ Γ .              (23) 

The proofs of these results follow from the results used to prove Theorem 3.3 
given by Pakes and Pollard [13]. For expression (22) or expression (23) to hold 
only condition 5) of Theorem 2 is needed and used in their proofs of Theorem 
3.3 and there is no need to assume that ( )0nnG θ  has an asymptotic distribu-
tion. Clearly MCVM estimators or SCVM estimators are obtained by minimiz-
ing ( )nG θ  hence they will satisfy the condition 2) of Theorem 2 with 

( )nG θ  as defined by expression (14) or expression (17) depending it is ver-
sion D or version S being considered.  

Therefore, for version D, 

( ) ( ) ( )1
0 0

d
nn n−′ ′− = − Gθ θ θΓ Γ Γ , ( )nG θ  as defined by expression (13) 

And for version S, 

( ) ( ) ( )1
0 0

ˆS d
nn n−′ ′− = − Gθ θ θΓ Γ Γ , ( )nG θ  as defined by expression (16).  

From the result of the Theorem, it is easy to see that we can obtain the main 
result of the following corollary which gives the asymptotic covariance matrix of 
the estimators. 

Corollary 1. 
Let ( )0n nn ′=Y G θΓ , if ( )0,n

L N→Y V  and ( ) p′ → AΓ Γ , A  is full 
rank and symmetric then ( ) ( )0 0,L Nn − → Dθ θ  with 

( ) ( )1 1− −=D A V A                       (24) 

The matrices D  and V  depend on 0θ , and we adopt the notations 
( ) ( )0 0,= =D D V Vθ θ . 

These results are proved by Pakes and Pollard [13], see the proofs of their 
Theorem (3.3). We just need to verify these conditions are met for SMCVM es-
timation. Before verifying these conditions for both versions of MCVM estima-
tion, the following assumptions are needed to verify the condition 4 of Theorem 
2 which is the most difficult condition to verify. We need to define the following 
sequence of functions, ( ){ }ng θ  as it will be used later, 

( ) ( ) ( ) ( ) 2
0 , 1, 2,n n ng n n= − − = G G Gθ θ θ θ  

Assumption 1 
1) As n →∞  and 0→θ θ , for version S of CVM estimation 

 ( ) ( )( ) ( ) ( )( ){ } ( ) ( )( ){ }0 0 0 0

2

| |
S S S

x xE F x F x F x F x E F x F x− − → −θ θ θ θ θ θ ,  (25) 

{}| .xE  Is the conditional expectation on x  of the expression inside the 
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bracket. 
2) The sequence of functions ( )e

ng θ  is differentiable with continuous partial 
derivatives, ( ) ( )( )e

n ng E g=θ θ , the expectation is under 0θ  and using the 
usual conditioning argument, it can also be expressed 

( ) ( ) ( )( ){ } ( ) ( )( ){ }
( ) ( )( ) ( ) ( )( ){ }) ( )

0 0

0 0 0

2 2

| |

|2 d

e S S
n x x

S S
x

g nE F x F x nE F x F x

nE F x F x F x F x F xθ

∞

−∞

= − + −


− − −

∫ θ θ θ θ

θ θ θ θ

θ

  

 (26) 

For the condition 1) of Assumption 1 to hold we cannot use independent 
samples for different values of θ  to draw simulated samples for version S of 
CVM estimation, otherwise 

( ) ( )( ) ( ) ( )( ){ }0 0| 0S S
xE F x F x F x F x− − =θ θ θ θ  and ( )e

ng θ  cannot converge to 
0 in probability. This justifies the same seed must be used to generate random 
samples for different values of θ . 

