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Abstract 
This paper is concerned with the dynamics of the steady state of a two-delayed 
nonlinear system of functional differential equations. The stability of the 
steady state together with its dependence on the magnitude of time delays has 
been examined by means of characteristic equation corresponding to the non-
linear equation. General criteria for stability involving the two-delay equa-
tions have been obtained. 
 

Keywords 
Hopf Bifurcation, Business Cycle, Stability, Two-Delayed Kaldor-Kalecki 
Model, Fluctuations Phenomenum 

 

1. Introduction 

Differential equations models that incorporate the history of the phenomenum 
into the model have been extensively considered as model for many problems 
because of a commum feature to them, which is, the appearance of oscillations, a 
fact which is very important in the model problems coming from ecology and 
mathematical economics [1] [2] [3] [4] [5]. Since delay-differential equations 
share many properties with ordinary differential equations, we have use methods 
and techniques of geometric dynamical systems theory that have been imple-
mented in functional differential equations to describe the dynamics of flow as-
sociated with the system of equations 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

,

, ,

u t f u t v t

v t h u t v t g u t r v t σ

 =


= + − −





             
(1) 

where 2, , :f h g R R→  are sufficiently smooth functions, r  and σ  are non 
negative constants. Assume that f, h and g vanish at ( )0 0 0,P u v= , ( )0 11uf P κ= , 
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( )0 12vf P κ= , ( )0 21uh P κ= , ( )0 22vh P κ= , ( )0ug P δ=  and ( )0vg P κ= , near 
an equilibrium point (see [2] [4] [6] [7]). The model represented by system (1) 
has been considered because it appears as generator of self-sustaining cycles with 
time lags incorporated in the nonlinearities. Recently, dynamical systems with 
delays have been found in biology and economics, and delay dependence on the 
state of the system cannot be eliminated by any change of variables (see [2] [8] 
[9] [10] references cited there). 

When rσ = , the authors in [11] studied the stability and Hopf bifurcation of 
the ratio-dependent predator-prey system similar to (1). Yuan in [12] exploited 
the behaviuor of plankton-population models, one with instantaneous predation, 
another with delayed predation and has obtained conditions to guarantee the 
coexistence of two species, and addresses the stability and bifurcation under dif-
ferent density of fish, with or without maturation time delay. We have decided 
to keep to the model represented by system 1 with rσ ≠  to improve under-
standing of the combined effects of functional response and time delays on the 
dynamics of predator-prey systems. Point 0P  that is equilibrium point for the 
system 1, therefore also equilibrium of (2). Taking a delay as a paramenter 
( 0σ > ), our purpose is to relate the dynamics of the two systems in the neigh-
bourhood of 0P . 

The linear problem around 0P , associated to System (1), is given by 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

11 12

21 22

u t u t v t
v t u t v t u t r v t

κ κ
κ κ δ κ σ

 = +
 = + + − + −





           
(2) 

and its characteristic equation is given by 

( ) ( ) ( )11 22 12 21e e 0.rp λσ λλ κ λ κ λ κ κ κ δ− − = − − + − + =          
(3) 

By assuming that 

11 12 22 210, 0, 0, 0 and 0,κ κ κ κ δ κ= > < < − < >             (4) 

the Equation (3) becomes 

( ) 2 e e 0,rp d b a cλσ λλ λ λ λ − −= − − − + =               (5) 

where 12a δκ= , b κ= , 12 21c κ κ= −  and 22d κ=  and , ,a b c  and 0d− > . If 
rσ = , we can choose , , ,a b c d  for the Equation (5) as the characteristic Equa-

tion (3.5) examined [2]. 
For a moment assume that either 0d =  and c a<  or 0a >  and 0c < , so 

it is not true that all roots of the Equation (5) have negative real part neither, 
since on the real axis ( )0 0p c a= − <  and ( )p λ →∞  as λ →∞ , then sys-
tem 1 will be unbounded solutions. 

