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Abstract

In this paper, we consider the regularized learning schemes based on
Ji-regularizer and pinball loss in a data dependent hypothesis space. The target
is the error analysis for the quantile regression learning. There is no regula-
rized condition with the kernel function, excepting continuity and boundness.
The graph-based semi-supervised algorithm leads to an extra error term called
manifold error. Part of new error bounds and convergence rates are exactly
derived with the techniques consisting of /-empirical covering number and
boundness decomposition.
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1. Introduction

The classical least-squares regression models have focused mainly on estimating
conditional mean functions. In contrast, quantile regression can provide richer
information about the conditional distribution of response variables such as
stretching or compressing tails, so it is particularly useful in applications when
both lower and upper or all quantiles are of interest. Over the last years, quantile
regression has become a popular statistical method in various research fields,
such as reference charts in medicine [1], survival analysis [2] and economics [3].

In addition, relative to the least-squares regression, quantile regression esti-
mates are more robust against outliers in the response measurements. We in-

troduce a framework for data-dependent regularization that exploits the geome-

DOI: 10.4236/0js.2017.75056  Oct. 23, 2017

786 Open Journal of Statistics


http://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2017.75056
http://www.scirp.org
https://doi.org/10.4236/ojs.2017.75056
http://creativecommons.org/licenses/by/4.0/

R. Feng et al.

try of the marginal distribution. The labeled and unlabeled data learnt from the
problem constructs a framework and incorporates the framework as an addi-
tional regularization term. The framework exploits the geometry of the probabil-
ity distribution that generates the data. Hence, there are two regularization terms:
one controlling the complexity of the classifier in the ambient space and the
other controlling the complexity as measured by geometry of the distribution in

the intrinsic space.

2. The Model

In this paper, under the framework of learning theory, we study /-regularized
and manifold regularized quantile regression. Let X be a compact subset of
R'" and Y cR. There is a probability distribution p on X xY according
to which examples are generated for function learning. Labeled examples are
(x,y) pairs generated according to p . Unlabeled examples are simply x e X

drawn according to the marginal distribution p, of p . We will make a spe-
cific assumption that an identifiable relation between p, and the conditional

p(Y1x). The conditional 7-quantile is a set-valued function defined by
p({y € (—oo,u]} | X) >1-7 and p({y € (u,oo]} | X) >7 (2.1)

where 7€(0,1), xeX and ueY.
The empirical method for estimating the conditional z-quantile function is

based on the z-pinball loss
-

Then, denote the generalization error to minimize the conditional z-quantile

Tr, r>0
2.2
(r—1)r, otherwise 2.2)

function f, with the loss function p,
&= pr(y— f (X))dp (2.3)
where f:X — R. Based on observations, the empirical risk of the function f

is

£, :%ilzlpr()’i - f (Xi)) (2.4)

Next, We assume that |f]
In kernel-based learning, this minimization process usually takes place in a
hypothesis space, Reproducing Kernel Hilbert Space (RKHS) [4] [5] H, generated

by a kernel function K:X x X — R. In the empirical case, a graph-based regu-

<lae,xe X withrespectto p,.

lar quantile regression problem can be typically formulated in terms of the fol-

lowing optimization

. |
f,, = Pg;{K‘ {zpr(yi =£06)+7al Fll + 7 (£ } (2.5)

i=1

By the representers theorem, the solution to (2.5) can be written as
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l+u

fz,y(x):%:aiK(x, X) (2.6)

The /-norm penalty not only shrinks the fitted coefficients toward zero but
also causes some of the coefficients to be exactly zero when making y, suffi-
ciently large. When the data lies on a low-dimensional manifold, the graph-
based method seems more effective for semi-supervised learning and many ap-
proaches have been proposed for instance Transductive SVM [6], Measure-
based Regularization [7] and so on. Then the /-regularized and manifold regula-

rized quantile regression are as following

fz,y(x)zan{gj(f)ﬂ/AQ(f)Jr Al li(f(xi)—f(xj))zw,j}

fett (I+u)2 =

H T 7/I T
=min<e (f)+r . Q(f)+———f Lf
fEHK{ Z( ) 7A ( ) (I+u)2 }

where Q(f)zz::“ai , f :(f (%), f (XHU))T . ¥a ¥, are nonnegative
regularization parameters. L=D-W is the unnormalized graph Laplacian,

l+u
=
is given by a similar function a)(X- X; ) The more similar x; and X;, the

i1 N
should be.