We shall proceed to check the regularity conditions for both versions of 
MCVM estimation and note that ( )θΓ  is the derivative of ( )G θ  in 2l  
means that ( )0= θΓ Γ  is the Fréchet derivative at 0=θ θ  with the property  

( ) ( ) ( ) ( )0 0 0n n o− − − = −G Gθ θ θ θ θ θΓ  

As for the Euclidean space, the sufficient condition for differentiability here 

only requires the partial derivatives 
( )

j

F xθ

θ
∂
∂

 being continuous with respect to  

θ . For the notion of derivative in Hilbert space, see the notion of Fréchet deriv-
ative in Luenberger [15] (pp. 171-177) which generalizes the notion of derivative 
of Euclidean space. The conditions (1-3) of Theorem 2 can be verified easily. 
The condition (4) of Theorem 2 will be met in general if Assumption 1 holds, see 
Appendix for details and justifications. 

We proceed to find the asymptotic distribution for ( )0nn ′G θΓ . Using ex-
pression (22) and expression (23), we shall obtain the asymptotic covariance 
matrix for the MCVM estimators for both versions. For version D, the asymp-
totic covariance matrix has been obtained by Duchesne at al. [8] (p. 407), using 
the influence function approach with the statistical functional ( )nR F  being de-
fined as 

( ) ( ) ( ) ( )( ) ( )
( )

( ) ( )0 0

0

0

0 d ,n n n n

F u F u F u
R F G F u F u F u

∞

−∞
=

∂ ∂ ∂
′= −Γ = − =

∂ ∂ ∂∫
θ θ θ

θ
θ θ

θ
θ θ θ

 

 and consider the vector of influence function 

( ) ( ) ( )1
0

, x
R F

IC x F F Fδ
=

∂
= = + −

∂









            
 (27) 

xδ  is the degenerate distribution at the point 𝑥𝑥, 
0
,0 1F F= ≤ ≤θ .The influ-

ence function ( )1IC x  is bounded provided that 
( )

0
F u∂

∂
θ

θ
 as a vector of func-

tions of u 
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is bounded which implies the MCVM estimators are robust for version D. We 
shall assume this property of bounded influence functions holds implicitly; we 
shall see this also makes version S robust. Furthermore, based on standard re-
sults of robust estimation theory, the representations given by expressions (28) 
and (31) using influence functions are valid for the statistical functionals being 
considered. Now since ( )0

0R F =θ ,  

( ) ( ) ( ) ( )( ) ( ) ( )
00 1 11

1 1n
n n n pinR F n G n R F R F IC x o

n =
′= − Γ = − = +∑θθ

 
(28) 

This is the influence function representation of ( ) ( )0n nR F ′= G θΓ  for ver-

sion D and we have ( ) ( )0 1
ˆ 0,Ln N→− Dθ θ  with ( ) ( )1 1

1 1D − −= A V A  for 

version D, 1V  is the covariance matrix of ( )1 xIC , ( )1 xIC  is given by expres-
sion (2.15) in Duchesne et al. [8] (p. 407), with 

 ( ) ( ) ( )( ) ( )
( )0

0 01 dx

F u
x u F u F uδ

∞

−∞

∂
= −

∂∫IC θ
θ θθ

           (29) 

( )( )1 0E IC x = , since ( )( ) ( )
0 0xE u F uδ =θ θ . 

Replacing 
( )

0
F u∂

∂
θ

θ
 by 

( )ˆF u∂

∂
θ

θ
 and ( )

0
F uθ  by ( )nF u  in the above ex-

pression leads to approximate the vector  

( )1 xIC  by ( )

1 xIC  with its elements given by 

( ) ( )( ) ( )ˆ
1 1

1 , 1, ,jn
l j n jj

l

F x
IC x I x x F x l m

n θ=

∂
 = ≥ − =  ∂∑ 

θ  

An estimate for the covariance matrix 1V  can be defined as 

 ( )( ) ( )( )1 1 11

1 .n
i ii x x

n =

′
= ∑V IC IC

                
 (30) 

Using 1V , an estimate for the asymptotic covariance matrix of θ̂  can be 
constructed, see expression (2.15) and expression (2.13) given by Duchesne et al. 
[8] (pp. 406-407). Clearly, the results for version D as given by Duchesne et al.  
[8] can be reobtained using this unified approach. 