Because of the two delays, the analysis on how the roots of (5) locate with re-
spect to the imaginary axis is a classical problem that, besides being important in 
itself, plays an important role in the study of asymptotic behavior in the theory 
of delayed differential equations (see [6]). In view of the difficulty to find all the 
values of the parameters for which all the roots λ  in (5) have negative real 
parts, only the special situations of (5) are considered  [1] [2] [6] [11] [13]. To 
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analyze the behavior dynamics of System (1) close to equilibrium solution it is 
necessary to have detailed information about the behavior of the eigenvalue of 
the linear equation associated to it, and so this problem can be reduced to the 
fact that all roots of Equation (5) have negative real part. There have been many 
attempts to describe the region K in the parameters space in which the solutions 
of (5) approach equilibrium solution (see [7] section 11.2). In fact, each point 
that belongs to the boundary of K, ( )K∂ , is of primary interest because it 
represents the point where the equilibrium point of System (1) can undergo a 
bifurcation from stability to instability. In the analysis, we have described the re-
gion K for System (1) in Theorem 1 and found parameters belonging to ( )K∂ , 
which correspond to the point where the equilibrium of System (1) switches 
from being stable to unstable with periodic oscillations as the parameter  

σ  crosses the value π
2

. 

2. Stability 

Let x iyλ = +  be a solution of Equation (5). Separating real and imaginary part 
in (5) one obtains the following equations system for x and y: 

( ) [ ]
[ ]

2 2 e cos sin e cos 0

2 e sin cos e sin 0

x rx

x rx

x y c dx b x y y y a yr

xy dy b x y y y a yr

σ

σ

σ σ

σ σ

− −

− −

 − − − − + − =


− + − + =      
(6) 

In order to simplify notation we set 
22 2 , .

2 2 2 2 2 2 2
b b a x b d x b dx y a c+ +  = = + − + + − + + 

         
(7) 

Theorem 1. Assume that (4) is satisfied and 

{ }min 2 2, 2 , 2 2 π,d b c r σ< − − < <
            

(7a) 

( )24 4 , 2,a b d c y+ + < <                   (7b) 

( )( ) ( ) ( )2 2 2 2 22 2 , 2 , where 8 , ,b a c d c c a a c c a< ϒ − + ϒ = −
    

(7c) 

Then, there is 0 0>  so that if 02b <  , all roots of Equation (5) have nega-
tive real part. 

Proof: Observe that ,a b  and c  are positive, d  is negative and c a>  
(see (4)). Suppose that 0y =  in (6). The system has been reduced to 

( )2 e e 0x rxx b d x a cσ− −− + − + = . If ( ) ( )2 e ex rxx x b d x a cσϑ − −= − + − +  then 
( )0 0ϑ > . If 0x > , the first inequality in (7b) results in ( )xϑ >

( )2 0x b d x a c− + − + > . From this it follows that ( ) 0p λ =  and so has no pos-
itive solution with null imaginary part. The roots of the system (6) with null real 
part must be roots of the system  

( )2sin cos

cos sin

by y a yr y c

by y a yr dy

σ

σ

 + = − −

− + =                  

(8) 

We will show that system (6) has no purely imaginary solution. Suppose 
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0y ≠  is a solution of (8), then one must have 

( )( ) ( ) ( )
( )

22 2 2 2 2

sin : .
2

c y d b y a
r y y

aby
σ ρ

− + − −
− = =

         
(9) 

It is clear that ( ) ( )y yρ ρ= − − , thus we will consider only 0y > . A direct 
calculation shows that ( ) ( ) ( )2 4 2 2 2 2 22 3 2bay y y d b c y c aρ = + − − − −  and that 

( )( ) ( ) ( )( )
1
222 2 2 2 2 2

0 6 2 12 2 ,y d c b c a d c b
 

= − + + − − − + 
       

(10) 

is a minimum global point of ρ  on the interval ( )0,∞ . 
Since ( ) ( ) ( )2 4 2 2aby y aby y y c aρ ρ= + − −  and ( )0 0yρ = , then 

( ) ( ) ( )2 2 2 2 2
0 0 03 2 2aby y c a d c b yρ = − + − − . From the first inequality in (7a) and 

the inequality of (7c) we notice that ( )0 1yρ >  and (5) have no purely imagi-
nary root. 