where D is a diagonal matrix with diagonal entries D; =) @; . The weight

@y
larger o

3. The Restriction

Definition 3.1. The projection operator on the space of function is defined by

L, if f(x)>1
z(f)(x)=1f(x), if -1<f(x)<1 (3.1)
-1, if (%)<l

Hence, it is natural to measure the approximation ability by the distance

g with fp’ <1.

“ﬂ-( fz'y)_ f; p
PX

Definition 3.2. Let pe(0,0] and qe(l,o). We say that p has a

t-quantile of p-average type ( if for almost all x € X with respect to p,,
there exist a T quantile teR and constants a e(0,2], b, >0 such that
for each se[0,a,],

p(ye(t-st)[x)=bs", (3.2)
p(ye(t-st)|x)=bs", (3.3)

and that the function ¢:X —[0,], ¢(x):bxaj’1 satisfies ¢, el .
For pe(0,0] and qe(1,0), denote
.12 p
f=miny—,——:€(0,1 3.4
{q p+1}€( ] ey

Lemma 3.1. If p has a t-quantile of p-average type ( for some
pe(0,0] and qe(l,»), then for any measurable function f:X —[-11],
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there holds
1
-] <Cy fer ()= (1))} (3.5)
where C, :Zlféq% [(bxaf’l)il:'xﬁx and p, =%

LP
PX
Definition 3.3. We say that the kernel function K is a C° kernel with

c>0 ifthere exists some constants C° >0, such that
|K(t,x) =K (t,x)| <C°[x=x|",vt,x,X € X (3.6)

We assume throughout the paper that KECC(XXX) and denote

K =5Up, oy | K ( X,t)| <o0. Our approximation condition is given as

fr=Lyq’, forsome0<s<1, g;eLfJX(X) (3.7)

here, the kernel K is defined by
K(xy)=] K(xt)K(y,t)dpy (t) (3.8)

Hence, although kernel K in not positive semi-definite, K is a Mercer
kernel, H, denotes the associated reproducing kernel Hilbert spaces. The ker-
nel K defines an integral operator LKZLf, — L% by

X PX

LKf(x):J'XK(x,x')f(x')dpx(x'),XGX. (3.9)

Note that L, =L, L is a self-adjoint positive operator on Lix .Hence its
s-th power Ly is well defined for any s> 0. we take the RKHS H with

K(X,Y)=[ K(xt)K(y,t)dpy (t) (3.10)

It is easy to see LK = Lf{ , so that any function f e, can be expressed as
2
Lgg forsome gel, .
Definition 3.4. Define a Banach space
le{f o f :Zw a.K<X,Xj),{aJ} ell,{xj}c X} with the norm

=i
"f”:i”f{f :Zw;|“j|: f =§;aj|2(x,x.),{aj}ell,{xj}c X} (3.11)
J= I=

Definition 3.5. For every n >0, the ,-empirical covering number of F is
N, (F.m)=min mininf {I eN:3{f,}_ such that for all

(3.12)
f e F,thereis rEiISI‘IIdZYX(f, fi)SU}

Lemma 3.2. There exist an exponent pe(0,2) and a constant C,, such
that
log \V, (B,.n)<c,n ", Y5 >0 (3.13)

suppose that K eC®(X x X))
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2n/(n+2c), when0<c<1
p=12n/(n+2), when0<c<1 (3.14)
n/c, when ¢ >1+n/2

2
Define an operator L, on L, as

L, f(x)=f(x) p(x)—jXK(x, x') f(x")dpy (X) (3.15)
with p(x) 2.[ K (x,x")dp(X'). The above equation tells us that
(f.L,1), =[[(f( dpx (x)dpy (X) (3.16)

