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Abstract 
“Arithmetic Calculus” (AC), introduced recently by the author, is explored 
further in this paper by giving a new lease of life to the age-old differences ta-
ble by transforming it into a new kind of network. Any sequence that can be 
laid out in this network can be classified into one of five types of sequences, 
which can be expressed by algebraic polynomial or exponential functions but 
AC can reveal information concealed by algebra. The paper defines these se-
quences and refers to each family member as the parent sequence. These se-
quences make up their own universe as: (i) the population of the terms in each 
parent sequence is infinite; (ii) each parent sequence forms a hierarchy, in 
which their number of levels can extend into infinity; and (ii) there are infi-
nitely diverse parent sequences. A glimpse of AC is illustrated through exam-
ples but their analytical capability is applicable in their universe. The paper 
shows that small sets of building blocks are operated by the convolution theo-
rem or its variations, which is embedded “all-pervasively” in each and every 
member of the universe. Sufficient details are presented to ensure the emer-
gence of the mosaic image of AC through problems including: (i) differentia-
tion (reducement), (ii) integration (conducement), (iii) diagonal operations 
(reminiscent of gradient methods), and (iv) structure of hierarchies. These 
operations reveal that the new network can parallel Cartesian coordinates and 
that for problems with no noise, the deconvolution problem is well-posed 
against common myth of it being ill-posed. 
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1. Introduction 

Arithmetic Calculus (AC), introduced recently by the author [1], operates in a 
“universe” of number sequences, which includes those based on the power se-
quences ( nx ) and relates to polynomial and exponential functions. The hall-
mark of AC is an inbuilt analytical capability to factorise each individual mem-
ber sequence, belonging to this universe, to a small set of building blocks and a 
set of rules operated by the convolution theorem or its variations. Each sequence 
in this universe is to be referred to as a parent sequence and makes up the focal 
point in a new hierarchical network, where AC creates a new foundational ap-
proach to mathematics and literally, no existing theorem is used in the paper but 
the convolutional theorem. Even this theorem is not in its traditional format but 
is a recast of its traditional form used in hydrology. AC is at its infancy and that 
by the author [1] in 2014 matches with NASA’s TRL 1 (Technical Readiness 
Level) see [2]. This paper contextualises AC to take its status to TRL 2.  

It is realised that the readership is yet to be “initiated” towards AC and there-
fore some initiation through [1] is assumed but Section 2 revisits certain defini-
tions. The aims of the paper are: (i) to show that AC provides explicit formula-
tions and reveals new information concealed by algebra; (ii) to provide further 
evidence that the hallmark of AC (i.e. factorisation into building blocks and 
convolution-based rules) is all-pervasive; (iii) to give life to a new network; and 
(iv) to throw a further doubt to algebraic deconvolution theorem by showing 
that the problem through AC is well-posed but can be ill-conditioned.  

All-pervasiveness of AC is illustrated below using such basic operations as 
2 3×  or ( )( )a b c a b c′ ′ ′+ + + +  examples as a compensation to readerships’ 
lack of initiation. 

Definition 1.1: The universe of sequences under AC uses convolution prod-
ucts, branded by the hallmark of: ⊕̂ ; and two of its variations: referred to as 
regeneration products, branded by the hallmark of: ⊕ ; direct products, 
branded by the hallmark of:   and  . The expressions for these products 
(multiplication) are reproduced in Section 2.2. 

Example 1.1: Work out 2 3×  using AC. 
Assuming that 2 is composed of two terms 1 and 1 and also 3 is composed of 

three terms 1, 1, and 1, the operation 2 3×  is rewritten in the following AC 
format: 

    

1.1 1.2 2.1 2.2 2.3

ˆ1 1 1 1 1
      ⊕   
                          

(1.1a) 

where super-fixes identify the terms with no numerical significance (i.e. 


2.2

1 1= ). 
Thus:  

    

1.1 1.2 2.1 2.2 2.3

ˆ1 1 1 1 1
      ⊕   
      
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 



         



{ }

Term 2 Term 3Term 1 Term 4

1.1 2.1 1.1 2.2 1.2 2.1 1.1 2.3 1.2 2.2 1.2 2.3

1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 1 6

 
  = × × + × × + × × 
 
  

= =

 

        

(1.1b) 

Remark 1.1: Note that Example 1.1 calculates 2 3×  to be 6 but (i) the prod-
uct is shown to be distributed as: { }1 2 2 1  where this information is con-
cealed in algebra; (ii) these operations are not limited to (1.1a) but “2” and “3” 
can be replaced with any terms, e.g. 2 0.1 0.5 0.8 0.4 0.2= + + + + , where differ-
ent compositions identify different concealed information; and (iii) the proce-
dure is general (all-pervasive) as shown in Example 1.2 below: 

Example 1.2: Compare the algebraic operations for ( )( )a b c a b c′ ′ ′+ + + +  
with its AC counterpart.  

The algebraic operations are as follows: 

( )( )a b c a b c aa ab ac ba bb bc ca cb cc′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + = + + + + + + + +  (1.2) 

Although (1.2) is elementary and analytical, its inverse is not but factorised 
intuitively as: 

( )
( )( )

( )

aa ab ac ba bb bc ca cb cc
a b c

a b c a b c
a b c

a b c

′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + + + + +
′ ′ ′+ +

′ ′ ′+ + + +
= = + +

′ ′ ′+ +
           

(1.3) 

The intuitive factorisation in (1.3) is not readily available in more complex 
operations due to the absence of an analytical approach but AC is analytical and 
its inverse can be handled by analytical operators. The factorised elements with-
in each bracket are recast to their sequence formats using curly brackets and the 
operations are carried out, as follows: 

( )( ) { } { }ˆa b c a b c a b c a b c′ ′ ′ ′ ′ ′+ + + + ≡ ⊕ =        (1.4a) 

ˆ
a aa a a a

b b b b b b
c c c c c c

′ ′ ′   
   ′ ′ ′⊕ =   
   ′ ′ ′              

(1.4b) 



( ) ( ) ( )


Term 2 Term 3 Term 4Term 1 Term 5

aa ab ba ac bb ca bc cb cc

+
  ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + 
  

  

     

(1.4c) 



( ) ( ) ( )


Term 2 Term 3 Term 4Term 1 Term 5

aa ab ba ac bb ca bc cb cc+ + +′ ′ ′ ′ ′ ′ ′ ′ ′≡ + + + + +
  

      (1.4d) 

Algebra is not minded with the inverse of ( )a b c+ +  or ( )a b c′ ′ ′+ + ; whe-
reas the inverse of any AC quantities is conjugated with their direct formats and 
in this way AC is capable of handling its inverse through analytical procedures. 
The direct format is expressed by (1.4d) and its inverse is presented through the 
example below: 
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Example 1.3: Carry out the inverse of (1.4d) and divide the product by: 
{ }a b c . 

First step: work out the inverse of { }a b c  and by definition its product 
with its inverse must be unity, expressed as follows: 

{ } { } { }ˆ 1 0 0 0 0a b c p q r s t⊕ =      (1.5a) 

Second step: Form five equations from (1.5a) and solve the 5 unknowns (p, q, 
r, s, t):  

(i)
1p
a

= ; (ii) 2

bq
a

= − ; (iii) 
2

3

b acr
a
−

= ; (iv) 
3

4

2abc bs
a
−

= ; (v) 

4 2 2 2

5

3b ab c a ct
a

− +
= : 

{ }
2 3 4 2 2 2

2 3 4 5

1 1 2 3ˆ b b ac abc b b ab c a c
a b c a a a a a

 − − − +
∴ = ⊕ − ′ ′ ′    

(1.5b) 

Third step: Express the AC analytical inverse operations, which are as follows: 



( ) ( ) ( )


{ }


( ) ( ) ( )


 

Term 2 Term 3 Term 4Term 1 Term 5

Term 2 Term 3 Term 4Term 1 Te

T 3T 1 T 2

rm 5

2

2 3

1ˆ

aa ab ba ac bb ca bc cb cc

a b c

aa ab ba ac bb ca bc cb cc

b b ac
a a a

 
 ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + 
  

′ ′ ′

 
 ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + 
  

−
⊕ −

  

  



{ }

TermT 5

3 4 2 2 2

4

4

5

2 3

0 0

abc b b ab c a c
a a

a b c

 
 − − + 
 
 
  
′ ′ ′=

  

      (1.6) 

The operations in (1.6) simply do not exist in algebra, but they are AC con-
structs through the convolution theorem. To compare AC with algebra, a further 
example is given, which uses the elements of the Pascal Triangle for Examples 
1.2 and 1.3, as follows: 

Example 1.4: Consider the Pascal Triangle for the case of { }1 2 1  to pro-
duce: { }1 4 6 4 1 .  

There are few algebraic ways to carry out the above operations but AC opera-
tions as per (1.4) for 1a a′= = , 2b b′= =  and 1c c′= =  are as follows: 

{ } { } { }ˆ1 2 1 1 2 1 1 4 6 4 1⊕ =              (1.7) 

The inverse operation of (1.7) is equivalent to the case of { }1 4 6 4 1  
divided by { }1 2 1 . It is widely known that the inverse of { }1 2 1  is given 
by:  

{ } { }1 1 2 3 4 5
1 2 1

= − −                (1.8a) 

Algebra lacks an operator for the product of these two but AC is operated as 
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follows: 

{ } { }
( ) ( ) ( ){

( )}
{ }

1 4 6 4 1 1 2 3 4 5

1 1 1 2 4 1 1 3 4 2 6 1 1 4 4 3 6 2 4 1

1 5 4 4 6 3 4 2 1 1

1 2 1 0 0

⊕ − −

= × − × + × × − × + × − × + × − × + ×

× − × + × − × + ×

=  

(1.8b) 

The above examples illustrate a major difference between traditional algebra 
and AC, according to which, algebra is a set of clever operations and when it has 
problems, it either remains as low as intuition or becomes very sophisticated, e.g. 
the deconvolution theorem. On the other hand, AC needs initiation; its opera-
tions are logical but not apparent and this explains its belated discovery; it 
creates a procedural approach even for its inverse problems; thus, AC is smart. 
Whilst the above examples are given by everyday algebraic experience, the re-
maining sections focus on sequences with higher complexity. 

2. Initiation of AC—Prerequisite Background 
2.1. Basic Definitions 

AC is associated with a set of proposed terms, new symbols and new operators, 
presented by the author [1], which may be referenced for full details but basic 
definitions are reproduced here for continuity and warnings are given where the 
definitions have been revised. 

Definition 2.1—sequences: A sequence of numbers is a collection of highly 
ordered set of individual numbers, each referred to as a term, or an element, se-
parated by a comma or space and denoted by a curly bracket, e.g.: 

{ } { }1 2 3 i n=                   (2.1) 

Definition 2.2—Bounded/unbounded sequences: The number of the terms in 
bounded sequences is finite but in unbounded sequences, it is not. Bounded se-
quences are denoted by upper case single strike letters: { }  but unbounded 
sequences by upper cases double strike letters: { }  and natural numbers are 
denoted by { } . 

Definition 2.3—Regeneration: This is a way of using a sequence at a lower 
level and building a new sequence at a higher level by operating on its terms 
through summing, where the process of regeneration for each term starts from 
the first term, see operators (2.6).  

Definition 2.4—Arithmetic Calculus (AC): is a proposed term to refer to a 
new branch of mathematics, in which sequences are likened to assets and the 
theory of convolution or its variations are likened to currency. AC covers a un-
iverse of sequences of infinite sizes. These sequences are to be referred to as 
conducemental sequences, where the justification for coining this term is given 
by [1].  

Definition 2.5—Conducemental Sequence: Any sequences involving a mul-
tiplication by the convolution theorem or its variations are to be referred to as 
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conducemental sequences, e.g. the Pascal Triangle and the sequence of natural 
numbers. 