Let consider the sets iS  for { }0,1,2, ,6i∈   given by 

( ){ }
( ){ }
( ){ }
( ){ }
( ){ }
( ){ }
( ){ }

2
0

2
1

2
2

2
3

2
4

2
5

2
6

, : 0 and 0 ;

, : 0 4 π and 2 ;

, : π 4 2π and 0 ;

, : π 2 2π and 0 ;

, : 0 and ;

, : 0 and ;

, : π 4 2π and 0 .

S x y x x y y

S x y y x b

S x y y y x

S x y y x

S x y y x y x

S x y x y x x

S x y y x y

σ

σ

σ

σ

= ∈ < ≤ < ≤

= ∈ < ≤ >

= ∈ ≤ ≤ < ≤

= ∈ ≤ ≤ >

= ∈ < ≤ ≥

= ∈ < ≤ ≥

= ∈ ≤ ≤ < ≤















           

(11) 

For each ( ) 2,x y R+∈ , the first equation in (6) becomes equivalent to 

( ) ( )1 1
e, : e , cos 0,

xr
xdx cx y x y b x y a yr

x y x y
σζ

−
−−

Γ = − − − − =
+ +       

(12) 

where ( ) ( ) [ ]1
1 , cos sinx y x y x y y yζ σ σ−= + + . We notice that  

( )1
e e cos e e, 1 and .

rx rx rx rxa a ry a ax y
x y x y x y y

ζ
− − − −− −

≤ ≤ ≤ ≤
+ + +       

(13) 

If ( ) ( )* 2, =x y y b x d y a c− + + − + + , then it follows from (13) that 
( ) ( )*

1 , ,y x y x yΓ <  . If ( ) 0,x y S∈ , we can verify that  
( ) ( ){ }*

0max , : , 0x y x y S∈ <  and so, Equation (12) has no solution belonging 
to 0S . In fact, function ( ) ( ) ( ) ( )22 4y x b x d b x d a c= + − + + − + +  is in-
creasing in x  and yeilds the positive solution for the second-degree equation at 
y  given by ( )* , 0x y = . 

The second equation in (6) is equivalent to 

( ) [ ]2 , 2 e sin cos e sin 0.x rxx y xy dy b x y y y a ryσ σ σ− −Γ = − + − + =     (14) 

Since ( ) ( ) ( )2 1, 2 0 for ,x y y x b x y SΓ > − > ∈ , there is no solution of the Equ-
ation (14) that belongs to 1S . It is clear that sin cos 0x y y yσ σ− ≥  for 
( ) 2,x y S∈ . Moreover, for all ( ) 2,x y S∈ , we have  
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( )2 , 2 e sin 0rxx y xy dy a ry−Γ ≥ − + > . Thus, there is no solution of (12) that be-
longs to 2S . Let consider ( ) 3,x y S∈ , then ( ), 2x y xy dyΓ ≥ −  is positive be-
cause 0d <  (see (7a)). Hence, there is no solution of (12) that belongs to 3S . 
For each ( ) 4,x y S∈ , we define ( ) ( ) [ ]1

2 , sin cosx y xy x y y yζ σ σ−= − . We can 
check directly that ( )2 , 2y x yζ ≥ −  and siny yr x≥ − . Then,  

( ) ( )1 3 2
2 , 2x y x y y by a− −  Γ > − −   is positive if y x≥  (see (7)), hence (14) has 

no solution at 4S . Let ( ) 5,x y S∈ . Because, ( )2 , 2x x yζ ≥ −  and  
( ) ( )1 2sinxy yr x− −> − , then ( ) ( )2 1 1 2

2 , 2 2x x y x y x bx a− −Γ > − −  is positive if 
x x>  (see (7)) and so, has no solution at 5S . Assume ( ) 6,x y S∈ , since 

2xy x≥ , 2 2 e cosxby by yσ σ−− < − , ( ) ( )2 , 2 2x y dy byΓ > − −  is positive  
if 2 2d b< −  (see (7a)). Hence, there is no solution for (12) that belongs to 

6S . 