Next, The performance of H; approaching f can be described through

the regularizing function f, defined as
f, =arg erK]{g’(f)—g( B)+7all flle + 7 (F.L 1) (3.17)
the above function f, given by (3.13) can be expressed as
f =Lh =Lg, (3.18)
where @, = Ly hy . Moreover, ¢, isa continuous functionon X and

9., =l 1% <=l =< ] - (319)

Definition 3.6. Let F be a set of function on X, X=(X; ):(:1 e X*. The |,

metric between function on X s

1 2

d, (F,0)= {kZ(f(xi)—g(xi))z}z,vf,ge]-" (3.20)
i
Denote the ball of radius r>1 as B, :{f eH, :"f"ri Sr}.

4. Error Analysis

4.1. Error Decomposition

Proposition 4.1. Let y=(y,7 ).7a>0,7 >0 and fwzzw K (X, %)

|l|

given by (2.6). Then

i T Y T
& (ﬂ(fw)) g (fp)+7/AQ(fz,V)+(|+u)2 fZJLvaV (4.1.1)

<S(2.7)+S(z.7)+H(z,7)+ M (2, 7)+(1+x)D(7)

where

S(zy)={e (2(f,)-e () -{e (=(.,) -2 (1)) @12
S,(2r)={ei(f, )= (1)) -1 (F.,)-2 ()] (4.13)

/4
' fLf, (4.1.4)
+U)

Hy(zr)=¢(f,,)-¢ (1)) (4.1.5)
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D(r)=e"(1,)=& (£;)+7a]f | +n (f L1,), (4.1.6)

M(z,7)=

£ = (L1, (4.1.7)

7oy

7
(I+u)2

Proof. A direct decomposition shows that

e (2(f,)-e(17)+ yAQ(fM)+(I f'u ; £l L,

si(f )+7A9(f )+(| 7/Iu)z sz,sz,,} (4.1.8)
Her(f,)-e ()] - (F (£))+ (F.,)
_gr(fr)'i_gr(fy)_ ( )+7A|| " +7/'< >

+7AQ< fz,y)"' (l j_/lu)z AZTnyAM A ||gV||L1pX B

fILf,

id
(I+u)2 g

£ILE, =, (f,.L, 1),

7! e Ty

7ol -7ale ] +
PX X

7\
(1+u)’
The fact |y|<1 implies that &; (7[( fzyy)) <s, ( fz,r)' Hence, the second item

in the right-hand side of the above equation is at most 0 by the reason that

fz’y € H, is the minimizer of (2.7). Duo to

sl > we see that the

last but one item is at most 0. The fifth item is less than by the (1+x)D(y) fact
that "gy”LZ = " f, "K < 1(” f, "K . Thus we complete the proof.l]
PX

4.2. Estimation of the Regularization Error

Proposition 4.2. Assume (3.7) holds, denoting y, =y.° for some 0<s<1

then we have

D(7)<Cyra (4.2.1)

where C; = 2||g;

LZ
P
Proof. Denote f, =argmin_, {gr (f)+7a || f ||K} By proposition 2 in [8],

we get the following relationships &° ( f. ) -&' ( f, ) + Al f < 2"9",

S
2 VA
X

YA |lk

and

S i ;2 - Connected with the definition of D(y), we have
X
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D(y)<e (1)=& (1) +7a|F.], +7 (F..L1,),
2 YAty _U( £ (x)= 1, (X )) o(x,X)dpy (x)dpy (X')
o A w72 {[2] 8, ] @dpx (x)doy ()

o 7a+6ayY
PX

T

<29,

<2

9,

YA

<2

9, 9,

LZ
PX
where y, = 75°. we derive the desired bound.[J

4.3. Estimation of the Manifold Error

In this subsection, we estimation the manifold error. Denote

Z[( 251( )j(Xj)—(Efl)<Xj)j (4.3.1)

l+uz

Az:yl

=t x)[( +u.Z§2( )j(x)—(Egz)(x)jdpx(x) (4.3.2)