Definition 2.6: Conducemental Sequences refer to a whole universe of syn-
thetic sequences based on (i) a kernel, e.g. 1  or 1 1 ; (ii) a sequence of 
counters, which may be unbounded, e.g.: { }1 1 1 1 

, or bounded, e.g. 
{ }1 1 1 1 ; (iii) multiplication of these constituent sequences by employing 
one or more of the product rules (defined in Section 2.2); (iv) the source term 
(first term) of the sequence may start from any term; and (v) some of the terms 
may be defective. 

Definition 2.7—conducemental dimension specifications: The focus of atten-
tion in conducemental sequences is on parent sequences, { } , which is normal-
ly associated with another one to be referred to base sequences, { }′ . In be-
tween the parent and the base sequences, as well as outside them, there are many 
sequences at different hierarchies but all of them can be specified as: 

{ } ( ) 1 2, , ,f t sd d d g Defect 
 =       oo ø (2.2a) 

which is read as dimensional specification of   is given by i) architectural spe-
cification in terms of its degree from … to …, order and generation; ii) logistic 
specification in terms of its ordinal of the source term; iii) any defect in any of 
the term; and iv) specification of it kernel. The specification in (2.2a) comprises 
the following four components:  

i) Architecture Specification ( ): This comprises: degree: d  (degree of-
ten involves operations in a range from one degree, fd , to another degree, td ); 
order: o , and generation: g . The specification using the kernels is denoted by 
δ  and ω .  

ii) Logistics Specification (  ): It comprises ordinal of the source terms: sø . 
iii) Defect/mutation Specification: It specifies the term(s) suffering from er-

rors. 
iv) Kernel Specification  : It comprises size (and this is the same as order), 

values of its individual terms and the sum of these individual values.  
Remark 2.1: The propositions “from” and “to” are underlined for emphasis. 
Warning: Definitions for order and degree in the paper are opposites of those 

in [1]. 
Example 2.1: Consider the following examples to show their specifications: 

For { } { }
1 2

1 2
0 1 1

n
n

n
       = =       −       

   

Specification is: 

1,1,2 1 Defect  1  
            

(2.2b) 

For { } { } { }3 3 3 2 1
1 2 1 4 1

1 2 3
n n n

n
n n n

  + +        = =        − − −         
    

Specification is: 

3,3,0 1 Defect  1 4 1            (2.2c) 
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For { } ( ){ } { }22 2 1 1
1 3 2 1 1 6 1

1 2 3
n n n

n
n n n

 + −       = − =       − − −       
    

Specification is: 

4,3,0 1 Defect  1 6 1  
         

(2.2d) 

Definition 2.8—Reducement and Conducement: Two fundamental opera-
tions of differentiation and integration are referred to in AC by the proposed 
terms of reducement and conducement. The inverse of reducement is conduce-
ment. These proposed terms are not standard and they should go with the prop-
ositions: From one hierarchy ( fd  - degree from) to another ( td  degree to). 

Conducemental sequences have the hierarchy of: (i) a parent sequence with 
their terms ranging from −∞  to ∞  sequentially (horizontally, along rows, or 
ordinal-wise) and hierarchically (vertically, or degree-wise). The paper aims to 
capture the inherent sense of interconnection and interrelation within this net-
work with the potential to infinity-within-infinity. This network sense is ignored 
in algebra but is brought to life by AC. 

Remark 2.2: Hybrid terms have also been made from these two proposed 
terms, e.g. conducemental algebra, exemplified by the operations in Examples 
1.1 - 1.4. Also, the paper uses two derivative terms of conducemental and re-
ducemental to express the products of building blocks and rules for typical single 
term. Conducemental sequences are classified and various types are associated 
with proposed terms, as to be given in due course. 

Remark 2.3: defect is used to show that this parameter is not considerd. 

2.2. New Operators 

Multiplication rules, presented below, operate on the corresponding elements of 
two sequences, as follows: 

{ }1 2 1n nt t t t−                    (2.3a) 

{ }1 2 1m mr r r r−                    (2.3b) 

where m and n can be any large value. Both (2.3a) and (2.3b) can be sets of 
numbers or sequences. One of them acts as rules and the other as building 
blocks or invariants. The following multiplication rules are presented. 

2.2.1. Direct Products 
The direct product rule (or dot products) is defined as: 

{ } { }
{ }
1 2 1 1 2 1

1 1 2 2 3 3 1 1

n n n n

n n n n

t t t t r r r r

t r t r t r t r t r
− −

− −=

  



          (2.4a) 

{ } { } { }1 2 3 1 2 3 1 1 2 2 3 3 n nt t t r r r t r t r t r t r= + +      (2.4b) 

In (2.4a), dot products are denoted by “  ” but the summing from the first 
term in (2.4b) is denoted by “ .” 

Example 2.2: The examples below exemplify the direct product rule: 
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{ } { } { }2 2 2 21 2 3 1 2 3 1 2 3n n n=       (2.5a) 

{ } { } { }2 2 21 2 3 1 2 3 1 2n n n= + + +        (2.5b) 

2.2.2. Regeneration Products 
The regenerating product rule is defined below: 

{ }{ }
{

}

1 2 1 1 2 1

1 1 1 2 2 1 1 3 2 2 3 1 1 1 2 2 2 2 1 1

1 2 1 1 2 1

n n n n

m m n n

m m n n

t t t t r r r r

t r t r t r t r t r t r t r t r t r t r

t r t r t r t r

− −

− − − −

− −

= + + + + + + +

+ + + +

 

 



  (2.6) 

Remark 2.4: Both (2.5) and (2.6) have recursive versions but are not used in 
the paper. 

The number of terms in the product is equal to the largest value of m or n. As 
shown in Appendix I, the above format is a direct adoption from the convolu-
tion theorem used in hydrology. The convolution theorem has been applied 
widely and goes back to Jean-Baptiste le Rond d’Alembert (1717-1783) and 
Pierre-Simon, marquis de Laplace (1749-1827) and others, see [3] for details but 
surprisingly it has not penetrated to generating functions as detailed in [4]. 

2.2.3. Convolution Products 
The convoluting product rule is defined as: 

{ } { }

{ }

1
1 1

1 2 1
1 2 3 4 1 2 3 1 2 1 2

2 3 2
3 3

1 1 1 2 2 1 1 3 2 2 3 1 2 3 3 2 4 1 3 2 4 1 4 1

4

ˆ ˆ

t
t r

t t r
t t t t r r r t t r r

t t r
t r

t

t r t r t r t r t r t r t r t r t r t r t r t r

 
  

   ⊕ = ⊕   
   

   
= + + + + + +   

(2.7a) 

The last two terms: 3 2 4 1t r t r+  and 4 1t r , cause dipping in the trailing values of 
the product, as may be seen in the example below. 

Example 2.3: Use the terms of Pascal Triangle to show the convolution prod-
uct rule: 

{ } { }
{ }



dipping

ˆ1 3 3 1 1 2 1
1 1 1 2 3 1 1 1 3 2 3 1 3 1 3 2 1 1 3 1 1 2 1 1

1 5 10 10 5 1

⊕
= × × + × × + × + × × + × + × × + × ×
  =  
  

(2.7b) 

Hence, the over-fix in the notation, ⊕̂ , reflects the dipping at the trailing 
elements. 

2.3. New Basic Sequences 

The AC capability is underpinned by a host of basic conducemental sequences, 
which are captured in Table 1 in mathematical terms, including their constitu-
ent sequence used for their conducemental/reducementals. This gives a unified 
labelling scope in natural language (uninomial, binomial, trinomial, quadri-
nomial and polynomial).  
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Table 1. Uninomial, binomial and trinomial sequences built on natural numbers (Remark 2.5: 1  of ID 6 in the table is arith-
metic progression). 

Id Symbol Conducement Reducementals  Inverse 

 Uninomial 

 Priming: { } { }1 1 1=
 -  - 

1 0  { } { } { }1 1 1 1 1 1 1⊕ = 
 { }1

n
n

   
  
   

  𝕦𝕦0 { }1  

2 1  
{ } { }1 1 1 1 1 1

1 2 3
1

n
n

⊕

   =   −   

 



 { }1 1
1

n n
n n

     
    −     

  𝕦𝕦−1 { }1 1−  

3 2  
{ }1 2 3 1 1 1

1

1
1 3 6

1

n
n

n
n

   ⊕  −   
 +   =   −   

 



 { }1 2 1
1 2

n n n
n n n

       
      − −       

  𝕦𝕦−2 { }1 2 1−  

4 3  
{ }

1
1 3 6 1 1 1

1

2
1 4 10

1

n
n

n
n

 +   ⊕  −   
 +   =   −   

 



 { }1 3 3 1
1 2 3

n n n n
n n n n

         
        − − −         

  𝕦𝕦−3 { }1 3 3 1− −  

 Binomial 

5 Priming: { } { }1 1 1 1 1 1=
    

6* 1  
{ }

{ }

1 1 1 2 3
1

1 3 5 7

n
n

   ⊕   −   
=





 { }
1 1

1 1
1 2

n n
n n

 − −     
    − −     

  𝕓𝕓−1 { }1 0 1−  

7 2  
{ } { }
{ }

1 3 5 7 1 1

1 4 8 12

⊕

=





 { }
1 1 1

1 2 1
1 2 3

n n n
n n n

 − − −       
      − − −       

  𝕓𝕓−2 { }1 1 1 1− −  

8 3  
{ } { }
{ }

1 4 8 12 1 1

1 5 12 20

⊕

=





 { }
1 1 1 1

1 3 3 1
1 2 3 4

n n n n
n n n n

 − − − −         
        − − − −         



 

𝕓𝕓−3 { }1 2 0 2 1− −  

 Trinomial Sequences 

9 1  
{ } { }
{ }

1 1 1 1 2 3 4

1 3 6 9

⊕

=





 { }
2 2 2

1 1 1
2 3 4

n n n
n n n

 − − −       
      − − −       

  𝕥𝕥−1 { }1 0 0 1−  

10 2  
{ } { }
{ }

1 1 1 1 3 6 9

1 4 10 18

⊕

=





 

{ }1 2 3 2 1

2 2 2 2 2
2 3 4 5 6

n n n n n
n n n n n

 − − − − −           
          − − − − −           


 𝕥𝕥−2 { }1 1 1 1 1 1− − −  

11 3  
{ } { }
{ }

1 1 1 1 4 10 18

1 5 15 32

⊕

=





 

{ }1 3 6 7 6 3 1

2 2 2 2
2 3 4 5

2 2 2
6 7 8

n n n n
n n n n

n n n
n n n

 − − − −       
       − − − −       
− − −      

     − − −      

  
𝕥𝕥−3 

{ }1 2 3 1 1 3 2 1− − − −
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The proposed shorthand mathematical symbols for denoting the above un-
bounded and bounded conducemental sequence forms are as follows: 
• For unbounded conducemental sequences, use:  ,  ,  ,  ,  ;  
• For and their inverses, use lower-case double-strike scripts: 𝕦𝕦, 𝕓𝕓, 𝕥𝕥, 𝕢𝕢, 𝕡𝕡  
• e.g. { } { }0 1 1 1 1=   and {𝕦𝕦−1} = { }1 1−  
• For bounded conducemental use upper-case single-strike scripts e.g.

{ } { }2 1 2 1= . For their inverses, use their lowercase scripts, e.g. {𝒷𝒷2} = 
{ }1 2 3− 

. 
Uninomial sequences in AC are pivotal, which are cut-and-shaped through 

the convolution theorem and its variations to make the bulk of AC. The pivotal 
role of the uninomial sequences cannot be overemphasised. 