By general arguments on the compactness of the interval 
π0,
4

 
  

 and the 

continuity of ρ , we arrive at the existence of a 0 0>  so that System (6) has 

no solution belonging to ( )
0

2
0

π, : 0 , 0
4

S x y R x yσ = ∈ ≤ ≤ ≤ ≤ 
 

  . If  

( ){ }2 2, , 0, 0R x y R x y+ = ∈ > > , conditions (7a), (7b), (7c) and 02b <   imply 

that 
0

2R S+ ⊂   , where 6

0 ii
S

=
=


  (see (11)). So, it can be proven that Sys-

tem (6) has no solution that lies at ( )2Cl R+  and so the proof of the Theorem is 

complete. 
Corollary 1. Let , , ,a b c d  be given by (5), satisfing { }min 2 2, 2d b c< − − , 

(7b) and (7c). Then, there is 0 0>  so that if 0y <   the equilibrium solution 
of System (1) is asymptotically stable for all σ  and r  (see (7)).  

Proof: Let consider 0  and 
0

S  given in Theorem 1. It is easy to see that if 

0y <   then 
0iS S⊂   for { }1,2,3,4i∈  and in this case ( ) 0

2
0Cl R S S+ ⊂  

5 6S S  is indepentent from r  and σ  (see (11)). 

3. Hopf Bifurcation 

A search for purely imaginary solutions of Equation (6) plays a key role in the 
analysis of stability and bifurcation of periodic solution of System (1). We will 
find solutions for Equation (6) with real part null, which actully solutions of the 
System (8). 

Theorem 2. Assume (4), 2 2d b= − , π 2σ = . Given , 0a b > , consider 

r∗  so that 2 π1
2 2

br
a

∗  
< − <  

 
. For ,a b  and r∗  there exists 0 1 2y∗< < , 

solution of the second equation of System (8). If ( )sin π 2c by y∗ ∗= +

( ) ( )2
cosa r y y∗ ∗ ∗+ , then ( )π 2, ,r y∗ ∗  is the solution of System 8. Moreover, 

0

π 0
2 x

λ
=

  ℜ >     
 .  

Proof: Consider 2 2d b= −  in the second equation of the System (8). We 
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set ( ) ( )sinH y a ry=  and ( ) ( )2 cos π 2
2

G y yb y
 

= − +  
 

. It is easy to see that 

( ) ( )0 1 2 0G G= =  and G  is concave with a maximum at y , y  is near 

0.285281y = . Clearly, ( )H y  is an increasing function for 0 1 2y< <  and 

( )0 0H = . If ( ) ( )20 1 0
2

H ar b G
 

′ ′= < − =  
 

 with π 2r < , there exists y , 

so that ( ) ( )H y G y= . Thus, given ,a b  so that 
2 π1

2 2
b
a
 
− <  

 
, consider 

21
2

br
a

∗  
< −  

 
 and for this r∗  consider y∗  given by ( ) ( )H y G y= . It is  

possible to find c  so that y∗  is the solution of ( ) ( )sin π 2 cosby y a r y∗+
2y c+ = , which is the first equation of System 8 or else consider 

( ) ( ) ( )2
sin π 2 cosby y a r y y c∗ ∗ ∗ ∗ ∗+ + = . Therefore ( )π 2, ,r y∗ ∗  is the solution 

of System 8 for ,a b  and c  given above. 
Now, by using implicit derivative in (5) we can show that 

( )( ) [ ] ( )2

0
2 sin cos cos .

x
by y y d y bar r yλ σ σ σ σ

=
ℜ = − + −

      
(15) 

( )( ) ( ) ( )2

0
π 2 2 sin π 2 cos π 2 cos π 2 0

x
b y y y d y bar r yλ ∗ ∗ ∗ ∗ ∗ ∗

=
 ℜ = − + − > 



is positive because 0 1 2y∗< <  and , , 0a b d− > . 
A simple observation yields the following important corollary. 
Corollary 2. Let , , ,a b c d  satisfy the hypotheses of Theorem 2. Then for each 

( ),k m Z Z∈ ×  there corresponds ( ),k mrσ  given by, π 2 2 πky y kσ∗ ∗= +  and 
2 πmy r y r m∗ ∗ ∗= +  so that ( ), ,k mr yσ ∗  solves System 8. Moreover,  

( )( )0
0k x

λ σ
=

ℜ >  and the equilibrium solution of System (1) undergoes a Hopf 
bifurcation at the points , 0,1, 2,k kσ =  .  

