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Abstract 
In this paper, we study the Duffing equation with one degenerate saddle point 
and one external forcing and obtain the criteria of chaos of Duffing equation 
under periodic perturbation through Melnikov method. Numerical simula-
tions not only show the correctness of the theoretical analysis but also exhibit 
the more new complex dynamical behaviors, including homoclinic bifurca-
tion, bifurcation diagrams, maximum Lyapunov exponents diagrams, phase 
portraits and Poincaré maps. 
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1. Introduction 

Since in 1918, the German electrical engineer Georg Duffing introduced the 
Duffing equation, many scientists have been widely studied the equation in 
physics, economics, engineering, and found many other physical phenomena. 
The Duffing oscillator, is normally written as 

3 = cos( ).x x x x F tδ β α ω+ + +�� �                      (1) 

Depending on the parameters chosen, the equation can take a number of spe-
cial forms. For example, Bender and Orszag [1] and Zwillinger [2] took the pa-
rameters = 0, = 0Fδ  and studied the Duffing Equation (1) with no damping 
and no forcing, 

3 = 0.x x xβ α+ +��                           (2) 

Wiggins [3] took = 1, = 1β α−  and studied the following Duffing equation 
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3 = cos( ).x x x x F tδ ω+ − +�� �                    (3) 

Ravichandran et al. [4] replaced the external forcing cos( )F tω  as various 
periodic external forcing. Equation (3) with one external forcing and two poten-
tial wells has many different types of oscillations such as chaos and limit cycles 
[5]. And Huang and Jing [6] studied the three well Duffing equation with one 
external forcing 

2 2

= ,

= ( 1)( ) cos( ),

x y
y x x x a y f tδ ω− − − − +

�

�
              (4) 

and obtained the conditions of existence and bifurcations for harmonics, sub-
harmonics and superharmonics under small perturbations and the threshold 
values of chaotic motion under periodic perturbation. And Jing et al. [7] [8] ob-
tained complex dynamics of the three well Duffing equation with two external 
forcings, 

2 2
1 1 2 2

= ,

= ( 1)( ) cos( ) cos( ).

x y
y x x x a y f t f tδ ω ω− − − + + +

�

�
      (5) 

Wang [9] presented analytical and numerical results concerning the inhibition 
of chaos in the Duffing equation with two weak forcing excitations. Jiang et al. 
[10], studied bifurcation and chaos of the three well Duffing equation with pa-
rametric excitation and one external forcing 

2 2 2

= ,

= ( 1)( ) cos( ) cos( ).

x y
y x x x a f t bx tω− − − + + Ω

�

�
         (6) 

But less attention was focused on the two well Duffing equation with one de-
generated saddle. In this paper we studied the following Duffing equation 

3 2

= ,

= ( 1) cos( ),

x x
y x x y f tδ ω− − − +

�

�
                (7) 

where , ,fδ ω  are real parameters. Physically, δ  can be regarded as dissipa-
tion or damping; f  and ω  is the amplitude and frequency of the external 
force. 

The structure of the paper is as follows. In Section 2, the fixed points and 
phase portraits are obtained for the unperturbed system of (7). In Section 3, the 
conditions of existence of chaos under periodic perturbation resulting from the 
homoclinic bifurcations are performed by Melnikov method. Finally, we make 
some numerical computations which give support to the theoretical analysis and 
some complex dynamics in Section 4. 

2. Fixed Points and Phase Portrait of Unperturbed System of 
(7) 

In this section, we obtain the stability of fixed points and phase portrait of 
unperturbed system of (7). 

For we take = = 0fδ  and obtain the unperturbed system of (7) as follows 
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3 2

= ,

= ( 1).

x y
y x x− −

�

�
                     (8) 

The unperturbed system (7) can be easily obtained three fixed points: a dege-
nerate saddle (0,0)S  and two centers 1( 1,0)C −  and 2 (1,0)C . The phase 
portrait of the unperturbed system (7) is plotted in Figure 1. The degenerate 
saddle is connected by two homoclinic orbits  

1 0 0 2 2 3

6 3 6( ( ), ( )) = ( , )
4 3 (4 3 )

tx t y t
t t

Γ −
+ +

 and  

2 0 0 2 2 3

6 3 6( ( ), ( )) = ( , )
4 3 (4 3 )

tx t y t
t t

Γ −
+ +

, respectively. 