2.4. Combination of Negative Numbers and Conducemental Table 

Combinatorial operators with negative numbers are treated as follows: 
Definition 2.9: The following is well-established in mathematics: 
Remark 2.6: Sequence of counters for reducementals are all binomial ex-

pressed: 
2 2 2 2 2
2 3 4 5 6

n n n n n
n n n n n

 − − − − −           
          − − − − −           

  Consider it for n 

= 6, which render the sequence: { }0 0 1 4 6 4 1  and for n = 7, it rend-
ers:: { }0 0 0 1 5 10 10 5 1  and therefore this is a convenient way of 
shifting the source term to higher ordinals.  

( ) ( )1 n nn
ii

 −    = −    
                          

(2.8) 

However, negative base values in combinatorics operation is not allowed. 
Definition 2.10: extension to negative numbers: Currently the operator for 

choosing m objects from a set of n objects applies to positive numbers but its 
application to negative numbers runs to problems. The following transformation 
removes the problem: 

n in i n
n jn j n

 + + 
⇒    −−                        

(2.9) 

where n is variable and can be negative, i and j values are positive and integer. 
The table of difference or Conducemental Table is generalised and is given in 
Table 2. 

3. Arithmetic Calculus in a Nutshell 

Arithmetic calculus turns attention away from the sequence as a whole but fo-
cuses on the individual terms and each reducemental is an AC expression for the 
individual terms. An account below shows the way for this transformation. 

3.1. Transforming Difference Tables into a New Network 

The difference table is well known in mathematics but its origin is obscure, al-
though it was known to Chinese astronomers in the 8th century [5]. It also re- 
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Table 2. Extended conducemental table for uninomial sequences. 

Gen. Deg −g6 −g5 −g4 −g3 −g2 −g1 g0 g1 g2 g3 g4 g5 g6 Deg Gen 

−g10 9−  −2002 −715 −220 −55 −10 −1 0 1 10 55 220 715 2002 9  g10 

−g9 8−  −1287 −495 −165 −45 −9 −1 0 1 9 45 165 495 1287 8  g9 

−g8 7−  −792 −330 −120 −36 −8 −1 0 1 8 36 120 330 792 7  g8 

−g7 6−  −462 −210 −84 −28 −7 −1 0 1 7 28 84 210 462 6  g7 

−g6 5−  −252 −126 −56 −21 −6 −1 0 1 6 21 56 126 252 5  g6 

−g5 4−  −126 −70 −35 −15 −5 −1 0 1 5 15 35 70 126 4  g5 

−g4 3−  −56 −35 −20 −10 −4 −1 0 1 4 10 20 35 56 3  g4 

−g3 2−  −21 −15 −10 −6 −3 −1 0 1 3 6 10 15 21 2  g3 

−g2 1−  −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 1  g2 

−g1 0−  −1 −1 −1 −1 −1 −1 0 1 1 1 1 1 1 0  g1 

g0 Kernel 0 0 0 −1 0 1 0 0 0 0 Kernel g0 

−g(−1) 𝕦𝕦−1 0 0 0 0 1 −1 0 1 −1 0 0 0 0 𝕦𝕦1 g(−1) 

−g(−2) 𝕦𝕦−2 0 0 0 −1 2 −1 0 1 −2 1 0 0 0 𝕦𝕦2 g(−2) 

−g(−3) 𝕦𝕦−3 0 0 1 −3 3 −1 0 1 −3 3 −1 0 0 𝕦𝕦3 g(−3) 

−g(−4) 𝕦𝕦−4 0 −1 4 −6 4 −1 0 1 −4 6 −4 1 0 𝕦𝕦4 g(−4) 

−g(−5) 𝕦𝕦−5 1 −5 10 −10 5 −1 0 1 −5 10 −10 5 −1 𝕦𝕦5 g(−5) 

 
flects on core problems that on the one hand it is a powerful and easy tool to 
quickly reflect if there is a solution but on the other hand it conceals a great deal 
of information. The fresh look at the table aims: (i) to reveal the “cogwheels” 
that make the method work; and (ii) probably the satisfaction of an easy solution 
has prevented curiosity to explore full potentials. This is illustrated by analysing: 

1 2 3. .   , in Table 3. 
Algebra does not call the sequence 1 17 33 9  as the kernel; it does not 

explain the reasons for its order being 4; the sequences below the kernels, e.g. 
1 16 16 24 9− − , are often looked at like an underworld; there is some 

knowledge of the diagonals but its composition is not common knowledge. 

3.2. Transforming Difference Tables into Conducemental Network 

AC is minded with explaining and unearthing the cogwheels of difference tables, 
whilst maintains the focus on single terms. Seven diagonals (alleles) in Table 3 
are highlighted:  

{ }0 1 23 133 331 410 250 60= ; { }1 1 22 111 220 190 60= ; 

{ }2 1 21 90 130 60= ; { }3 1 20 70 60= ; { }4 1 19 51 9= ; 

{ }5 1 19 33 9= ; { }6 1 18 33 9= ; Kernel 1 17 33 9= . 

The main features of the conducemental table include: i) degree, each value of 
which marks a hierarchical level; ii) ordinal, each value of which sets the iden-
tifier for the terms; its source term can start from any term and is an important 
one; any term prior to the source term is treated as zero; and iii) gradient, di-
agonal or alleles, as shown above. 
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Table 3. Conducemental table or visual conducemental network for 1 2 3. ..    

1  1 2 3 4 5 6 7 8 9 

Form
ing 

2  1 3 6 10 15 21 28 36 45 

3  1 4 10 20 35 56 84 120 165 

Degree Allele 0 −1 −2 −3 −4 −5 −6 −7 −8 

6 0 1 24 180 800 2625 7056 16,464 34,560 Parent 

5 1 1 23 156 620 1825 4431 9408 18,096 32,265 

A
ctive Space 

4 2 1 22 133 464 1205 2606 4977 8688 14,169 

3 3 1 21 111 331 741 1401 2371 3711 5481 

2 4 1 20 90 220 410 660 970 1340 1770 

1 5 1 19 70 130 190 250 310 370 430 

0 6 1 18 51 60 60 60 60 60 60 

- Kernel 1 17 33 9 0 0 0 0 Kernel 

−1 7 1 16 16 −24 −9 0 0 0 0 Passive Space 

−2 8 1 15 0 −40 15 9 0 0 0 

−3 9 1 14 −15 −40 55 −6 −9 0 0 

−4 10 1 13 −29 −25 95 −61 −3 9 0 

−5 11 1 12 −42 4 120 −156 58 12 −9 Base 

3.3. Basic Operations Using Alleles 

Above alleles are interoperable (convertible to one another) through appropriate 
rules, e.g.: 

{ }

{ }

0

1
1

1 1
1 1

11 1
1 1 1

0 24 156 464 741 660 310 60 1 11 1
1 1 1

11 1
1 1

1 1
1

1

1 23 133 331 410 250 60

 
 − −
 −

− = ⊕ −− − − 
 −
− − 

− 
 

=


(3.1a) 

{ }

{ }

1

1
1

1 1
1 1

1 1 1
1 1 1

1 23 133 331 410 250 60 1 1 1 1
1 1 1

1 1 1
1 1

1 1
1

1

1 22 111 220 190 60

 
 − −
 −

− = ⊕ − − − − 
 −

− − 
− 

 
=



  

(3.1b) 
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{ }

{ }

2

1
1

1 1
1 1

1 1 1
1 22 111 220 190 60 1 1 1

1 1 1
1 1

1 1
1

1

1 21 90 130 60

 
 − −
 − = ⊕ − − − 
 −

− 
−  

=



   

(3.1c) 

{ }

{ }

3

1
1

1 1
1 1

1 21 90 130 60 1 1 1
1 1

1 1
1

1

1 19 51 9

 
 − − = ⊕ − − 
 −

−  
=



       

(3.1d) 

{ } { }4

1
1 1

1 19 51 9 1 1 1 18 33 9
1 1

1

 
 − = ⊕ = − 
 − 



     

(3.1e) 

{ } { }5

1
1 18 33 9 1 1 1 1 17 33 9

1
 

= ⊕ = − 


      
(3.1f) 

{ } { }6 1 17 33 9 1 1 1 1 1 17 33 9= ⊕ =       (3.1g) 

{ } { }
1 1 1

1 17 33 9 1 1 1 16 16 24 9
1 1 1

 
⊕ = − − − − −    

(3.1h) 

{ }

{ }

1 1 1 1
1 16 16 24 9 1 1

1 1 1 1

1 15 0 40 15 9

 
− − ⊕  − − − − 

= −         
(3.1i) 

Remark 3.1: architectural variations in alleles are greyed, where these alleles 
initiate transient changes. AC makes these operations as routine but their alge-
braic operations are not. 

3.4. Morphology of Types 2 - 4 Conducemental Sequences 

The paper refers to all of (3.1) as operations on alleles, and to the enabler se-
quence in these operations as the sequence of counters, sequence of invariables, 
rules or replicators. These terms are regarded as synonymous but the term rep-
licator is a curious one and easily graspable as these sequences are replications of 
the previous sub-terms plus introduction of a new sub-term. 

The replicators in the operations seem to reveal the cogwheels but these are 
AC operations and do not exist in algebra. It should be mentioned that that these 
replicators undergo: (i) global (generic) variations highlighted in grey; and (ii) 
local (specific) variations. Global and local variations are a feature of each un-
bounded conducemental sequence, which are classified into types in Section 4.3. 
For instance, Type 2 displays the following characteristic feature with respect to 
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their kernels: 

0 2 3. . : 1 6 3 3 ; 5; ω δ= =                          (3.2a) 

1 2 3. . : 1 17 33 3 4 ; 6; ω δ= =                      (3.2b) 

2 2 3. . : 1 28 10 ;0 72 9 5 ; 7ω δ= =                 (3.2c) 

3 2 3. . : 1 39 204 244 69 3 6 ; 8; ω δ= =            (3.2d) 

4 2 3. . : 1 50 345 580 260 24 6 ; 9; ω δ= =          (3.2e) 

5 2 3. . : 1 61 523 1135 700 100 6 10; ;ω δ= =        (3.2f) 

It is observed that 2 3.   ( 5δ = ) is the core in (3.2) sequences; as its degree 
increases systematically (from 5 to 10), its order only increases up to ( 6ω = ) but 
remains constant at 6 from 3 2 3. .    upwards. Contrast this with Type 4 se-
quences, as follows: 

1 2 1. . : 1 32 62 0 1 5 ; 3ω δ= =                     (3.3a) 

1 2 2. . : 1 44 134 12 1 6 ; 3ω δ= =                   (3.3b) 

1 2 3. . : 1 56 246 116 47 12 6 ; 3ω δ− = =            (3.3c) 

1 2 4. . : 1 68 398 396 47 88 40 7 ; 3ω δ− − = =      (3.3d) 

It is further noted that the order of 1 2 1. .    and 1 2 2. .    remains at the 
constant value of 5 but increases by “1” from 1 2 3. .    upwards, while their 
degree remains at 3. In this way, the morphology of Type 4 sequences is in a 
sharp contrast with those of Type 2 sequences. These morphological differences 
are not accidental or arbitrary but this paper only draws attention to the differ-
ences in these features, which are determinable from their dimensional specifi-
cations, but they will be analysed in separate papers. These morphological archi-
tectures are not trivial but they allow a complete regeneration of each and all 
conducemental sequences. These are explained heuristically in the next section. 

The morphology of each conducemental sequence is determined by its order. 
Consider the morphology of some of the simple conducemental sequences of 
Types 2 to 4 in Tables 4(a)-(c). The paper expressly states that all the variations 
in the order and degree (architectural specification) are determinate in terms of 
dimensional specification and the values shown in Tables 4(a)-(c) exemplify the 
problem. 

4. Classifying Conducemental Sequences—Functionology 

The paper is indirectly concerned with generating functionology [4], which 
transforms any algebraic functions to polynomial functions. However, the paper 
employs none of these techniques and offers a fresh approach to the subject, 
which is analytical.  