1+u

z,y—”qu( )((E.;g)(xj) ( ! 'fjgs( % )(x )D (4.3.3)

s=nt(x (Eé ( ! If:é( )J(X)]dpx(x) (4.3.4)
where él(x)sz(x)a)(x,-), &(X)=o0(4x), &(x)=f, (x)o(-x). So we can

see that M(z,7)=2(A,,+B,,+C, +D, )

Lemma 4.1. Let ¢ be a random variable on a probability space X with
0'2=E||§||2 satistying ||§||£ M, for some constant M, . Then for any
0< 9 <1, we have

! 2M.log(Ys) [20%log (Vs
%Zﬁ(zi)—Eéfs £ Ig(J/ ), %2 Ig(J/ ) (4.3.5)

i=1

Proposition 4.3. under the approximation condition (3.13), let 0<y, <1
and y, =y5*° for some 0<s<1l. then for any 0<5 <1 with the confidence
1-6, there holds

M(z.7) < 4ok*CZ[210g(4/8)y5 (1 +u) (43.6)

Proof. By the definition of & (X), we have
|§1(X)| <olf |2 = a)|LKgy ’

2 Si
ol - Since ”gy
PX

(x)|§a)

2

s-1
2 SK" f7|||i <xCyys", there
PX

holds |§l( | < K4C027/f\s B
4.1, with confidence 1-4/§,

(X)|Sa)K2C0]/Z4. Applying lemma

2log(2/6 2log(2/6
A, < oK’Cly 2“[ 09(2/9) , |2log(2/ )J (4.3.7)
’ l+u l+u
21 2/6 21 2/6
B,, S;/,a)K“ngi(sfl) °9(2/ )+ %9(2/%) (4.3.8)
' l+u l+u
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2log(2/6 2log(2/0
C,, < 7,0k C22 Y | - 9(2/ )+ 9(2/5) (4.3.9)
l+u I+u
2log(2/6 2log(2/6
D,, S}/,a)K“C(f;/i(sfl) - 9(2/ )+ 9(2/%) (4.3.10)
I +u I+u

Then we find the manifold error bound holds true.[J

4.4. Estimation of the Hypothesis Error

This subsection is devoted to estimate the hypothesis errors. Under the assump-

tion that the sample is ii.d. drawn from p and |y|£1 a.e, we estimate

'H,,’H, as following.
Proposition 4.4. For any 0< 6 <1,with confidence 1-¢J , we have

_D(y) [2l0g(4/6) y D(y)
< \/I+u{ N +,/2log(4/§)}+8 J2log(4/5) N (4.4.1)
, D(¥) [2log(4/5)
st m{ ol +JW} 442)
Proof. We estimate H, . Recall fAM = ﬁZ::gy (Xi ) K, > then

Q(f,,)== X1, (x)-

Applying Lemma 4.1 to the random variable & =|gy (X)| on (X,py) with

valuein R. There is

£=o, ()| <xD(r)/rs (4.4.3)
E¢=lo,[. ando®(&)<x*D(r)' /73 (44.4)
with confidence 1-5/2, there holds

ot )lorl, < ZKDX ()|Iigu()4/5) +\/ = Dy(iy ()I 103)(4/6)

(4.4.5)

since

( (
S e 0K ()-8, (1)K (%) @46
] ( (
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Then the bound of the following is derived with y, =y

7\ FT £ 7\ T
fTLf, -1 ¢y
(+u) 7 (4w 77 (4.4.7)

SSKZ\/WD(V)Z v (+u) ¥

Finally, we have

< D(;/) 2|Og(4/é') \ ’D(;/)Z
Hl_K\/IJru{ JI+u +‘/W}+8K W—75M(4'4'8)

A

The H, hasbeen proved in [8].0J

4.5. Estimation of the Sample Error

Since f,, isa function valued random variable which depends on the sample
error in the data independent space H, which contains all possible hypothesis
spaces H, ,. Our estimations for H,,H, are based on the following concentration
inequality see [8].

