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Abstract 
This work has successfully shown that the optimum of a quadratic response 
function with zero coefficients except that of the quadratic term lies at the 
origin. This was achieved by using optimal designs technique for solving un-
constrained optimization problems with quadratic surfaces. In just one move, 
the objective of the work, that is, xmin = 0 was realized. 
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1. Introduction 

This paper seeks to show that given a quadratic univariate response function 
with zero coefficients except that of the quadratic term, the optimum lies at the 
origin. [1] and [2] stated that even though very few problems exist in real life 
where managers are concerned with taking decisions involving only one decision 
variable, this kind of study is justified since it forms the basis of simple exten-
sions which plays a cardinal role to the development of a general multivariate 
algorithm (see [3]).  

Traditional solution techniques for solving unconstrained optimization prob-
lems with single variable abound. These techniques require many iterations in-
volving very tedious computations [4]. Some of the line search techniques in this 
group include Fibonacci and Golden Section Search techniques. These tech-
niques simply identify the interval of uncertainty containing the optimum and 
seek to minimize this interval, without actually locating the exact optimum point 
and the computational efforts in achieving this are enormous. For instance, the 
procedure in Fibonacci Search technique follows a numerical sequence known as 
Fibonacci numbers as shown by [1].  
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As stated by [5] and [6], Golden Section Search technique is another efficient 
method of determining the interval of uncertainty where the desired optimum 
must lie. While [7] shows the superiority of the Golden Section technique over 
Fibonacci Search technique since a priori specification of the resolution factor as 
well as the number of iterations are needed before the later technique is used 
which are not necessary in the former, [8] and [9] posited and actually proved 
that the later technique is the best traditional technique of solving the problem 
under consideration.  

However, [10] presented a new technique for obtaining an exact optimum of 
unconstrained optimization problems with univariate quadratic surfaces. This 
new technique was brought about from super convergent line series algorithm 
which uses the principles of optimal designs of experiment [11] [12] and as 
modified by [13] (see also [14] and [15]). The algorithmic procedure used in 
realizing our objective in this work is as given by [10]. 

2. The Optimum of a Quadratic Univariate Response  
Function with Zero Coefficients except That of the  
Quadratic Term Is Located at the Origin 

This section seeks to prove that the optimum of a quadratic univariate response 
function with zero coefficients except that of the quadratic term is located at the 
origin. 

Let the quadratic univariate response function, f(x) having zero response pa-
rameters except that of the quadratic term be  

( ) 2f x bx=  

We are required to show that *
min 0x = . This is done using the algorithm as 

given by [10]. 
Initialization: Select N support points such that 3r ≤ N ≤ 4r or 6 ≤ N ≤ 8 

where r = 2 is the number of partitioned groups and by choosing N arbitrarily, 
make an initial design matrix  
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Step 1: Let the optimal starting point computed from X be *
1x . 

Step 2: Partitioning X into r = 2 groups to obtain the design matrices, Xi, i = 1, 
2 as well as the information matrices T

ii iM X X=  and their inverses, 1
iM − . 

Step 3: Obtain the following: 
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2) Interaction vector of the response parameter, 

[ ]g b=  

3) Interaction vectors for the groups,  
1 T

ii i iIM XI X g−=  

4) Matrices of mean square error for the groups 
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5) Matrices of coefficient of convex combinations of the matrices of mean 
square error 
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and by normalizing Hi such that * *T
i iH H IΣ = , we have 
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6) The average information matrix 

( ) 11 12* *T
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Step 4: Obtain the response vector 
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where ( )20 1z f m=  and ( )21 2z f m=  and hence, the direction vector 

( )0 1
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d z  

which gives *
1=d d .  

Step 5: We now make a move to the point 
* *
2 1 11 ρ= −x dx  

where 1ρ  is the step length. The value of the response function at this point is 

( ) ( )2* * *2 * 2 2
2 1 1 1 1 1 1 1 11 2f b bρ ρ ρ = − = − + x x x x d dd  
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Step 6: Since the true value of *
1x  in ( ) ( )* * *2 *2

2 1 1 10f f b b− = − =x x x x  is 
unknown, we assume that *2

1b ε>x  and hence, we make a second move as fol-
lows: 

* *
3 2 2 22 2 220ρ ρ ρ== − − −=d dx dx  

and 

( )* 2 2
3 2 2f bρ=x d  

( )*
3 2

2 2
2

d
2

d
0

f
bρ

ρ
= =

x
d  

But b and d2 cannot be zero, which means that 2 0ρ = . Since 2 0ρ = , there 
was no need for the second move showing that the optimal solution was ob-
tained at the first move. 

Therefore, 

( )min mi2 n
* 0 and 0x f x= = =x  

3. Numerical Illustration 

Consider the quadratic univariate response function,  

( ) 24f x x=  

We are required to show that *
min 0x = . This is done as follows: 

Initialization: Select N support points such that 6 ≤ N ≤ 8 and by choosing N 
= 6, we make an initial design matrix  
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Step 1: Compute the optimal starting point,  
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That is, 
*
1 1.9364=x  

Step 2: By partitioning X into 2 we obtain the design matrices 
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The respective information matrices are  
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Step 3: Obtain the following: 
1) The matrices of the interaction effect for the groups  

1

1
4
9

IX
 
 =  
  

 and 2

16
25
36

IX
 
 =  
  

 

2) Interaction vector of the response parameter,  

[ ]4g =  
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3) Interaction vectors for the groups,  
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4) Matrices of mean square error for the groups 
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5) Matrices of coefficient of convex combinations of the matrices of mean 
square error 
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6) The average information matrix 

( ) 2.9999 14.8260
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Step 4: Obtain the response vector 

( )
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75.4222 22754.0330
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and hence, the direction vector 
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which gives * 8565=d .  
Step 5: We now make a move to the point 

* * *
2 1 1ρ= −x x d  

where 1ρ  is the step length. The value of the response function at this point is 

( ) ( )2* * * *2 * * 2 *2
2 1 1 1 1 1 12f b bρ ρ ρ = − − + =x x d x x d d  
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( )*
2 * * *2
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which gives 
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since * 8565=d  and *
1 1.9364=x . 