Convolution products have an interesting structure but conventional algebra 
conceals them by expressing the products in terms of algebraic functions in-
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cluding polynomial functions but conducemental algebra unearths their struc-
tures. The paper unearths these structures in terms of their degree and order by 
the following classification: Type 1: the degree of the sequence is between −∞  
and ∞  but its order is constant; Type 2: δ ω≥  plus other requirements; Type 
3: δ ω>  plus other requirement and Type 3: δ ω<  plus other requirements. 
These are outlined in this section. 

4.1. Overview of Morphology of Sequences 

A glimpse of morphology is already presented in Section 3.4 indicates that a se-
rious variability in the general morphology of conducemental sequences. Con-
sider Table 4(a) & Table 4(c). 

 
Table 4. (a) Reducementals of simple unbounded conducemental sequences: δ ω≥ ; (b) 
reducementals of regenerated unbounded conducemental sequences: δ ω≥ ; (c) re-
ducementals for a set of unbounded conducemental sequences. 

(a) 

Id Notation Reducementals Architecture 

1 1 1.   { }
1

1 1
1 2

n n
n n

 +     ⊕     − −     
 2; 2; 0gδ ω= = =  

2 21.   { }
2 1

1 2
1 2

n n
n n

 + +     ⊕     − −     
 3; 2; 0gδ ω= = =  

3 31.   { }
3 2

1 3
1 2

n n
n n

 + +     ⊕     − −     
 4; 2; 0gδ ω= = =  

4 2 2.   { }
3 2 1

1 4 1
1 2 3

n n n
n n n

 + + +       ⊕       − − −       
 3; 3; 0gδ ω= = =  

5 32 .   { }
4 3 2

1 6 3
1 2 3

n n n
n n n

 + + +       ⊕       − − −       
 4; 3; 0gδ ω= = =  

6 42 .   { }
5 4 3

1 8 6
1 2 3

n n n
n n n

 + + +       ⊕       − − −       
 4; 3; 0gδ ω= = =  

7 52 .   { }
6 5 4

1 10 10
1 2 3

n n n
n n n

 + + +       ⊕       − − −       
 4; 3; 0gδ ω= = =  

8 1 1 1. .    { }
2 1

1 4 1
1 2 3

n n n
n n n

 + +       ⊕       − − −       
 3; 3; 0gδ ω= = =  

9 1 1 2. .    { }
3 2 1

1 7 4
1 2 3

n n n
n n n

 + + +       ⊕       − − −       
 4; 3; 0gδ ω= = =  

10 1 1 3. .    { }
4 3 2

1 10 9
1 2 3

n n n
n n n

 + + +       ⊕       − − −       
 5; 3; 0gδ ω= = =  

11 1 1 4. .    { }
5 4 3

1 13 16
1 2 3

n n n
n n n

 + + +       ⊕       − − −       
 5; 3; 0gδ ω= = =  

12 1 3 3. .    { }
5 4 3

1 24 72 24 3
1 2 3

n n n
n n n

 + + +       ⊕       − − −       
 7; 5; 0gδ ω= = =  

13 2 3 3. .    
{ }1 39 204 244 204 39 1

7 6 5 3
1 2 3 3

n n n n
n n n n

 + + + +         ⊕        − − − −         

 

 

8; 7δ ω= =  

Remark 4.1: The sequence ( 1 1 1. .   ), ID 8, is Example 6.1 for a more detailed study. 
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(b) 

Id AC Symbols Reducementals Architecture 

1 ( )1 1 1R1 .    { }
3 2 1

1 5 2
1 2 3

n n n
n n n

 + + +       ⊕       − − −       
 4; 3; 0gδ ω= = =  

2 ( )12 1R1 .    { }
4 3 2 1

1 9 9 1
1 2 3 4

n n n n
n n n n

 + + + +         
        − − − −         
  5; 4; 0gδ ω= = =  

3 ( )13 1R1 .    { }
5 4 3 2

1 13 21 5
1 2 3 4

n n n n
n n n n

 + + + +         ⊕         − − − −         
 6; 4; 0gδ ω= = =  

4 ( )14 1R1 .    { }
6 5 4 3

1 17 38 14
1 2 3 4

n n n n
n n n n

 + + + +         ⊕         − − − −         
 7; 4; 0gδ ω= = =  

5 ( )11 1R2 .    { }
4 3 2

1 6 3
1 2 3

n n n
n n n

 + + +       ⊕       − − −       
 5; 3; 0gδ ω= = =  

6 ( )12 1R2 .    { }
5 4 3 2

1 11 15 3
1 2 3 4

n n n n
n n n n

 + + + +         ⊕         − − − −         
 4; 4; 0gδ ω= = =  

7 ( )13 1R2 .    
{ }1 16 36 16 1

6 5 4 3 2
1 2 3 4 5

n n n n n
n n n n n

 + + + + +           ⊕          − − − − −           

 7; 5; 0gδ ω= = =  

8 ( )14 1R2 .    
{ }1 21 66 46 6

7 6 5 4 3
1 2 3 4 5

n n n n n
n n n n n

 + + + + +           ⊕          − − − − −           

 8; 5; 0gδ ω= = =  

Remark 4.2: R1 denotes regeneration once, R2 denotes regeneration twice and so one. 

(c) 

1 1 1.   { }
1 1

1 6 1
1 2 3

n n n
n n n

 + −       ⊕       − − −       
 2; 3; 0gδ ω= = =  

2 1 2.   { }
2 1 1

1 1
1 2 4

9 7
3

n n n n
n n n n

 + + −         ⊕         − − − −         
−  3; 4; 0gδ ω= = =  

3 1 3.   { }
2 1 1 2

1 12 18 4 3
1 2 3 4 5

n n n n n
n n n n n

 + + − −           − ⊕           − − − − −           
 4; 5; 0gδ ω= = =  

4 2 1.   { }
2 1 1

1 9 7 1
1 2 3 4

n n n n
n n n n

 + + −         − ⊕         − − − −         
 3; 4; 0gδ ω= = =  

5 2 2.   { }
3 2 1

1 13 19 1
1 2 3 4

n n n n
n n n n

 + + +         − ⊕         − − − −         
 4; 4; 0gδ ω= = =  

6 1 2 1. .    
{ }1 32 62 0 1

3 2 1 1
1 2 3 4 5

n n n n n
n n n n n

 + + + −           ⊕          − − − − −           

 7; 5; 0gδ ω= = =  

Trinomial Sequences—Type 4 

1 1 1.   { }
1 1 2

1 6 12 1
1 2 3 4

n n n n
n n n n

 + − −         − ⊕         − − − −         
 2; 4; 0gδ ω= = =  

2 1 2.   
{ }1 9 27 17 6 6

2 1 1 2 3
1 2 3 4 5 5

n n n n n n
n n n n n n

−
 + + − − −             ⊕            − − − − − −             

 3; 6; 0gδ ω= = =  

3 2 2.   
{ }1 13 55 71 41 19

3 2 1 1 2
1 2 3 4 5 5

n n n n n n
n n n n n n

−
 + + + − −             ⊕            − − − − − −             

 4; 6; 0gδ ω= = =  

4 1 1 1. .    
{ }1 23 114 23 1

2 1 1 2
1 2 3 4 5

n n n n n
n n n n n

 + + − −           ⊕          − − − − −           

 3; 5; 0gδ ω= = =  
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The variability in the order of the examples in Table 4(a) & Table 4(b) need 
to be explained. The author has analysed literally thousands of such sequences to 
understand the underlying patterns. Although these patterns will be explained in 
a future paper, it suffices to mention that they are determinate but the way out is 
to classify these sequence, as given in Section 4.3. 

4.2. Architecture of Conducemental Sequences 

Tables 4(a)-(c) reflect on the morphology of unbounded conducemental 
sequences; which are implicitly captured in Table 3 but captured more explicitly 
in Table 5. 

Table 5 provides a visual aid to draw attention to a network in which the 
players are: parent sequences, base sequences, degrees/hierarchies in the vertical 
sense, ordinal in the horizontal sense, alleles along the diagonal; active and 
passive spaces and the kernel space; generic variations in the allele zones treated 
by a route map but not detailed in the paper. 

4.3. Classification of Unbounded Conducemental Sequences 

The whole conducemental sequences are classified into five types of conduce-
mental sequences. Types 1 - 4, defined below, are to be referred to as unbounded 
conducemental sequences but Type 5, as bounded conducemental sequences, are 
only outlined. 

4.3.1. Type 1 Sequences 
This type of sequences are the regeneration products of generations of sequences  

 
Table 5. Bird’s eye of view of architecture of conducemental networks. 

Parent Sequence           

Trans. Allele Allele 0 −1 −2 −3 −4 −5 −6   

A
ctive Space 

Convoluting 
Alleles 

0          

1          

α1.1          

…          

α1.n          

Trans. Allele l α2.1          

Regenerating 
Alleles 

α2.1          

…          

α2.n          

Trans. Allele  The KERNEL 0  Terminal Space 

           Passive Space 

           

           

Base Sequence          
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based on natural numbers. These are referred to as the uninomial sequences, de-
fined as follows: 

{ }


{ }


{ }


{ }


{ }


{ }
31 2

.| .| 1
1

id dd dd n d
Cond Cond

n

    +       = ⊕ ⊕ ⊕ ⊕ =      −         
     

 

(4.1a) 

where, 1 2 3 id d d d d= + + + + ; The expression in (4.1) is read as the con-
ducement of Sequence   of degree d is given by the convolution products of 
natural number of degrees of 1 2 3, , ,d d d   and id  and its conducemental is 
given by the product of two sequences, as shown. The dimensional specification 
of Type 1 sequences is: 

{ } ,1, 1 1, ,a f td d d d Defect= +   ø 1  
  

(4.1b) 

Remark 4.3: Dimension specification of uninomial unbounded sequence is: 

1 1 1 0,1,1 1 1Defect  =        
   

(4.2a) 

Its inverse is: 

 { }1 1,1,1 1 1Defect− =  −             (4.2b) 

Remark 4.4: For each multiplication by { }1 1 ⊕
, the degree is increased 

by “1”.  

Remark 4.5: The bounded unitary sequence of 
finite size

1 1 1
  
 
  




, has a pivotal  

role in Type 4 sequences; the unbounded unitary sequence, { }1 1 1 1 
 

cannot be used with the convolution products rule, ⊕̂ ; and it has no effect 
when used in direct product with  . 

4.3.2. Type 2 Sequences 
This type of sequences is the direct products of Type 1 sequences, expressed as 
follows: 

















{ }

1

2

2

1

1 2

1 2
1 2

i

i

dd dd

Red

n d n d n d
T T T

n n n

ω ω ω ω

ω

ω
ω

 
            =        

           
  

 + − + − + −       =       − − −       

 

 

   


  

(4.3a) 

where 1 2 3, , , , id d d d , are the degrees of the individual sequences and T is the 
values of the terms of the kernels from 1 to ω . Notably, (4.3a) is read as: the 
reducemental of Sequence   of degree d. The degree at its kernel is given by 
the direct products of lower sequences of degrees 1 2 3, , ,d d d   and id  with 
corresponding orders of 1 2 3, , ,ω ω ω   and iω ), in which the following hold: 

1 2 3 id d d d d= + + + +                   (4.3b) 

The order of the Type 2 conducemental sequences is determined as follows: 
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( )1 2 3 1 2 3max , , , , 1i id d d d d d d dω = + + + + − +          (4.3c) 

The dimensional specification of Type 2 sequences is: 

{ } 1 2, ,0 1 Defect T T Tωδ ω =     
  

(4.3d) 

4.3.3. Type 3 Sequences 
Conducemental sequences of Types 1 and 2 may be combined, so that the overall 
product includes any number of both direct and regeneration product rules.  