Lemma 4.2. Let F be a class of measurable function on Z . Assume that
there are constants B,c>0 and Be[01] such that |f| <B and
Ef?< C(Ef )ﬁ forevery f eF .Ifforsome a>0 and ue (O, 2),

log V, (F,{)<ad™,v¢ >0 (4.5.1)

then there exists a constant ¢, depending only on x such that for any
0 <6 <1, with confidence 1-06, there holds

! Y(2-5)
Ef —%Z f(z)< %vvl’ﬁ (Ef) +c,w+ 2[—6 Iogl(]/(s)J

+1SBlog(]/5)’

(4.5.2)
vf e F

2- 2 2 2

M — 1 —_—
A G A KA
where w=max{c*?* [Tj ,B¥# [Tj .The same bound also holds

i=1

true for %zl f(z)-Ef.

The following proposition which has been proved in [9] will be utilized to
bound § .

Proposition 4.5. suppose that p has a t-quantile of p-average type ( for
some pe(0,©], qe(l,0). Let <1 and 0<y,<1. Assume B, satisfies
the capacity assumption (3.12) with some 0< u<2. Then, for any 0<d <1,
with confidence 1-6 , there holds, for all f €B,,

e (r(0) = (1)} ={ei (= (1) =2 (1))}
2u(1-0)  2(1-0)

g % Cor 2 [ o ()= (1) (4.5.3)

P

1 ET VR
+ (36 + 2C0279 ] Iog (]7/5) I 2-0 + C2r2+,u I 4-260+u6
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Here C, and C, are the constants dependingon u,6,c,, and C,.

The following proposition which has been proved in [9] will be utilized to
bound S, .

Proposition 4.6. Under the assumptions of proposition 4.5. Then, for any
0 < 8 <0,with confidence 1—¢6 , there holds,

 21-6)
S, <G, (1+ % log %j log (E] x| 4-20+u0

g (4.5.4)

E 0
x(y:1(| +u) 2+ (1+u)2 j

here C, isa constantindependentof I,y,,d.
Proof. We consider the following function set with r>1 tobound S,

G ={p. (F()=y)=p. (£ (x)-y): f B} (4.5.5)

since |f;/<1 and |f| <«r,forany geg,,wehave

|g(z)|§|f(x)—f’(x)|§||f||w +1<kr+1 (4.5.6)

P

By Lemma 3.1, the variance-expectation condition of g(z) is satisfied with
6 givenby (3.4) and ¢=C,, S =6.Then we get

log \V, (gr’n)SC;I,KrﬂU_ﬂ- (4.5.7)

Applying lemma 4.2 to G, , then for any &e(0,1), with confidence 1-5,
there holds that, for any f €B,,

e (1)=2i (£5))={e ()= (7))
< %UH’ {e (1)=& (1 )}9 + 2(M]M (4.5.8)

i I

. 18(«xr +1|) log(1/5) e

2 2-u 2 oy 2
UL T A ey o] 2 =
where v=Crl *?**’ and C=C, "¢ % +(k+1)2uc, . From the

processing of estimating 7, for any &§e(0,1), with confidence 1-25/5, we

have

13 D 2log(5/8
mi:l gy(xi)|_||gy i SK“\/%( i)/?% )+,/2Iog(5/§)] (4.5.9)

which implies there exists a subset V, of X' with measure at most 25/5
such that

i”z“gxxi)smax{,( () [ﬂ;fffhwj,l}

I +uis 7aN1+u

2r,vze X"\,

(4.5.10)

The above inequality guarantees f, €B, with for every xe X'"\V,. By
Lemma 4.2 and (4.5.8), there existing V,y with measure at most /5 such that
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for every xe X' \(V1 uv, ) ,wehave f, B, and

() (2o () (1)

<Tempntnn (oo (7, ) (1))

Zy

-

1
2

+ X 1 4-201p0 C,log(5/6) \o

18(x+1)r 1™ Iog§+cﬂCryl“-29+#9 + 2(#}

1.  21-0) A P (4.5.11)
< Eclfarylfal 4-20+u0 ‘gr ( fw ) e ( f}/)
1.  21-0) )
+EC1—6ryl—H| 4-20+u0 {gr ( f;/ ) _&t ( fpr )}