Hence 

( )* * *
2 1 1 1.9364 0.0002260828 8565 0ρ= − = − ≅x x d  

Step 6: Since ( ) ( )* *
2 1 0 14.9986 14.9986 0.0001f f ε= = > =− −x x  we make 

a second move as follows: 
* *
3 2 2 2 28565 0 8565 8565ρ ρ ρ= − = − = −x x  

and 
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Which gives 2 0ρ = . Since 2 0ρ = , there was no need for the second move 
showing that the optimal solution was obtained at the first move. 

Therefore, 

( )min mi2 n
* 0 and 0x f x= = =x  

4. Conclusion 

We set out to show in this work that the optimum of a quadratic univariate re-
sponse function with zero coefficients except that of the quadratic term is lo-
cated at the origin. By using optimal designs technique for solving uncon-
strained optimization problems with univariate quadratic surfaces, this primary 
objective has been successfully achieved. In the course of the proof, we saw that 
the optimum, m

*
2 in 0x= =x  was obtained in just one move and ( )min 0f x = . 

References 
[1] Eiselt, H.A., Pederzoli, G. and Sandblom, C.L. (1987) Continuous Optimization 

Models. Walter de Gruyter & Co., Berlin.  

[2] Taha, H.A. (2005) Operations Research: An Introduction. 7th Edition, Pearson 
Education, Singapore Pte. Ltd., Indian Branch, Delhi.  

[3] Etukudo, I. (2017) Optimal Designs Technique for Locating the Optimum of a 
Second Order Response Function. American Journal of Operations Research, 7, 
263-271. https://doi.org/10.4236/ajor.2017.75018 

[4] Singh, S.K., Yadav, P. and Mukherjee. (2015) Line Search Techniques by Fibonacci 
Search. International Journal of Mathematics and Statistics Invention, 3, 27-29.  

[5] Winston, W.L. (1994) Operations Research: Applications and Algorithms. 3rd Edi-
tion, Duxbury Press, Wadsworth Publishing Company, Belmont, CA.  

https://doi.org/10.4236/ajor.2017.76024
https://doi.org/10.4236/ajor.2017.75018


I. Etukudo 
 

 

DOI: 10.4236/ajor.2017.76024 330 American Journal of Operations Research 
 

[6] Gerald, C.F. and Wheatley, P. (2004) Applied Numerical Analysis. 7th Edition, Ad-
dison-Wesley, Boston.  

[7] Taha, H.A. (2007) Operations Research: An Introduction. 8th Edition, Asoke K. 
Ghosh, Prentice Hall of India, Delhi.  

[8] Subasi, M., Yildirim, N. and Yildirim, B. (2004) An Improvement on Fibonacci 
Search Method in Optimization Theory. Applied Mathematics and Computation, 
Elsevier, 147, 893-901.  

[9] Hassin, R. (1981) On Maximizing Functions by Fibonacci Search.  

[10] Etukudo, I.A. (2017) Optimal Designs Technique for Solving Unconstrained Opti-
mization Problems with Univariate Quadratic Surfaces. American Journal of Com-
putational and Applied Mathematics, 7, 33-36. 

[11] Onukogu, I.B. (2002) Super Convergent Line Series in Optimal Design on Experi-
mental and Mathematical Programming. AP Express Publisher, Nigeria.  

[12] Onukogu, I.B. (1997) Foundations of Optimal Exploration of Response Surfaces. 
Ephrata Press, Nsukka.  

[13] Etukudo, I.A. and Umoren, M.U. (2008) A Modified Super Convergent Line Series 
Algorithm for Solving Linear Programming Problems. Journal of Mathematical 
Sciences, 19, 73-88. 

[14] Umoren, M.U. and Etukudo, I.A. (2010) A Modified Super Convergent Line Series 
Algorithm for Solving Unconstrained Optimization Problems. Journal of Modern 
Mathematics and Statistics, 4, 115-122.  
https://doi.org/10.3923/jmmstat.2010.115.122  

[15] Umoren, M.U. and Etukudo, I.A. (2009) A Modified Super Convergent Line Series 
Algorithm for Solving Quadratic Programming Problems. Journal of Mathematical 
Sciences, 20, 55-66. 

 
 

https://doi.org/10.4236/ajor.2017.76024
https://doi.org/10.3923/jmmstat.2010.115.122

	The Optimum of a Quadratic Univariate Response Function Is Located at the Origin
	Abstract
	Keywords
	1. Introduction
	2. The Optimum of a Quadratic Univariate Response Function with Zero Coefficients except That of the Quadratic Term Is Located at the Origin
	3. Numerical Illustration
	4. Conclusion
	References