Example 4.1: Consider the example: 

{ }


{ }


{ }




{ }


{ }


31 2

1

id dd d d

g=

    ⊕  
    

      

             

 (4.4a) 

(4.4a) is a conglomerate; its degree is the sum of the degree of individual con-
stituents; its order is determinate but complex and not presented here; and its 
dimensions are specified: 

{ } 1 2, , 1g Defect T T Tωδ ω =         (4.4b) 

where ,δ ω  have definitive values but follow complex rules not given in the 
paper. 

4.3.4. Type 4 Sequences 
These types of conducemental sequences comprise any number of conglomerate 
constituents, which involve at least one convolution product. One example is as 
follows: 

{ }


{ } { }


{ } { }


{ }
1 2 idd d                  ⊕ ⊕ ⊕        

                  

   u u u

      

 (4.5a) 

where { }u  is a bounded sequence of counter, e.g. { }1 1  or { }1 1 1 . In 
pure Type 4 multiplications, the degrees are not affected but the kernel orders 
are calculated as:  

{ }max 1 2 3max | , , , , id d d d d=                  (4.5b) 

max for each multiplication1d= +o                   (4.5c) 

The conducemental dimensional specification of Type 4 sequences is: 

{ } 1 2, ,0 1 Defect T T Tδ ω=       o  
 (4.5d) 

4.4. Bounded Conducemental Sequences—Type 5 

Both kernels and sequence of counters are bounded and their values may even 
be selected at random but operated by the conducemental algebra. These are 
outside the remit of the paper but they are also classified and some of these 
classes correspond to exponential series of the type (nm), e.g. the sequences in 
Pascal Triangle, which corresponds to 2m. Notably, Examples 1.1 - 1.4 in Intro-
duction are related to Type 5 sequences. 
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4.5. Further Definitions on Unbounded Conducemental Sequences 

Further definitions are necessary to capture the information conveyed in Table 3 
and Table 4 but the intention is not to present rigorous definitions at this initia-
tion stage. As shown in these tables, the domain of a parent sequence is divided 
into three spaces: (i) active space, (ii) kernel space and (iii) passive space. The 
AC way of thinking should be organised in two ways: (i) the problems are stated 
within a range of hierarchies (degrees): From the top of the range (parent se-
quence) to the bottom of the range (the base sequence) in the reducement prob-
lems or vice versa (from the base to the parent sequences) in the conducement 
problems; (ii) the focus of operations is on individual terms; and (iii) these spac-
es make up a new network to be referred to as the conducemental network. The 
passive space is the inverse of the active space and conjugate of each other but 
separated by the kernel space. 

The overview of the conducemental network is as follows. (i) Active spaces are 
under direct attention and hold the hierarchies, each of which has positive values 
of a degree. (ii) Each hierarchy in this domain is a regeneration of its imme-
diately lower hierarchy and therefore one degree more than it. (ii) The informa-
tion content extractable from a hierarchy is only limited to the value of its degree. 
(iii) More information is contained in the gradients (alleles or diagonals) of the 
hierarchies ranging from the parent sequence to its kernel zone, as the diagonals 
retain sufficient information in the form of bounded conducemental sequences 
for the regeneration of the parent sequence and thereby of each and all of the 
hierarchies. (iv) Passive spaces are conjugates of active spaces, i.e. given one the 
other is available whether wanted or not. (vi) Each row in the passive space is a 
bounded sequence like the diagonals and has the dual function of acting as a di-
agonal and a hierarchy. The terms gradient, diagonal and allele are synonymous 
but diagonal or gradient in the passive space is meaningless as in the passive 
space, where both sequences and diagonals are coincident. 

Degree, order and ordinal are three fundamental parameters to specify any 
parent sequence. (i) Degree is a fundamental property and defines a hierarchy; 
(ii) Each and every hierarchy of a parent sequence has the same order and as 
such order is a fundamental property similar to degree. (iii) The ordinal of the 
first term of a parent sequence is an independent variable and must be specified, 
as this affects the alleles. 

5. Morphology of Type 1 Conducemental Sequences 

The following three terms needs to be emphasised: (i) morphology refers to visi-
ble features of the reducementals in terms of order, alleles, degree and source 
term; (ii) architecture refers to the role of morphological features shared across 
the types of conducemental sequences; and (iii) structure refers to the layout of 
building blocks within each term. 

Morphology of Type 1 unbounded sequences, given in Table 1, is the simplest 
of these unbounded conducemental sequences and presented in this section to 
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lay the ground for morphology and structure but architecture will have some 
coverage in Section 6. 

5.1. Reducemental of Type 1 Sequences 

Proposition 5.1: Uninomial unbounded sequences, d  of degree d is facto-
rised into the direct products of: (i) the sequence of building blocks and the se-
quence of counters. 

0 1 2 1 2
d d d d n n n n

d n n n n d

n d
n

                     
                  − − −                     

+ 
=  
 

 

  
(5.1) 

The proposition is well known in algebra and no need to prove it. The only 
difference between (5.1) and those in algebra is the notation used but this is not 
trivial as it opens up the methodology for interpreting the problem. Thus, Type 
1 unbounded sequences show that each term is an arrangement of the building  

block expressed in terms of degree 
0 1 2
d d d d

d
          
                    

  based on 

the rule for object selection without replacement, as an expression of a 
self-replication process described later. 

5.2. Rule Base for Layout of the Building Blocks 

Type 1 Unbounded Conducemental Sequences and their layout in terms of the 
building blocks is outlined here to unearth the morphology within conduce-
mental sequences, see also [1]. A set of rule-base is needed, as given in Table 6. 

5.3. AC Treatment of Type 1 Uninomial Sequences 
5.3.1. Processing Generation 0—The Priming Operation 
The sequence is processed as follows: 

The kernel 1  is transformed into a sequence by “priming”, as follows: 

{ }


{ }
given rule

1 1 1=                        (5.2) 

The primed (5.2) is the uninomial bounded sequence of Generation 0 and yet 
has no degree. It serves as the building block for sequences of higher genera-
tions.  

5.3.2. Processing Generation 1 
i) Generation 1 sequence is generated as follows: 

{ }


{ } { }
unitary sequence product

0

Generation 1

1 1 1 1 1 1 1 1 1= ⊕ =
 

 




         

(5.3a) 

ii)Dimensional Specification:  

{ }0 0,1,1 1 Defect= as ls 1  
        

(5.3b) 
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Table 6. Rules for the structure of hierarchies based on uninomial sequences. 

Rule Description 

Framework: Type 1 Uninomial Unbounded Conducement Sequences 
Remark 5.1: ST: Sub-Term; SST: Sub-sub-term; SSST: Sub-sub-sub-term 

5.1 
Each sequence at a hierarchy is unbounded and the identity of its terms is identified by the 
ordinal of the terms (e.g. 3rd). 

5.2 Generation G = 1 (d = 0): each term is composed of one term in its internal structure 

5.3 
Generation G = 2 (d = 1): each term has as many ST as its ordinal number, e.g. Term 3 has 3 
sub-terms. 

5.4 Generation G = 3 (d = 2): each ST has as many SST as its ordinal number. 

5.5 Generation G = 4 (d = 3): each SST has as many SSST as its ordinal. 

5.6 
Rules (5.1)-(5.6) are recursive with the effect of nesting within each hierarchy the structures of 
the numbers at its lower hierarchy—the regeneration product rule. 

Generalisation: Types 2, 3 and 4 Unbounded Conducemental Sequences 

5.7 
Type 1 uninomial sequences all have the kernel of: 1  but the kernel size of Types 2, 3 and 4 

parent sequences have the kernel: 1 2 3T T T Tω
, with their sizes, ω , may be less 

than, equal to and greater than the degree of parent sequences. 

5.8 

The first term of the parent sequence will replace 1  with 1T , the second term will replace 

that with: 1 2T T+ ; the third term with: 1 2 3T T T+ + ,   and the thω  term with: 

1 2 3T T T Tω+ + + +
. Thereafter, the kernel will be replicated as a whole, i.e. for ( )1 thω +  

term, there is one additional term of 1 2 3T T T Tω+ + + +
 and for ( )2 thω +  term, there are 

two additional terms of 1 2 3T T T Tω+ + + +
 and so on. 

Remark 5.2: Attention is drawn to the deep level of replication in this rule table. 

 
iii) The product is Type 1 unbounded conducemental sequence, expanded as 

per Rules 5.3: 

{ }




{ }
   

31 20

1

4

0 1 1 1 1 1 1 1 1
TT Td

g

T=

=

  = =  
  

 
         

(5.3c) 

5.3.3. Processing Generation 2—Natural Numbers 
The product of (5.3c) serves as building blocks for the sequences of higher de-
grees and in this case conducing from Generation 1 uninomial sequence using 
the unitary sequence produces natural numbers: 

(i) 

{ }




{ }
(5.3c) Unitary rule1

1

2

1 1 1 1 1 1 1 1 1 2 3 4
d

g

=

=

      = ⊕ =   
      

 

  

  

(5.4a) 

(ii) Dimensional Specification: 

{ }0 1,1, 2 1 Defect= as ls 1  
        

(5.4b) 

(iii) The product is the sequence of natural numbers, expanded per Rules 5.4 
of Table 6: 
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{ }






























Term 4
1Term 3

1Term 2
1 2

1 Term 1
2

1 2 3
2

3

4

1
1

1 1
1 2 3 1 11

1 1
1

1

S

S

S S
d

S

S S
g S

S

n
n

=

=

 
 
 
 
       = =    −       
 
 
 
  

 

  

(5.4c) 

(iv) The reducemental of 1  as per Proposition 5.1 is given by:  

1 1
0 1 1

n n
n n

             
          −             



                
(5.4d) 

Remark 5.3: (5.4d) has the allele of { }1 1  and this is shown as a diagonal in 
Table 2 but associated with a different replicator based on object selection 
without replacement. 

5.3.4. Processing Generation 3, Degree 2 
(i) Uninomial sequence is conduced to Generation 3 from Generation 2, as 

follows: 

{ }




{ } { } { }
2

2

3

1 3 6 10 1 1 1 1 1 4 10 20
d

g

=

=

= ⊕ =  
 

(5.5a) 

(ii) Dimensional Specification: 

{ }2 2,1,3 1 Defect= as ls 1  
       

 (5.5b) 

(iii) The product is a Type 1 sequence and is expanded per Rules 5.4, as fol-
lows: 

(iv) 

{ }








 



 

  



 

  

   

2

2

3

Term 4

1
Term 3

1
Term 2 2

1 1 2
2

Term 1
1 2

2 3

1 2 1 2 3
3

1 2 3
4

1 2 3 4

1 3 6 10 15
1

1

1

1 1 1
1 1 1

1 1 1 1 1

1 1 1

1 1 1 1

d

g

S

S
S

S SS SS
S

SS SS
S S

SS SS SS SS SS
S

SS SS SS
S

SS SS SS SS

n
n

=

=

    =   −     

=



 



 







 
 
 
 
 
 
  
 
 
 
 
 
 
 
  





      

(5.5c) 

Elegant replication processes in (5.5c) are visually apparent and it can be 
viewed as follows: it is clear that (5.4c) is nested in (5.5c); and each term in (5.5c) 
is a replication of its previous terms plus one new term, in which the kernel will 
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supply its values. 
(v) The reducemental of 2  is given by: 

2 2 2
0 1 2 1 2

n n n
n n n

                 
              − −                 



         
(5.5d) 

Remark 5.4: (5.5d) has allele of { }1 2 1  and this is shown as a diagonal in 
Table 2 but associated with a different replicator based on object selection 
without replacement. 