2 —
ey o) C,log(5/0) |2
+18(x+1)r, 1™ Iog§+c#0ryl 4-20eu0 +2(%(/)]

Proposition 4.2 implies that &° ( f, ) -& ( f ) <D(y)<Cyrp and

£ <(xc+1) \/%{ZI?/?%/;S) + 2109 (5/) +1] (45.12)

The Proposition 4.4 tells that there exists a subset V, of X'" with measure
of at most 25/5 such that for every xe X" \V,,

g’(fw)—gr(fy)ﬂcz D7) {Zlf/?iséé)+,/2log(5/5)} (4.5.13)

Bl }/A«/I+u

Let V=V,UV, UV,y. Obviously, the measure of V is at most § and for
every xe X'"™\V, the above inequalities hold. Finally, we combines (4.5.11),
(4.5.12), (4.5.13), the result is completed.l]

5. Total Error Bound

Proposition 5.1. suppose that p has a r-quantile of p-average type ( for
some pe(0,+x] and qe(1,0), and that Approximation condition (3.7) and
Capacity condition (3.12) hold. Let 0<y, <1,r>1 and 0<¢J <1. Then, there
exists a subset U, of X" with measure at most 5 such that for any
xeW (r)/U, , we have

g’(ﬂ(fw))_gr(f;)+yAQ(fw)+(l+7'u)2 fLf,

(5.1)

2u 2

sérzﬂ‘l_‘”””’+c4[—2|ogl(1o/5)+ 2Iog(lO/5)+1j‘P(l,u,7)
Jl+u

Here é C, are constants independent of I,u,y,,J and
__A0)
WL y) =75+ 75 (1+u) eyt (u) ™ st (Lu) Y21 420
2(1-0)

+7/271+9 (l +u )*(1*'9)/2 |74—219+,u€

Proof. Proposition 4.4 ensures the existence U, of X'" with measure at
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most 25/5 such that

. D) [2log(10/5) o D(r)
H < m{ N ,/2|og(1o/5)} 8 ‘/2log(10/5)—}/z s 6

H, <x* D(7) (Zlﬁl(ﬂ/é)+,/2|og(10/5)] (5.3)

}/A\/I+u

hold for any xe X'/U, .
Proposition 4.5 tell us that there exists a subset V., of X' with measure at
most §/10, such that
2u(1-6)  2(1-6)

S, S%CIHI’ 2ep | 4-20+u0 {gr (ﬂ_< fz,y))—ST (f,)}ﬁ

P

5 5 (5.4)
o 10,5 S T 20
+[36+2C2° Iog(gjl 20 4 C,r2H| 200
Proposition 4.6 ensures the existence of a subset U, of X' with measure
atmost &/2 such that
2(1-6)

I _Ax0)
SZ < C3 [%4_ \/W +1J x | 4-20+u0

1-0

1
x(yz_lﬂ +u) 241 +u)_2j, vxe X" /U,

(5.5)

Proposition 4.3 ensures that there exists a subset U, of X' with measure
almost 10/8 such that

M(2,7) < 4or*C2[210g(10/8)y5 (1 +u) (5.6)

Takeing U, =U, UU,UJU,UV,, the measure of U, is at most &, combin-
ing (5.2)-(5.6) and (4.2.1), then for every xeW (r)/U, we get

& (2(1,,)) - (1) 7.0 f”)+(|+y—lu)2 £ Lf,

+%C{%+J2Iog(loﬁ)+1j‘P(I,u,;/)

2u(1-6)  2(1-6)

(5.7)

+%C11’9r 2eu | 4ruo-20 {81 (7[( fw))_g, ( f; )}9
2u 2
n Czr:y|74+y5—29

Here C,,C,,C,,C,,C, is a constant independent of l,u,7,,0 , and
W¥(l,u,y) areasabove.