Note that the property of asymptotic normality continues to hold even the 
parametric model fails to be continuous and is only hybrid as in the compound 
Poisson gamma case. Using the arguments of the next paragraph to establish 
asymptotic normality, the same conclusion can be reached for version S. The de-
rivation of the asymptotic covariance matrix 2D  for the SCVM estimators is 
similar. We shall make use of the notion of bivariate statistical functional intro-
duced by expression (1.6) given by Reid [18] (pp. 80-81). This leads to define the 
bivariate statistical functional ( )0

, S
nB F Fθ , 

( ) ( ) ( ) ( )( ) ( )
( )0

0 00, dS S
n n n n

F u
B F F F u F u F u

∞

−∞

∂
′ = −−

∂
= ∫G θ

θ θθ
θ

Γ  

We have a representation which is similar to the representation given by ex-
pression (28) but using both ( )1 xIC  and ( )2 yIC  with  
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( ) ( )
2

0, 0

,B F F
y τ

τ
τ

= =

∂
=

∂
IC 



, F  is as defined by expression (27) and Fτ  is si-

milarly defined with ( )yF F Fτ τ δ= + − , yδ  is the degenerate distribution at 

y  and 0 1τ≤ ≤ . Note that ( )1 xIC  as given by expression (29) can also be 
reobtained using the bivariate statistical functional with  

( ) ( )
1

0, 0

,B F F
y τ

τ= =

∂
=

∂
IC 




. 

Based on the expression defining ( )0
, S

nB F Fθ , we have ( ) ( )2 1y y= −IC IC  
and ( )1 xIC  is identical for version D and S. Therefore, for version S, we have 
the representation 

( )

( ) ( ) ( ) ( )

0

0 1 21 1 1

,

1

S
n

n U
n i i pi i

nB F F

nn x y o
Un = =

′= − = + +∑ ∑G IC IC

θ

θΓ
.    (31) 

Note that the size of the random sample drawn from the model distribution is 
U nτ=  and the iy ’s are iid and have the same distribution as the ix ’s but the 

iy ’s are independent of the ix ’s as the simulated sample is independent from 
the original sample represented by the data. Therefore, 

 ( ) ( )0 1
10, , 1L

nn N
τ

 ′ → = + 
 

G V V VθΓ .            (32) 

It is also clear that the elements of ′Γ Γ  are given by  
( ) ( )

( )0 0 d , 1, , , 1, ,ij n
i j

F u F u
a F u i m j m

θ θ
∞

−∞

∂ ∂
= = =

∂ ∂∫  

θ θ  which converge in 

probability to the corresponding elements ija  of the matrix A  with 

( ) ( )
( )0 0

0
d , 1, , , 1, ,ij

i j

F u F u
a F u i n j mθ θ

θ θ
∞

−∞

∂ ∂
= = =

∂ ∂∫  θ , i.e.     (33) 

( ) , 1, , 1, , .ij i m ja m= = = A  

2.3. An Estimate for the Covariance Matrix  
for SCVM Estimators 

The asymptotic covariance matrix of ˆSθ  can be estimated if we can estimate 
( )0= θΓ Γ . Using a result given by Pakes and Pollard (p. 1043), an estimate for 

Γ  is the matrix 

( ) ( ) ( ) ( )1
ˆ ˆ ˆ ˆ

ˆ , ,
S S S S

n G n n G n G n m n G
n

n n

 + − + −
 =
 
 



G e G G e Gθ θ θ θ
Γ



 


     

 (34) 

( )0,0, ,1,0, ,0i
′=e    with 1 occuring at the ith entry of the vector ie  and 

n n δ−= , 1
2

δ ≤  and in general we can let 1
2

δ = . Note that the columns of ˆ
nΓ  

estimate the corresponding columns of ( )0θΓ  with elements depend on 
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( )
0 , 1, , , 1, ,i

j

F x
i n j m

θ
∂

= =
∂

 

θ  as mentioned in section (2.2). 