6. Types 2 Unbounded Sequence—Tentative Investigation 

Each sequence in the AC space has countless expressions, all of which may be 
transformed into a single equivalent expression in the algebraic space. For in-
stance, arithmetic progression is expressed algebraically as 2 1n ±  but there are 
countless AC expressions for this. Examples include:  

{ }
1

1 1
1 2

n n
n n

 −     
    − −     

 , { }
1 1

1 2
1 2

n n
n n

 − −     
    − −     

 ; 

{ }
2 2

3 2
2 3

n n
n n

 − −     
    − −     

 , { }
1 2

3 1
2 3

n n
n n

 − −     −     − −     
  and countless oth-

ers. 
Similarly, n3 is a single algebraic expression for a single sequence but this may 

be expressed by AC expressions capturing each idiosyncratic variation. The ex-
pressions in both spaces are apparently the same in numerical terms by-and- 
large but there are differences between them including: (i) the sequences in the 
AC spaces have all real values for each value of the sequence of counters but 
their algebraic expression for some of these sequences suffer from singularity 
points (although no example is given to this problem due to the remit of the pa-
per; and (ii) AC exposes various types of architectures and structures, which are 
otherwise concealed in the algebraic space. 

The paper breaks down conducemental algebra to the following distinct bottom- 
up problem areas: (i) reducement from one hierarchy to a lower hierarchy (ii) 
conducement problems from a lower to a higher hierarchy, (iii) gradient opera-
tions - hierarchies/alleles operations; (iv) allele-to-allele operations both re-
ducement and conducement; and (vi) interoperability operations; and (vii) fur-
ther operations on structure of hierarchies. 

6.1. Methodology for Conducement/Reducement 

As a pretext to AC, it is stated that every problem in AC follows generic opera-
tors. The above problems are presented fully in Table 7 for Type 2 sequences 
through the following example: 

Example 6.1: Use a Type 2 sequence as follows: 

{ } { }1. 1. 1 1 8 27 64 125= =               (6.1a) 

Dimensional Specification: 
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Table 7. Tabular representation of Example 6.1 for reference purposes. 

Ordinals → 1 2 3 4 5 6 7 8 9 10 

Deg Alleles 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 

3 0 1 8 27 64 125 216 343 512 Parent S. 

2 1 1 7 19 37 61 91 127 169 217 

A
ctive 

Space 

1 2 1 6 12 18 24 30 36 42 48 

0 3 1 5 6 6 6 6 6 6 6 

- 4 1 4 1 0 0  Kernel Space 

-1 5 1 3 −3 −1 0 0 0 0 0 Passive 
Space 

-2 6 1 2 −6 2 1 0 0 0 0 

-3 7 1 1 −8 8 −1 −1 0 Base S. 

 

{ } 3,3,0 1 Defect= as ls 1 4 1  
      

(6.1b) 

6.2. Problem of Reducement/Conducement between Hierarchies 
6.2.1. Problem of Reducement from one Hierarchy to Another 
Proposition 6.1: A degree d1 Type 2 sequence is reduced to d2 by the following 
operation: 

 
{ }


{ } { }
1 2

1 2

tod d

d d dRed = −

   = ⊕ 
  

                   (6.2) 

The problem of reducement and conducement by AC through Proposition 6.1 
is illustrated below by using Example 6.1 in which the parent sequence is re-
duced to a base sequence. A tabular form is used to reflect on generic changes. Is 
given in Table 9(a). 

Column 2 of Table 8(a) summarises the reducement operations by symbols 
with over-fixes, e.g. 3 / 2 / 1=o  (Table 8(a), ID = 1). This means that the re-
ducement is from hierarchy (degree) 3 into 2 and the sequence source is active at 
Ordinal 1 (Term 1). The problem of reducing from one hierarchical level to its 
lower one is through using generic operators with no need for a route map on the 
architecture of the sequence. The kernel divides the whole space of the hierar-
chies into the conjugate active and passive spaces. Table 8(a) shows that kernls 
are produced by reducement from Degree 0 to its next lower level, which is not a 
sequence but a set of highly ordered numbers and cleansed of the effects of rules. 

Remark 6.1: The number of descension steps from the parent sequence to the 
kernel is as follows: ( ) ( ) ( ) ( )3 2 2 1 1 0 0 kernel 4d = − + − + − + − = , as if the pro-
vision for priming (transformation of a kernel into a sequence) is counted as one 
step.  

Remark 6.2: Descension from the kernel to the lower hierarchy (d = −1) is 
direct and no zero level is encountered.  

Remark 6.3: A sequence reducing to a kernel is a conducemental sequence. 
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6.2.2. Problem of Conducement from one Hierarchy to Another  
Proposition 6.2: Degree d1 Type 2 sequences are conduced from to d2 as follows: 

{ }


{ } { }
1 2tod d

Cond
   = ⊕ 
  

  

                  

(6.3) 

The problem of conducement by AC through Proposition 6.2 is illustrated 
below by using Example 6.1, in which a base sequence is conduced towards the 
parent sequence. Table 8(b) presents the conducemental operations to reflect on  

 
Table 8. (a) Problem of reducement: Example 6.1— 1. 1. 1   ; (b) problem of conduce-
ment: Example 6.1— 1. 1. 1.    

(a) 

ID Symbol Reducement 

1 
{ }


13/2/ =


o

  
{ }

{ }

1

Parent Sequence
1 1

1 8 27 64 125 1
1 1

1 7 19 37 61

+ + 
⊕  − − 

=





 

  

2 
{ }


2/1

  { }

{ }

1 1
1 7 19 37 61 1

1 1

1 6 12 18 24

+ + 
⊕  − − 

=

 



 

3 
{ }


1/0

  { }

{ }

1 1
1 6 12 18 24 1

1 1

1 5 6 6 6

+ + 
⊕  − − 

=

 



 

4 
{ }


0/kernel

  { }
1 1

1 5 6 6 6 1
1 1

1 4 1 0

+ + 
⊕  − − 

=

 



 

5 
{ }


0/ 1−

  { }

{ } { }

1 1
1 4 1 0 1 1

1 1

1 3 3 1 0 1 4 1 0

+ + 
⊕ − − − 

= − − =



 

 

6 
{ }


1/ 2− −

  { }

{ }

1 1 1
1 3 3 1 0 1 1

1 1 1

1 2 6 2 1 0

+ + + 
− − ⊕ − − − − 

= −



 

7 
{ }


3/ker

  

{ }

Three steps in one and hence the scope for generalisation

1 1
1

1 4 4
1 4

1 8 27 64 1 1 4 14 6 6
4 6

6 4 4
4

1 1

 
 − − − ⊕ =− − − − −
  







  

8 

{ }


23/ /k =


o

 

{ }

Four steps in one and hence the scope for generalisation

1 1
1

1 4 4
1 4

0 8 27 64 1 4 6 6
4 6

6 4 4
4

1

0

1

 
 − − − ⊕ − − − − −
  



 



 

{ }0 8 5 4 1= − −  

https://doi.org/10.4236/am.2017.810102


R. Khatibi 
 

 

DOI: 10.4236/am.2017.810102 1413 Applied Mathematics 
 

(b) 

Id Notation Conducement 

1 { }


12/3/ =


o

 { } { }
1

1
1 7 19 37 61 1 1 8 27 64 1251

1
1

 
 ⊕ = 
 
 

  
 

2 { }


1/2

  { } { }
1

1
1 6 12 18 24 1 1 7 19 37 611

1
1

 
 ⊕ = 
 
 

  
 

3 { }


0/1

  { } { }
1

1
1 5 6 6 6 1 1 6 12 18 241

1
1

 
 ⊕ = 
 
 

  
 

4 { }


ker/0

  { } { }
1

1
1 4 1 0 1 1 5 6 6 61

1
1

 
 ⊕ = 
 
 

  
 

5 { }


0/ker

  { } { }
1

1
1 3 3 1 0 1 1 4 1 01

1
1

 
 − − ⊕ = 
 
 

  
 

6 { }


0/ 1−

  { } { }
1

1
1 2 6 2 1 0 1 1 3 3 1 01

1
1

 
 − ⊕ = − − 
 
 


 

7 { }


ker/3

  
{ }

  

31 2

Th

notice the marching of the terms

3 3 3 4 5 6
0 0 0 1 2 3

4 4 5 6 7
1 4 1

1 1 2 3 4

5 6 7 8
2 3 4 5

TT T 
            
            
            
           ⊕           

          
                        
  





ere steps in one and hence the scope for generalisation


 

{ }1 8 27 64= 
 

8 { }


2/3/k =


o

 
{ }

   

31 2

Four steps in one for source ter at 

0

3 3 3 4 5
0 0 0 1 2

4 4 5 6
1 1 2 30 8 5 4 1

5 6 7
2 3 4

7 8
4 5

TT T 
            
            
            
                        − − ⊕  
      
      
      
 

            



Ordinal 2


 

{ }1 8 27 64= 
 

 
generic changes. Column 2 of Table 8(b) summarises the conducement opera-
tions and shows over-fix 2 / 3 / 1=o  at ID = 1. This is red as: conducement 
from hierarchy (degree) 2 to 3 with the source term at Ordinal 1.  

Remark 6.4: The step for ascension from the kernel to d = 0 facilitates an ad-
ditional step. Table 8(b) at ID 7 shows a few steps are taken at once for con-
ducement opertions.  
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Remark 6.5: Conducement and reducement are technical identical opera-
tions. 

Remark 6.6: Notice the elegance of the replication beyond term 3 at ID 7, as if 
the gear system of AC is generically adjusted to navigate all the term. To recall 
the importance of the conducemental networks, parent sequence can start from 
any source term and the process still is the same.  

6.3. Gradient Operations: Hierarchy to Allele and Vice-Versa 

The paper devises a peculiar numbering system for alleles and this is clearly 
shown in Table 3 and Table 5. This numbering system plays a pivotal role in the 
conducemental networks. Whilst the paper uses   (upper case alpha) to de-
note alleles, its lower case, α , denotes the allele number, which varies from 
−∞  to ∞ . The peculiarity of α  is that whilst it changes from −∞  to zero (i.e. 
source terms are active from inner ordinals), the values of degree for each con-
ducemental sequence remains that of the parent sequence. All the alleles from 
−∞  to zero have the same order. 

It is too much of complexity to detail full architectural variations on the alleles 
between −∞  and ∞  in one paper but it has to be stated that 0  is one of 
transition alleles, 1−  denotes the sequence with its source term being at Or-
dinal 2 and 2−  at Ordinal 3 and so on. The values of the terms of the se-
quence prior to the source term are set to zero. 

The alleles between 0α =  and 1α δ= +  undergo transitional changes, ei-
ther their order shrinks or stay constant. These changes are determinate and not 
accidental or arbitrary. The emergence of the kernel at 1α δ= +  should not be 
seen as a temporary derailment of conducemental algebra but an elegant provi-
sion for disappearance of the diagonal and the emergence of a new architecture, 
in which diagonals (alleles) and sequences are unified below the kernel at the 
onset pf the passive space. 

6.3.1. Reducement to the Kernel 
The kernel is similar to alleles and both reducement of parent sequences to the 
kernel and conducement of the kernel to the parent sequence are parallel to the 
operations given above as per Propositions 6.1 and 6.2. 

6.3.2. Reducement of a Hierarchy to an Allele 
AC operations involving alleles require an architectural route map but the paper 
is focussed on the simpler Type 2 sequences when δ ω=  using Example 6.1  

Proposition 6.3: Alleles of any parent sequence of degree d or its hierarchy at 
any degree, say, d, are reducible to any of its alleles, a , by replicators, which 
need to be “cut-and-shaped” as per architectural route map of the parent se-
quence. For sequences with δ ω= , the following rule: 

 
{ }


{ }
   

1

1 1 1a a d d

d

Red
+ + +

+     = ⊕   
   

              (6.4) 
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where, a  is allele number, 
 


a , is the inverse replicator. The problem of reduc- 
ing a parent sequence or its hierarchies to any of its allele is evidently dependent 
on (i) selecting the particular allele a  or a ; (ii) both ,δ ω  of the parent se-
quence; (iii) the type of unbounded conducemental sequences; and (iv) the or-
dinal of the source term. The problem of reducement from a hierarchy to an al-
lele by AC through Proposition 6.3 is illustrated below by using Example 6.1. 
Proposition 6.3 is illustrated in a tabular format in Table 9. 