Next, let t=8r(7t( fz’y))—g’(fp’)ﬂ/AQ( fz’y)+ 7 fZTnyM. Hence, the

(I+u)2

inequality (5.6) can be expressed as

1 2u(1-0)  2(1-9)
t—ECIl’Gr 2o | 402010 _T1 <0, (5.8)
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where II is the rest terms. From Lemma 7.2 in [learning theory: an approxi-
mation theory viewpoint], the (5.8) has a unique positive solution t* which can

be bounds as

2u 2 2u 2
t* < max {Clrz“‘l‘””gz‘g, ZH} < Cyr2tH Hem20 4 o1, (5.9)
then the result is derived.[]

6. Convergence Radius and Main Result

Proposition 6.1. Under the assumptions in proposition 5.1, we take
: 2

C4-20+u0°
dence 1- ¢, there holds

w, yo=17 with p>0. Then, for any 0<5 <1, with confi-

f,,

s[(l+(§)§+z +(N, +1)C,

x [—2 'cj’l%/‘s) +4/210g(10/5) +1JJ x |09)

(6.1)

2
Proof Applying y, =17 with g >0 andletting A= 2_# to proposition
U

5.1, then for any r>1, there exists a subset V. of X' with measure at most
0 such that

<a,r*+b,, VxeW (r)/V, (6.2)

f,,

where the constants are given

— G5
a, =Cl

b, =@(%+J2Iog(10/5)+1j‘}’(|,u,;/)/yA (6.3)
ébﬁ\y(Lul]/)/}/A

where C, (55 is a constant independent of I,u,7,,J .
It follows that

W (r)cW (a,r* +b, )UV,. (6.4)

" © _ 1
Then, we define a sequence {r } . by r'’ =y, and, for n>1

A
rV=a_ (r(”’”) +b,,neN. (6.5)

Duoto |f, [[<1/y, ensures W (r(o)) = X", we have

X I+ :W(r(o))gW(r(l))UVr(o) E"'EW(F(N))U[’UV,WJ- (6.6)

n=0

with p UN:1V < N¢ . Hence the measure of is at least. By the iteration for-
n=0 = (")

mula (6.5), we have
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2 N-1 AN N 2 N1, an
r(N)SaﬁmA +eokA (r(o)) + a];A+A +eokA b$ +b
n=1
1-aN N-1 1-A
_ A _ A
=al ™yt +Yalrby +b,
n=1
1 1o N[ 1 1 -1 A
i (gt (e Al L
e +ala Y latab | +h, (6.7)
n=1
L2 (g )ﬂww[ﬂlw,ﬂj 1 1
£(1+C)2fﬂl Zou (B 2 Nadk-A maxdalab, 1t +h,
Ry Mﬂ[u %J L2 (20
<(aCppwr P L T (N1 b, + NCPHT
where

~ [ 2log(1 _
b, <C, [%4_ /2|og(10/5)+1J(|ﬁ(1s)+|ﬁ(2s)1/2+|ﬂ(15)(|+u) 1/2

4l B(2-5)-awp(1-6) (l U )—1/2 + I,B(Z—s—ﬁ)—wo(l—ﬂ) (l +u )-(1-9)/ 2 )

1
Noting that 0< < > < @, , to ensure that

2+p N[ 2+u 2fu
- +A - <p(l-s 6.8
(B wO)Z—y (Z—ywo 2—#] p(1-s) (6.8)
we only need
AN s P /A (69)

o, —-AB-(1-A)sp

Then we get

—-A/2
1 S|0g2+”u

2u a)[) _]7/2

- pA
NSmax{IogZW @ b } +12N, (6.10)

2 0y —AB—(1-A)sp’