Therefore, using results of Corollary 1 we have the asymptotic for version S 

 ( ) ( )0 2
ˆ 0,LSn N− → Dθ θ  with ( ) ( )1 1

2 1
11
τ

− − = + 
 

D A V A .    (35) 

The factor 11
τ

+  represents the loss of overall efficiency due to simulations  

and can be controlled if we let 10τ ≥ . This factor is identical to the one for si-
mulated unweighted minimum chi-square method or the one for simulated qua-
si-likelihood method, see Pakes and Pollard [13] (p. 1049), also see Smith [10] (p. 
S69). It suffices to estimate 1V  then we can have an estimate for the asymptotic 
covariance matrix of the SCVM estimators as clearly A  can be estimated by 
ˆ ˆ

n n′Γ Γ . 
Define  ( )1 xIC  with its elements given by 

 ( ) ( )( ) ( )1 1

1 , 1, , ,n
l j n j jljIC x I x x F x b l m

n =
 = ≥ − − = ∑   



( )

0 , 1, , , 1, ,j
jl

l

F x
b j n l mθ

θ

∂
= − = =

∂
   are as given by expression (20). 

An estimate for 1V  for version S can then be defined as 

   ( )( )  ( )( )1 1 11

1 n
i ii x x

n =

′
= ∑V IC IC .                (36) 

Consequently, an estimate 2D  for 2D  can be defined as 

 ( )  ( )1 1

2 1
1 ˆ ˆ ˆ ˆ1 n n n nτ

− −  ′ ′+ 
 

=D VΓ Γ Γ Γ                 (37) 

Clearly with 2D  available, it will facilitate hypothesis testing for the parame-
ters of the model. 

3. Numerical Study 
3.1. MM Estimation for the Compound Poisson Gamma Model 

The MM method consists of matching the empirical cumulants with its model 
counterpart to form estimating equations and solutions will give the moment es-
timators. For the compound gamma model of example 1 this leads to the system 
of equations given by 

( ) ( ) ( )( )32 2 3
1 3 1

1, 1 , 1 2n
n n iic X s c X X

n
λαβ λαβ α λαβ α α

=
= = = + = − = + +∑ . 

The sample mean and variance are given respectively by X  and 2s , the 
moment estimators can be obtained explicitly. Note from these equations let 

( )3
3 2 2n

n
cr
s

β α= = +  and ( )
2

2 1n X
sr β α= = +  which implies 3

2

2
1

n

n

r
r

α
α
+

=
+

 and 

from the last equation, we can solve for α  which gives Mα  the MM estimator 
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for α  with  2 3

3 2

2 n n
M

n n

r r
r r

α
−

=
−

. Since the parameter 1α ≥ , we might want to de-

fine the moment estimator as  ( )min ,1M Mα α= . It is not difficult to obtain 





2

1
n

M
M

r
β

α
=

+
 and 



M
M M

X
λ

α β
=  the corresponding MM estimators for β  and 

λ  and when we also consider the constraints imposed on β  and λ , this 
leads to define 

 ( )min ,0M Mβ β=  and  ( )min ,0M Mλ λ= . 