 
Table 9. Reducement of the parent sequence (Example 6.1) to alleles. 

1 1−  
1a = −  

Parent Sequence

0 8 27 64 125 216 343

0 1 2 3 4 4
0 0 0 0 0 0

1 2 3 4 4
1 1 1 1 1

2 3 4 4
2 2 2 2

3
3

  
 
  

− − − − − −           
           
           

− − − − −         
         
         

− − − −       
⊕        

       
−











{ }8 19 18 6

4 4
3 3

4 4
4 4

 
 
 
 
 
 
 
  = 
 
 − −               
 

− −    
        

 

2 0  
0a =  

Parent Sequence

1 8 27 64 125 216 343

0 1 2 3 4 4
0 0 0 0 0 0

1 2 3 4 4
1 1 1 1 1

2 3 4 4
2 2 2 2

3
3

  
 
  

− − − − − −           
           
           

− − − − −         
         
         

− − − −       
⊕        

       
−











{ }1 7 12 6

4 4
3 3

4 4
4 4

 
 
 
 
 
 
 
  = 
 
 − −               
 

− −    
        

 

3 1  or 

1  

Parent Sequence

1 8 27 64 125 216 343

1 2 3 4 4 4
0 0 0 0 0 0

2 3 4 4 4
1 1 1 1 1

3 4 4 4
2 2 2 2

4
3

  
 
  

− − − − − −           
           
           

− − − − −         
         
         

− − − −       
⊕        

       
−











{ }1 6 6

4 4
3 3

4 4
4 4

 
 
 
 
 
 
 
  = 
 
 − −               
 

− −    
        
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Continued 

4 2  or 

2  

{ }

{ }

1 8 27 64 125

2 3 4 4 4
0 0 0 0 0

3 4 4 4
1 1 1 1

4 4 4
1 5 1

2 2 2

4 4
3 3

4
4

 − − − − −          
          
          
 − − − −                       
 

− − −      ⊕ =      
      

 − −           
 

−  
    





 

5 
3  or 

3  

{ }

{ }

1 8 27 64 125

3 4 4 4 4
0 0 0 0 0

4 4 4 4
1 1 1 1

4 4 4
1 4 1

2 2 2

4 4
3 3

4 4
4 4

 − − − − −          
          
          
 − − − −                       
 

− − −      ⊕ =      
      

 − −           
 

− −    
        





 

6 Ker  

{ }

( )

1 8 27 64 125 216 343

4 4 4 4
4

0 0 0 0

4 4 4 4
1 1 1 1

4 4 4
1 4 1

2 2 2

4 4
3 3

4
4

 − − − −        
−        

        
 − − − −                       
 

− − −      ⊕ =      
      

 − −           
 

−  
    





 

7 
4  

or 

4  

{ }

( )

1 8 27 64 125 216 343

5 5 5 5 5
5

0 0 0 0 0

5 5 5 5 5
1 1 1 1 1

4 5 5 5
2 2 2 2

5 5 5
3 3 3

5 5
4 4

5
5

− − − − −         
−          

         
− − − − −         
         
         

− − − −       
       
       ⊕

− − −     
     
     

− −   
   
   

− 
 
 



 { }1 3 3 1

 
 
 
 
 
 
 
 
   = − − 
 
 
 
 
 
 
 
 
  
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Remark 6.7: The under-fix in 
 


a  is a shorthand way for representing the re-
generation operation. 

6.3.3. Conducement of an Allele to a Hierarchy 
AC operations for generating a parent sequence or its hierarchies from its alleles 
require an architectural route map. The proposition below expresses the prob-
lem for Type 2 sequences. 

Proposition 6.4: Alleles can be conduced to its parent sequence of degree d or 
of its hierarchies at any specified degree by replicators but replicators need to be 
“cut-and-shaped” as per architectural route map. For sequences with δ ω= , the 
following rule: 

{ }


{ } { }
1d

aRed
+   = 

  
   

                   
(6.5) 

where, a  is the replicator. The problem of conducing an allele to a parent se-
quence or its hierarchies is dependent on (i) both ,δ ω  of the parent sequence; 
(ii) the type of unbounded conducemental sequences; (iii) the ordinal of the 
source term. The problem of conducement from an allele to a hierarchy by AC 
through Proposition 6.5 is illustrated, in Table 10.  

Remark 6.8: These investigations use an alternative formulation to be pre-
sented in the near future in more detail including the allele 0α =  and a set of 
other transition alleles. 

 
Table 10. Conducing from alleles to parent sequences. 

1 0α =  

{ }

Parent Sequence

1 7 12 6

1 2 3 4 5

1 8 27 64 125 216 343

n n n n n n
n n n n n n

             
            − − − − −             
  =  
  





  

2 1α =  { }

Direct Product Rule

1 6 6
1 2 3

n n n
n n n

       
      − − −       



  

{ }1 8 27 64 125 216 343 ⊕
 

3 
2α =

 { } { }
1 1

1 5 1 1 8 27 64
1 2 3

n n n
n n n

 + +        =      − − −       
  

4 3α =  
{ }

{ }

2 1
1 4 1

1 2 3

1 8 27 64 125 216 343

n n n
n n n

 + +       
      − − −       

= 


 

5 Ker  No direct product is carried out on the kernels before priming 

6 
4α =

 
{ }

{ }

3 2 1
1 3 3 1

1 2 3 4

1 8 27 64 125 216 343

n n n n
n n n n

 + + +         − −         − − − −         
= 


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6.4. Operations on Allele-to-Allele  
6.4.1. Reducement from One Allele to Another 
Table 11 exemplifies reducements of alleles to alleles using Example 6.1 without 
presenting any proposition, as the paper is mainly focused on initiating back-
ground for AC. 

As may be seen from Table 11, AC provides tools to operate on one allele to 
obtain the values of another allele, which also depends on the architecture of the 
sequence, on the ordinal of the source term and the type of the sequence.  

6.4.2. Conducement from One Allele to Another 
The conducement of one allele into another allele is not also presented in any 
depth, as a deeper understanding of the architecture isrequired and therefore its 
introduction suffices to tabulating the above sequences in Table 12. 

It is noted that the replicators for both reducements and conducement in Ta-
ble 10 to Table 11 operations are handled by the binomial bounded conduce-
mental sequences   and their inverse u , as alleles are bounded sequences. 

 
Table 11. Reducement of one allele to another. 

1 

3α = −  

4 = o  

1 3 0=−o o  

{ }

{ }

1
1

1 1
0 0 0 64 61 30 6 11

1 1
1

1

0 0 27 37 24 6

− 
+ + − ⊕ − − + + + 

=

 

2 

2α = −  

3 = o  

21 0==o o  

{ }

{ }

1
1

1 1
0 0 27 37 24 6 11

1 1
1

1

0 8 27 37 24 6

− 
+ + − ⊕ − − + + + 

=

 

3 

1α = −  

2 = o  

1 0=o  
{ } { }

1
1

1 1
0 8 19 18 6 1 1 7 12 61

1 1
1

1

− 
+ + − ⊕ =− − + + + 

 

4 

2α =  

1 = o

1 1=o  
{ } { }

1
1

1 1
1 7 12 6 1 1 6 6 01

1 1
1

1

+ 
+ + − ⊕ =− − + + − 

 

5 

3α =  

1 = o  

1 1=o  
{ } { }

1
1

1 6 6 1 1 5 11
1

1

+ 
+ ⊕ =− − + 

 

6 
4α =  

1 = o  { } { }
1

1 5 1 1 1 1 4 1
1
+ 

⊕ = − 
 

7 Kernel { }{ }1 4 1 1 1 1 1 4 1=  

8 
5α =  

1 = o  { } { }
1 1

1 4 1 1 1 1 3 3 1
1 1
+ + 

⊕ − = − − − − 
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Table 12. Conducement from one allele to another. 

1 
{ }

{ }

1 1 1
0 8 19 18 6 0 0 1

1 1 1

0 0 24 37 24 6

 
⊕  
 

=
 

2 { } { }
1 1 1

1 7 12 6 0 1 0 8 19 18 6
1 1 1

 
⊕ = 
 

 

3 { } { }
1 1 1

1 6 6 0 1 1 7 12 6
1 1 1

 
⊕ = 
 

 

4 { } { }
1

1 4 1 1 1 1 5 1
1

 
⊕ = 
 

 

5 { } { }1 4 1 1 1 1 1 4 1⊕ =  

6 { } { }

1
1

1 1
1 3 3 1 1 1 4 1 01

1 1
1

1

 
 
 − − ⊕ = 
 
  

 

6.5. Interoperability Operations 

Interoperability is defined as the capability to operate more than one step at a 
time, where the steps are measured in terms of one degree or generation. It is 
most elegant part of AC and provides tools to overcome the fear of the new 
conducemental network, without which the network appears as a maze with a 
high risk of getting lost within or being entangled somewhere in it. This subject 
is not also presented in any specific detail but in terms of using Example 6.1 and 
related to the interoperability among alleles (allele to allele). The idea is pre-
sented in Table 13, which shows the cogwheels of AC are not fixed but highly 
versatile by taking more than one step (one step is one degree) at a time. 

The author has developed algorithms to express interoperability from one al-
lele to another, from one hierarchy to an allele from one hierarchy to another 
but the length of the paper does not allow any greater presentation. 

6.6. Operations on Structure of Hierarchies 

Section 5 of the paper provides examples to show the way the uninomial se-
quences can be used to display the structure of hierarchies and to reflect on in-
ternal structures. This now used as a model to display the structure of Example 
6.1 for one of the term. 

Example 6.1 is expressed as:  

{ }
  

3 3 3 3

1 2 3
1 2 3 1 4 1Kernel n

            
(6.6a) 

This is a Degree 3 sequence and therefore Degree 3 uninomial sequence, 3 , 
is used as a model to display the structure of hierarchies from Term 1 to Term 4, 
as expressed by (5.5c), in which the terns, sub-terms and sub-sub-terms are filled 
by the kernel values: 
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Table 13. Illustrating interoperability by example. 