Combine (6.2) and (6.10), we have

f., g((1+é)2iz +(N0+1)(A:4
( ) (6.11)
2log(10/6 A(i-s)
X| —"t 2log(10/5)+1 | |l ,
( Giru hveteal ”*B
with
rNo S[<1+é)z+z +(N, +1)(§4
(6.12)

where The bound follows by replacing J by Ni 0O

0

Theorem 6.1. Assume (3.7) and (3.13) hold. Taking y,=1",0< S%, l=u
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and y, = . Suppose that p has a t-quantile of p average type ( for
some pe(0,+oo] and qe(1,0), p*=ﬂl>0. Then for any 0<d5<1,
p+

with confidence 1-36 , we have

(1) 12T,
< a[(l+é)22+/:l +(Ny+1)C, x (2 I(ig/;(%()/é) +,/2log(10/5) +1D
X[I[wo(l 0=~ +| ﬁs] 2Iog(l

c

Q
%
~

BT + 2Iog(10/5)+1j (6.13)
+u

(172 (1+ u) I+u)_1/2

+ |*(w0(1*'9)*/?(1*5*9)) (| +u )’(1"9)/2)

Proof. Applying Lemma 3.1, proposition 6.1 and proposition 5.1, with confi-

dence 1-6, we have

””( fw ) - fpr

q

*
LP
X

2u
2u

<c,,C [(uc‘)w +(N, +2)C, [%ﬂ/m +1D2+,,

on(1-6)2
N a0 22 pa)| vc. ( 2log(10/5)

N + 2Iog(10/6)+1}‘1’2(|,u,y)
(1 LGy (N, +1)C, [% 1/2log(10/5)+1]j (6.14)

X[I ] 2Iog 10/5) JW”J

X(Iﬂs ~(0(1-0)-p(1~ )

~(p(1-0)-p(1-5-0)) (| n u)—(l-a)/z)

Here a,b isa constantindependentof |, u,d and

W, (LU, 7) =172 175 (1u ) Y2 08 )y ) 2

|-(wo(1—9)—/3(1—5—9)) (I )7(17,9) /2 (6.15)

+ +u

with f S% The proof is complete.[]

7. The Sparsity of the Algorithm

In this subsection, we consider the purpose of investigating sparsity of algorithm
(2.7). Here the sparsity means the vanishing of some coefficients in the expan-

sion
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f,, :ZaiK(x,xi) (7.1)

We provide a general result for the vanishing of the coeftficient.
f <1, je{l,--l+u} and a=(ay,-y,,) bethe

coefficient vector of f, . If

Proposition 7.1. Let

maxz',l—ncs% (7.2)
&Hu - o | ) ﬁ
2(|+u)2m§al (K(XJ'X') K(lext)) < 3 (7.3)
I+u
(Ii)_ﬁ)z%K(Xj,Xi)—K(X]-,XI)Hf(Xi)—f(xt)|g% (7.4)

Then we have «; =0.

Proof. Define the function F(«) in (2.7) to be optimized with
0?=(al,-'-,aj_l,O,'-~,a,+u)eR'*”. Denote 07=(a1,---,aj_1,0,---,a,+u) by subs-
tituting the jth component of & to zero. Comparing F(a) with F(&),

since OSK(Xi,Xj)SK and OSa)U.Sa),wehave

F(@)-F (&)= (y—maxz,1-7x)|a;|

(s Shallcton) ki) ol s

2(| + u)2 =

‘(ai’ﬁ)z fIZi\K<Xin>—K<XJ-'xt>\If<xi>—f<n>|]|aj|

If (7.2)-(7.4) are satisfied, we see from F(a)—F(a)<0 that we must have

f—fr

a;=0. In order to estimate error |T, —1T,

,+ » we only need to bounds
L
PX

& ( fz,y)— &’ ( f, ) We thus derive the following inequality, which plays an im-

portant role in our mathematical analysis.[J

8. Conclusion

In this paper, we have a discussion of the lowest convergence rate of quantile re-
gression with manifold regularization optimizing the intrinsic structure using

the unlabeled data. The main result is to establish an upper bound for the total
1

1577
error showing less than O{I [2 ]J Meanwhile, the quantile regression

provides a piecewice linearity but a convex technique to overcome difficulties
such as a high nonlinearity dependence on the predictor and linear suboptimal
models. Finally, the sparsity is analysised in the |, space.
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