3.2. MM Estimation for the KWT Model 

For the KWT model, there are five parameters so beside the first three empirical 
cumulants as defined above we also need the fourth and fifth empirical cumu-
lants with 

( )4 4
4 1

1 3n
n iic X X s

n =
= − −∑ , ( )5 2

5 31

1 10n
n i nic X X c s

n =
= − −∑  and matching 

1 1 2 2 3 3 4 4 5 5, , , ,n n n n nc c c c c c c c c c= = = = =  will give the moment estimators as in 

the previous example. It might be easier to let 2δ η=  and from these estimat-

ing equations, it is not difficult to see that the following two equations 3 3

4 4

n

n

c c
c c

=  

and 5 5

4 4

n

n

c c
c c

=  depend only on δ  and ω  and can be solved numerically to 

obtain the MM estimators for δ  and ω  which are given respectively by Mδ  
and ˆMω . Also, using the first three equations we obtain 





 ( )  

2 23
2 13

ˆ ˆˆ, 2 ,
ˆ ˆ6

n
M M n M M M M n M M

M M M

c c cλ σ λ δ ω µ λ ω
ω δ ω

= = − + = −
+

. 

We might want to redefine these MM estimators by imposing  2ˆ0, 0M Mλ σ≥ ≥ .  
In the limited simulation study, we draw 100M =  samples of size n=1000 

for each sample and use 10000, 10U τ= = . 
For the overall asymptotic relative efficiency (ARE) for the compound gamma 

model we use 

( ) ( ) ( )
( ) ( ) ( )
ˆ ˆˆS S SMSE MSE MSE

ARE
MSE MSE MSE

λ α β

λ α β

+ +
=

+ + 



, the mean square errors (MSE) are 

estimated using random samples and displayed in Table 1. The mean square er-
ror of an estimator π̂  for 0π  is defined as  

( ) ( )2
0ˆ ˆMSE Eπ π π= − . 

The range of the parameters being considered is given by 
2 10,1 10,1 10α λ β≤ ≤ ≤ ≤ ≤ ≤ . 

We find that the SCVM method is more efficient than MM method, the order 
of ARE gained by using SCVM method is illustrated with results displayed in 
Table 1. We also test for various parameters outside the range and we also have  
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Table 1. Compound Poisson gamma model with 10β =  asymptotic overall relative effi-
ciency between SCVM estimators and MM estimators. 

α⋱λ 1.00 5.00 6.00 7.00 8.00 9.00 10.00 

2.00 0.4726 0.0105 0.4970 0.6418 0.7768 0.0030 0.2702 

4.00 1.1277 0.1560 0.0348 0.0929 0.0393 0.0000 0.2973 

6.00 1.0468 0.0396 0.0906 0.0070 0.0449 0.0592 0.02834 

8.00 0.9032 0.0196 0.0351 0.0124 0.0553 0.0068 0.0032 

10.00 0.8560 0.0352 0.3730 0.0896 0.0010 0.0179 0.0180 

The overall efficiency used for comparisons used is 
( ) ( ) ( )
( ) ( ) ( )
ˆ ˆˆ

.
S S SMSE MSE MSE

ARE
MSE MSE MSE

λ α β

λ α β

+ +
=

+ + 



 

 
Table 2. Model KWT ( 0.001, 0.001, 0.02µ σ η= = = ) asymptotic overall relative effi-
ciency between SCVM estimators and MM estimators. 

λ⋱ω 0.005 0.006 0.007 0.008 0.009 0.010 

0.002 0.00000 0.00123 0.00099 0.00069 0.00045 0.00029 

0.004 0.00070 0.00041 0.00036 0.00022 0.00012 0.00010 

0.006 0.00038 0.00021 0.00015 0.00007 0.00004 0.00001 

0.008 0.00019 0.00016 0.00005 0.00001 0.00000 0.00000 

0.010 0.00018 0.00008 0.00001 0.00000 0.00000 0.00000 

The overall efficiency used for comparisons used is  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆˆ ˆ
.

S S S S SMSE MSE MSE MSE MSE
ARE

MSE MSE MSE MSE MSE

µ σ λ ω η

µ σ λ ω η

+ + + +
=

+ + + +

  

 

 
similar findings. 