In essence we use perturbation methods to study the system (7), we therefore 
study how the dynamics of unperturbed system (8) are changed under the peri-
odic perturbation in the following parts. 

3. Chaos for Periodic Perturbations 

In this section, we consider the chaotic behaviors of system (7) in which , fδ  
are assumed to be small parameters with order ε . The Duffing system can be 
written an as follows: 

3 2
1 1

= ,

= ( 1) ( cos( )),

x y
y x x y f tε δ ω− − + − +

�

�
            (9) 

where 1 1= , =f fεδ δ ε . 
The closed homoclinic orbits break when the perturbation is added, and sys-

tem (7) may have transverse homoclinic orbits. By the Smale-Birkhoff Theorem 
[3] [11] [12], the existence of such orbits may results in chaotic dynamics. 
Therefore, we apply the Melnikov method to system (7) for finding the criteria 
of the existence of homoclinic bifurcation and chaos. 

For the homoclinic orbit 1Γ , we have the Melnikov function, 
 

 
Figure 1. Phase portrait of system (8). 
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1 0 1 1 0 1 0 1 0

1 1 0

( ; , , ) = ( )( ( ) cos( ( )))

3 2= 3 2 2 sin( ) (0, ),
32 3

M t f y t y t f t t dt

f t BesselK

δ ω δ ω

ωπδ ω ω

+∞

−∞
− + +

− +

∫
    (10) 

where 
2(0, )

3
BesselK ω

 is Bessel functions of the second. If we define 

0 3 3( ) = ,264 2 (0, )
3

R
BesselK

π
ω

ωω
              (11) 

then it follows from Theorem 4.5.3 in [11] that if 0
1 1/ > ( )f Rδ ω , the stable ma-

nifold of the fixed point (0,0) intersects the unstable manifold for ε  sufficiently 
small, and if 0

1 1/ < ( )f Rδ ω , the stable manifold doesn’t intersect the unstable 
manifold. Moreover, since 1 0 1 1( ; , , )M t f δ ω  has quadratic zeros when  

0
1 1/ = ( )f Rδ ω , there is a bifurcation curve of system (9) in the 1 1( , )f δ−  plane 

for each fixed ω , tangent to 0
1 1= ( )f R ω δ  at 1 1= = 0f δ . This implies that if 

> 0ε  is sufficiently small, the transverse heteroclinic orbits exist and system (9) 
may be chaotic. In Figure 2, we give the diagram of (11) in 0 ( )Rω ω−  plane 
for [0, 2]ω∈ .  

For the homoclinic orbit 2Γ , the computation is identical and the similar re-
sult is obtained. 

4. Numerical Simulations 

In this section we give numerical simulations to look for other new dynamics. In 
the process of numerical simulation, we vary one parameter and fix the other 
parameters of system (7) as follows: 

1) Varying f  in the range 0 5f≤ ≤  and fixing = 0.2δ  and for rational 
and irrational values of ω . 

2) Varying δ  in the range 0 2δ≤ ≤  and fixing = 1f  and for rational and 
irrational values of ω . 

For case 1). The bifurcation diagram of system (7) in ( , )f x  plane and the 
corresponding Lyapunov exponents for = 0.2, = 2δ ω  are given in Figure 3(a) 
and Figure 3(b), respectively. We observe that a period-1 window for 
0 < < 0.333f  becomes chaos at = 0.333f  and chaos at 1.391 becomes a pe-
riod-1 window for 1.392 < 5f ≤ . From Figure 3(c), the local amplification of 
Figure 3(a) for 0.55 0.6f≤ ≤ , there exist three period-doubling bifurcation to 
chaos for 0.5523 < < 0.588f . 