One Step Conducement Two Step Conducements Three Step Conducements 

{ }

{ }

0/1

1 1 1
1 5 1

0 1 0

1 5 1

 
⊕  
 

=

=
 

{ }

{ }

0/2

1 1 2
1 4 1

0 2

1 6

1

6

 
⊕  
 

=

=
 { }

{ }

0/3

1 1
1 1

1 4 1 2 1
0 3

3 1
1 7 12 6

 
 = ⊕  
 
 

=


 

{ }

{ }

1/2

1 1 1
1 5 1

0 1

1 6

1

6

 
⊕  
 

=

=
 

{ }

{ }

1/3

1
1 1

1 5 1 1 2
2 1

1

1 7 12 6

 
 = ⊕  
 
 

=


 

{ }

{ }

1/4 1 5 1
1 3 1

1 0
0 3 3 1

3 1
3 1 1

0 8 19 18 6

=
 
 ⊕ 
 
 

=



 

{ }

{ }

2/3

1 1 1
1 6 6 1

0 1 1

1 7 12 6

 
= ⊕  

 
=


 

{ }

{ }

2/4 1 6 6
1

1 2
0 12

2 1
1

0 8 19 18 6

=
 
 ⊕ 
 
 

=



 

{ }

{ }

2/5 1 6 6
1 3

3
0 13 3

1
3 1

0 0 27 37 24 6

=
 
 ⊕ 
 
 

=



 

{ }

{ }

3/4 1 7 12 6

1 1 1
0 1

1 1 1

0 8 19 18 6

=

 
⊕ 
 

=



 

{ }

{ }

3/5 1 7 12 6

1 1
2

0 0 12 2
1

1 1

0 0 27 37 24 6

=

 
 ⊕ 
 
 

=



 

{ }

{ }

3/6 1 7 12 6
1

3
3 3

0 0 13
3 1

1
1

0 0 0 64 61 30 6

=
 
 
 
 
 
  
=



 

{ }

{ }

4/5 0 8 19 18 6

1 1 1
0 0 1

1 1 1

0 0 27 37 24 6

=

 
⊕ 
 

=



 

{ }

{ }

4/6 0 8 19 18 6

1 1
2

0 0 0 12 2
1

1 1

0 0 0 64 61 30 6

=

 
 ⊕ 
 
 

=



 

{ }

{ }

4/7 0 8 19 18 6
1

3
3 3

0 0 0 13
3 1

1
1

0 0 0 125 91 36 6

=
 
 
 ⊕ 
 
  

=



 

 









































































2Term 2

21

1 1 2

1 1
2

32

2 31 1 2

1 1 2 1 2 3

1

2

1 1

1 1 2

1

1 1 2

1 1 2 1 2 3

1

2

1 1 2

1
1 1 4

1

1 1 4
1 1 4 1 4 1

1

1 1 4

S

SSS

SS SSS SSS

T
S

SSS

SS SSSS SSS SSS

SS SSS SSS SSS SSS SSS

S

SS

SS SSS SSS

+
+ + +

+ +

+ +
+ + + +

+

+ +

+

+









 







 



























































 

2

3

2 3

1 1 2 1 2 3

2 3 4

1 1 2 1 2 3 1 2 3

1 1 2 1 2 3
4

1 1 2 1 2 3 1 2 3

4

1 1 4 1 4 1

1 1 4 1 4 1 1 4 1 0

S

S

SS SS

SS SSS SSS SSS SSS SSS

SS SS SS

SS SSS SSS SSS SSS SSS SSS SSS SSS S

S

SS

+

+ +

+

+ + + + +

+ + + + + + +



 





 

  







Term 4


















    

(6.6b) 
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7. Discussion 

Arithmetic Calculus (AC) has the potential for a game change in mathematics 
but the price for it is the consensus to its uptake, change of habit, the acquisition 
of a new discourse. These are not automatic processes but the paper makes the 
case by showing that even most basic operations, e.g. 2 × 3, are embedded with 
AC. Literally any single mathematical operation requiring reducement is the 
deconvolution problem but AC evidently copes with these operations analytical-
ly. Perhaps this should be enough incentive to critically question this widely- 
know deconvolution theorems. However, old habits die hard even in mathemat-
ics. 

Attention is drawn to the conducemental network towards the big picture on 
the architectural variations in Type 2 to unbounded conducemental sequences. 
This is necessary to cut-and-shape replicators based on a route map using con-
ducemental network. The network is the difference table but with a new lease of 
life, as it is transformed into a grid-like network using degree, ordinal and di-
agonals. There is one route map for each type of conducemental sequences re-
flecting architectural variations, as discussed in Sections 5 and 6 together with 
Table 3 and Table 5.  

Architecture is used in the paper to refer to generic variations in the operation 
from one allele to another, which depends on degree and order and is comple-
mented by contributions from the logistics of the parent sequence. There is one 
architecture for each type of the conducemental sequences. Whilst a full account 
of architectural variations will be presented after this paper, Example 6.1 pro-
vides a glimpse of architecture for Type 2 sequences. This is generalised for the 
cases where degree ≥ order and shown in Figure 1. Similar architectures have 
been studied by the author for Types 3 and 4 unbounded conducemental se-
quences but are not presented here due to the scope of the paper. 

It is not within the remit of this paper to catalogue the shortfalls of classic 
mathematics but consider the concealment concept using 2  (see Table 1, ID 
10), as follows: 

{ } { }

{ }
2 1 4 10 18 27 36

1 2 3 4
1 2 3 2 1

1 2 3 4 5
n n n n n

n n n n n

=
 − − − −           =           − − − − −           




 

(7.1) 

This is expressed algebraically, as follow:  
 

 
Figure 1. Architecture of orders and allele—Types 2 unbounded sequences. 
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( ) ( ) ( ) ( ) ( )1 2 1 3 2 2 3 1 4 9 18n n n n n n+ − + − + − + − = −        (7.2) 

(7.1) is an AC expression, which is correct for any value of n but (7.2) is its 
equivalent version in classic algebra, which fails at n = 1, 2 and 3 (this may be 
called as a singularity problem, or rather the triple singularity problem). Besides, 
AC reflects on the architecture and the structure of the sequence but algebra has 
no such senses. 

Attention is drawn to the fact that the examples presented in the paper have at 
least 100 instances of the inverse problem (the deconvolution problem). Evi-
dently, AC has no problems in treating the deconvolution problem. 

8. Conclusions 

The paper has the primary aims of advancing the status of AC from Technical 
Readiness Level of 1 to 2 and naturally the presentation is not yet rigorous, al-
though the author has developed a rigorous proof for the fundamental premises 
of AC. The paper contextualises AC in terms of transforming the age-old differ-
ence tables into a new network, referred to as the conducemental network, remi-
niscent of other coordinate systems, such as the Cartesian system. The network 
is bounded between the parent sequence and its base sequence, which are se-
lected for convenience. Its rows are referred to as hierarchies and each hierar-
chical level is identified by its degree; whereas the columns are identified by or-
dinal numbers. The source of a sequence at a hierarchical level can be activated 
from any ordinal number and this sets diagonals, which retain the full know-
ledge about the sequence, like “stem cells” in biology. The paper presented a 
glimpse of the architecture of AC sequences but the full presentation of this sub-
ject is outside the remit of the paper.  

The paper categorised conducemental sequences into five types, which collec-
tively can cope with any type of polynomial and exponential functions. The fo-
cus of the paper is on Types 1 and 2 sequences but another paper has been pre-
pared to cover Type 3 and 4 and to complete the picture on the architectural va-
riety of conducemental sequences. Yet another paper is under preparation to 
cover Type 5 sequences. 

The paper also shows a glimpse of the big picture on the architectural varia-
tions in Type 2 unbounded conducemental sequences, the understanding of 
which is necessary to cut-and-shape replicators to facilitate the following opera-
tions: (i) reducement and conducement from one hierarchy to another; (ii) re-
ducement and conducement between hierarchies and allele; (iii) reducement and 
conducement between alleles; (iv) interoperability; and (v) reconstruction of the 
structure of each term. Replicators are the cogwheels of AC and facilitate com-
plex operations in explicit terms. 
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Appendix I. Reformulation of the Convolution Theorem 

The mathematical community does not have the prior knowledge of AC; whe-
reas initiation for algebraic calculus takes place from secondary school. Thus, 
AC starts without the privilege of initiation but this section anchors AC on 
firmly established mathematical theorems. 

AC can reveal so much about mathematics but to get to that stage, many 
mundane mathematical operations have to be approached differently. Whilst it 
is recognised that old habits die hard, this section shows that new habits are 
beneficial and when these benefits are realised, insistence on old habits are likely 
to be seen as insistence on carrying on with Roman numerals compared with 
Arabic-Indian numerals. The paper relies on the mathematical flair of the rea-
dership, who are prepared to resort to the good old habit of working out ma-
thematics using paper and pen, without which, the benefit from AC can be very 
little. 

Application of the Convolution Theorem to Hydrology: One of the known 
applications of the convolution theorem in its discrete form is the unit hydro-
graph theorem in hydrology. 

According to the theorem, let { }1 2 mR R R= R  be the array of effec-
tive rainfall { }1 2 m nU U U U U=    be unit hydrograph ordinates 

{ }1 2 1m n m nQ Q Q Q Q + −=   Q  be surface water runoff 
The unit hydrograph theorem is often expressed as: 

U∗ =R Q (I.0) 

which is expanded as: 

1 1 1R U Q∗ =                         (I.1a) 

1 2 2 1 2R U R U Q∗ + ∗ =                     (I.1b) 

1 3 2 2 3 1 3R U R U R U Q∗ + ∗ + ∗ =                 (I.1c) 

1 2 1 1 2 1m m m m mR U R U R U R U Q− −∗ + ∗ + + ∗ + ∗ =         (I.1d) 

1 1 2 1 3 2 1m m m m mR U R U R U R U Q+ − +∗ + ∗ + + ∗ + ∗ =         (I.1e) 

  

1 2 1 1 2 1n n m n m m n m nR U R U R U R U Q− − − + − +∗ + ∗ + + ∗ + ∗ =       (I.1f) 

2 1 3 2 1n m n m m n m nR U R U R U Q− − + − + +∗ + + ∗ + ∗ = (I.1g) 

  

1m n n mR U Q + −∗ =                       (I.1h) 

The above is true for rainfall-runoff models and equally true in AC. The only 
shorthand representation for (I.1) is (I.0) but the alternative of AC transforma-
tion is as follows: 

{ } { }
{ }
{ }

1 2 1 2

1 2 1

ˆ

(I.1a) (I.1b) (I.1d) (I.1f) (I.1h)

m m n

m n m n

R R R U U U U

Q Q Q Q Q + −

⊕

=

=

  

  

  

       (I.2a) 
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which may be written? 

{ }

1

1 1 2

1 2 1 2 3
1 1

1 2 3 1 2 3
2 2

3 3

ˆ

(I.1a) (I.1b) (I.1c) (I.1d) (I.1f) (I.1h)

m

m m

n

U
R U U

R R U U U
R U

R R R U U U
R U

R U U
R U

U

 
           ⊕   

   
   
    

 
 

=

   

 



  

   (I.2b) 

The symbol ⊕̂  signifies a new kind of operations, in which the multiplica-
tions are carried out in a very peculiar way. For instance, the operations on the 
third term, i.e. (ESM1.1c), are illustrated below: 

   (I.2c) 

The operations (I.0)-(I.1) describe traditional form of the convolution theo-
rem for discrete variables. AC expresses these operations in a sequence form as 
laid out by (I.2), and the peculiar way of multiplying the terms of { }R  and 
{ }U  triggered by the symbol ⊕̂  cannot be overemphasised. The medium of a 
mathematical paper is necessarily limited in its power of communication for the 
uninitiated readership and the only compensation for this is mathematical flair. 
Notably, there is nothing to be proved so far, as the convolution theorem is well 
established. 

An alternative form of (I.2a)-(I.2b) is to fill in the remaining terms of { }R  
and { }U  with zero and make them size of m+n-1 and change the multiplica-
tion from convolution to regeneration product, as follows: 

{ }
{ }
1 2 1 1 1

1 2 1 1

0 0 0 0

0 0
m m n n n m

m n n n m

R R R

U U U U
+ + + −

+ + −⊕

  

  

 

1 2

1 2 3
1

2 3 4 1
1 2

1 3
1 2 3

2
3

1

11

1

1 2
1

2 3
1 2

3
1 2 3

1
1 2 3

2
3

1

1

1

0

0
0 0

00
0 0

0
0

0

m

m

m m n

m m m
m

n mm

n n

m

m
m

n
m

n n
n

n

n m

R R
R R R RR R R RR RR RR R R R RR R RR

U
U UU U UU U UU U UU UU U U UU U U UU UU

+

+

+ −+

+

+

+ −

 
 
 
  
 
 
 


… ⊕

 
 
 
 
  
 













  









 





  

















    (I.3a) 
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{ }
{ }1 2 1

(I.1a) (I.1b) (I.1c) (I.1d) (I.1f) (I.1h)

m n m nQ Q Q Q Q + −=

  

  

     (I.3b) 

Readers should confirm to themselves that the above is true by carrying out 
the operations. Besides, (I.1) is taken to be improperly posed, as the number of 
equations (n + m − 1) is greater than the unknowns, which are as many as (n) or 
(m). However, this is not true and AC will show that the reducement problem is 
the inverse problem amenable to exact treatments, although it can suffer from 
ill-conditioning. 
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