4. Two-Delayed Kaldor-Kalecki Model 

Consider a Kaldor-Kalecki model of business cycle with two delays where mem-
ory-dependence may be not only due to regulation, but also to the inertia of in-
stitutional, technical systems including the deployment of research and devel-
opment results described by 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 0

, ,

1 , 1 b d

Y t I Y t K t S Y t K t

K t I mY t m Y t mK t m K t qK t

α

β η τ −

  = −  
= + − − − + − −





 

(16) 

where 0 10 d b< < , 0m ≥ , 0 1m≤ ≤ , Y  is the gross product, K  the capital 
stock, 0α >  the adjustment coefficient in the goods market, ( )0,1q∈  the de-
preciation rate of capital stock, ( ),I Y K  and ( ),S Y K  investment and saving 
are nonlinear and we assume are smooth enough fuctions, and , 0η τ >  are 
time lags representing delays for the investment in the capital stock due to past 
investment decision, which we assume are in both delays the gross product and 
the human or physical capital stockrespectively. Let 0a , 0b  and 0c  be real 
numbers such as 0 00 a c< < , 0 1b b≠ , 0 0 0 0a b c d+ ≠ + . If  
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( )( ) 1*
0 0 0 0 1 0 0 0a d b c b d a cγ −= − − − − , we define 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 00 0

0 00 0

1

1

,

and , .

b da b

c ac d

I Y K Y t K t q K

S Y K Y t K t q Y

−

−

= −

= −               
(17) 

Then, ( ) ( ) ( )
0

0 1 1 0

1
1 1

0 0 0, 1 ; 1
d

b b b bP Y K q qβ β− −− −
 

= = + + 
 

 is a solution of the 

non-linear system 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

1 01

, , 0,

, 0

, , 0.

b d

Y Y

I Y t K t S Y t K t

I Y t K t q K t

I Y t K t S Y t K t

β −−

 − =
 − =
 − =               

(18) 

which is also a steady state for the system 16. The characteristic equation of the 
linear problem around 0P , associated to System 16, is given by the Equation (5) 
where  

( ) ( )( )( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )

0 0 0 0

0 0 0 0

1 , ,

and 1 .
K K Y K

K K Y K

a I P S P m I P b mI P

c I P S P mI P d m I P q

= − − =

= − = − −





 

If we assume ( ) ( )00 1 Km I P q< − < , ( ) ( )0 0 0K KI P S P− < , ( )0 0YI P > , and 
( )0 0KI P > , then a, b, and c are positive real numbers and 0d < . If , , , ,a b c d r  

and σ  satisfy all conditions of theorem 1 the steady state 0P  of the Kaldor- 
Kalecki system 16 is asymptocaly stable. If the conditions of corollary 1 are satis-
fied the stability is delay-independent. If the conditions of theorem 2 are satis-
fied then the steady state 0P  becomes unstable and undergoes a Hopf bifurca-
tion. This Hopf bifurcation is the first one of a cascade taking place as the delays 
go to infinity. The structure of this cascade is described by corollary 2. 

5. Concluding Remarks 

This paper studies dynamic characteristics of feed-back effects that incorporate 
the memory of the phenomenum into the model because of a commum feature 
to them, which is, the appearance of oscillations, a fact which is very important 
in the model problems coming from mathematical economics or ecology (see 1). 
We have chosen an approach that makes it clear how the delay phenomena and 
anti-damping force dominate, lead either asymptotic stability or fluctuations to 
system 1, and it can also make trajectories converge to the other limit cycle 
which may be stable or not. We apply our results to describe Kaldor-Kaleck 
model dynamics 16, which can be used to model decision-making dynamics in 
business cycle. Ours results describe special circumstances which show that 
equilibrium point of system 1 can either have a stable fixed point surrounded by 
an unstable cycle that appears because Hopf bifurcation. 
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