The bifurcation diagram of system (7) in ( , )f x  plane and the corresponding 
Lyapunov exponents for = 0.2, = 2 / 2δ ω  are given in Figure 4(a) and Fig-
ure 4(b), respectively. A period-1 window suddenly becomes chaos at 

= 0.203f  and chaoticmotion suddenly becomes a period-doubling bifurcation 
at = 0.212f . And for 0.213 < < 5f  period-doubling bifurcation to chaos and 
chaos to period-doubling bifurcations alternatively appear. Poincaré maps of 
chaotic attractors for = 0.21, = 0.85f f  and = 4.95f  are shown in Figures 
4(c)-(e), respectively. 

https://doi.org/10.4236/jamp.2017.59161


Z. Y. Yang, T. Jiang 
 

 

DOI: 10.4236/jamp.2017.59161 1912 Journal of Applied Mathematics and Physics 
 

 

Figure 2. The diagram of (11) in 0 ( )Rω ω−  plane. 
 

 
(a)                                      (b) 

 
(c) 

Figure 3. (a) Bifurcation diagram of system (7) for = 0.2, = 2δ ω ; (b) Lyapunov 
exponents corresponding to (a); (c) Local amplification of (a) for 0.55 0.6f≤ ≤ . 

 
For case 2). The bifurcation diagram of system (7) in ( , )f x  plane and the 

corresponding Lyapunov exponents for = 1, = 2f ω  are given in Figure 5(a) 
and (b). There exist onset of chaos at = 0.28δ  from a period-1 window for 
0 < < 0.279δ . And chaos suddenly becomes three inverse period-doubling bi-
furcation at = 0.246δ . We observe that chaos to inverse period-doubling bi-
furcations and inverse period-doubling bifurcations to chaos alternatively ap-
pear. And the size of chaotic attractors becomes smaller at = 0.622δ  that an 
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(a)                                      (b) 

 
(c)                                      (d) 

 
(e) 

Figure 4. (a) Bifurcation diagram of system (7) for = 0.2, = 2 / 2δ ω . (b) Lyapunov 
exponents corresponding to (a). (c)-(e) Poincaré maps for = 0.21, = 0.85f f  and 

= 4.95f , respectively 
 
interior crisis occurs. Poincaré maps of chaotic attractors for 0.621δ =  and 

= 0.622δ  are shown in Figure 5(c) and Figure 5(d), respectively. 
The bifurcation diagram of system (7) in ( , )f x  plane and the corresponding 

Lyapunov exponents for = 1, = 2 / 2f ω  are given in Figure 6(a) and Figure 
6(b). Period-2 orbit becomes period-1 orbit at = 0.09δ . From the local ampli-
fication Figure 6(c) of Figure 6(a), a period-1 window disappears and chaos 
appear at = 0.276δ . There exists an interior crisis of chaos at = 0.314δ  and 
chaos regions becomes inverse period-doubling bifurcations to period-doubling 
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(a)                                      (b) 

 
(c)                                      (d) 

Figure 5. (a) Bifurcation diagram of system (7) for = 1, = 2f ω . (b) Lyapunov 
exponents corresponding to (a). (c)-(d) Poincaré maps for 0.621δ =  and = 0.622δ , 
respectively. 
 

 
(a)                                      (b) 

 
(c)                                      (d) 
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(e)                                      (f) 

Figure 6. (a) Bifurcation diagram of system (7) for = 1, = 2 / 2f ω . (b) Lyapunov 
exponents corresponding to (a). (c) and (d) Local amplification of (a) for 
0.275 0.42δ≤ ≤  and 1.42 < < 1.56δ , respectively. (e)-(f) Poincaré maps for = 0δ  
and = 0.316δ , respectively. 
 
bifurcations for 0.315 < < 0.325δ . At = 0.3541δ  an intermittence of chaos 
occurs and chaotic motion becomes inverse period-doubling bifurcation. There 
is a bubble for 1.432 < < 1.531δ  in the local amplification Figure 6(d) of Fig-
ure 6(a). Poincaré map for = 0δ  is shown in Figure 6(e). Poincaré map of 
chaotic attractor for = 0.316δ  is shown in Figure 6(f). 
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