For the KWT model we use the corresponding asymptotic relative efficiency 
(ARE) and it is defined as  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆˆ ˆS S S S SMSE MSE MSE MSE MSE
ARE

MSE MSE MSE MSE MSE

µ σ λ ω η

µ σ λ ω η

+ + + +
=

+ + + +

  

 

The mean square errors (MSE) are similarly defined as in the case of the 
compound gamma model and again estimated using simulated samples. The 
ARE is a ratio with the total of mean square errors for the SCVM estimators ap-
pearing in the numerator and the total of mean square errors of MM estimators 
appearing in the denominator. 

The key findings are illustrated using Table 2 and again SCVM method seems 
to perform much better than MM method for the common range of parameters 
used for modeling daily returns of stocks with 

0 ≤ λ ≤ 0.010, 0.005 ≤ ω ≤ 0.010 and 0 ≤ μ ≤ 0.001, 0 ≤ σ ≤ 0.008. With the re-
sults displayed in Table 2 which give an idea of the order of the overall efficiency 
gained by using SCVM method, we can see that overall SCVM method is at least 
100 time better than MM method for the range of parameters being considered. 
Clearly, more numerical studies are needed but we do not have the computer 
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resources to conduct larger scale of study being in a small department equipped 
with only laptop personal computers. Despite the limited nature of the study it 
does point to better efficiency when using SCVM methods for models having at 
least three parameters, in general. 

4. Conclusion 

It appears that SCVM method has the potential to generate more efficient esti-
mators than MM method especially for models with more than two parameters. 
Like SMHD method, it is also robust and easier to implement than SMHD me-
thod as it is based on sample distribution function instead of density estimates. It 
can handle continuous models with a few discontinuity points with probability 
masses attached to them where the SMHD method might not be suitable but it 
might be less efficient than SMHD method for continuous model, in general. 
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Appendix 

In this technical appendix, we shall prove that with the conditions of Assump-
tion 1, the condition 4 of Theorem 2 will hold, i.e., 

( ) ( ) ( ) ( )
0 0sup 1 ,

n n n pn oδ= ≤ − − =G G Gθ θ θ θ θ  i.e., 

( ) ( ) ( )0 0p
n nn − − →G G Gθ θ θ  uniformly as 0→θ θ  and n →∞  

Now define the sequence of functions ( ) ( ) ( ) ( ) 2
0n n ng n G G Gθ θ θ= − −θ , it 

suffices to show 

( ) 0p
ng →θ  uniformly as 0→θ θ  and n →∞ . 

Using Markov’s type inequality, for any 0> , we have the following inequa-
lity 

( )( ) ( )e
n

n
g

P g ≥ ≤

θ

θ  with ( ) ( )( )e
n ng E g=θ θ  as given by expression (26). 

Consequently, it suffices to have ( ) 0e
ng →θ  uniformly as 0→θ θ  and 

n →∞ . Clearly under Assumption 1 we have ( ) 0e
ng →θ  pointwise but we 

need to strengthen it to uniform convergence for ( ){ }e
ng θ . Therefore, it suffices 

to have equicontinuity for the sequence ( ){ }e
ng θ  as the domain of the sequence 

of functions is compact, see Rudin [19] (1974, p. 168). A sufficient condition for 
this property is the Lipschitz property which is related to the property of diffe-
rentiability of the sequence of functions, see Davidson and Donsig [14] (2009, p. 
88). Since the parameter space is compact and if the sequence ( ){ }e

ng θ  is dif-
ferentiable hence Lipchitz then with Assumption 1, these properties implies 
equicontinuity for the sequences of functions ( ){ }e

ng θ .  
For the notion of stochastic equicontinuity a stochastic version of equiconti-

nuity, see Newey and McFadden [20] (1994, pp. 2136-2138) equicontinuity 
which extend the notion of equicontinuity of deterministic functions of real 
analysis and section 7 in Newey and McFadden [20] (1994, pp. 2184-2193) on 
asymptotic normality with non-smooth objective function. 
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