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Abstract 
In item response theory (IRT), the scaling constant D = 1.7 is used to scale a 
discrimination coefficient a estimated with the logistic model to the normal 
metric. Empirical verification is provided that Savalei’s [1] proposed a scaling 
constant of D = 1.749 based on Kullback-Leibler divergence appears to give 
the best empirical approximation. However, the understanding of this issue as 
one of the accuracy of the approximation is incorrect for two reasons. First, 
scaling does not affect the fit of the logistic model to the data. Second, the best 
scaling constant to the normal metric varies with item difficulty, and the con-
stant D = 1.749 is best thought of as the average of scaling transformations 
across items. The reason why the traditional scaling with D = 1.7 is used is 
simply because it preserves historical interpretation of the metric of item dis-
crimination parameters. 
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1. Introduction 

Two common families of models used in item response theory (IRT) are the 
normal and logistic distribution functions. These two models are both used ex-
tensively. The logistic model is used more in ongoing assessment programs, 
while the normal model tends to be used more in research studies. It is thought, 
with some justification, that these two models obtain coefficients estimates that 
are practically indistinguishable after a simple multiplicative scaling. Below, this 
claim is explained in detail and investigated more thoroughly. 

2. Item Response Theory (IRT) 

Assume a set of test items 1, ,j J=   for subjects 1, ,i N=  , where the items 
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are dichotomously scored: correct responses are scored 1ijY = , and incorrect 
responses 0ijY = . Also, assume there is a single latent variable θi, which is 
known as examinee ability or proficiency, that accounts for an examinee’s ob-
served item responses. While θ can be multidimensional, only the unidimen-
sional case is considered here.  

With the two parameter normal ogive function (2PN), a correct response on 
item j presented to examinee i is modeled by  
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where G is the cumulative normal distribution function defined as 
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In this two-parameter IRT model, ja  is a guessing parameter, and jb  is an 
item difficulty parameter. The person parameter θi is defined above. In the two 
parameter logistic model (2PL), correct responses are modeled by 
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where again ( )ij j i ja bη θ= − . Note that the parameterizations of both the 2PN 
and 2PL IRT models are in terms of aj, bj, and θi, and the interpretations of mod-
el coefficients as item discrimination, item difficulty, and person ability are iden-
tical. In short, both the 2PN and 2PL models for dichotomous items provide an 
estimate of the probability that an examinee will answer correctly, and both 
models are based on the same item and person parameters.  

3. Scaling for Equivalence 

In this context, it has been known for some time that the logistic distribution is 
very similar to the normal distribution because conditional on θ, 1) both distri-
butions are determined by a location and a scale parameter, and 2) both distri-
butions are bell shaped. At the same time, the logistic distribution has heavier 
tails than the normal distribution. The question then arises of how well G(η) can 
be approximated with a scaled version of the logistic distribution ( )F Dη =  

( )( )*F Da bθ − , where D is known as the scaling constant. This produces the 
scaled discrimination *a a D= , which is purportedly interpretable in the nor-
mal metric. Note also that *D a a= , so that D can be conceptualized as the ra-
tio of the logistic-metric discrimination to the normal-metric discrimination. 

Several informal suggestions have included D = 1.814 [2] and D = 1.700 [3]. 
Haley [4] provided the constant predominately used today in IRT, D = 1.702 
(usually rounded to 1.7), which is obtained by minimizing the maximum absolute 
difference over η1. Savalei [1] proposed a scaling constant based on Kullback- 

 

 

1Camilli [5] also provided an illustration of how the minimax estimator is estimated; however, the 
formula for the normal ogive was incorrectly written Equation (3). A note by Camilli [6] did not cla-
rify this issue. However, Equation (4) in Camilli [5] is correct, so the error did not affect the ultimate 
outcome. 
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Leibler (KL) information by minimizing the function 

( ) ( ) ( ) ( ), ln d ,K g f g x f Dx g x x=   ∫                (4) 

where g and f are the normal and logistic density functions, and integration is 
over 1

 . This results in the scaling constant D = 1.749. More recently, Pingel 
[7] considered a number of measures of accuracy of scaling the logistic to the 
normal: 1) a minimax estimator labeled as 

∞
⋅ , and 2) the root mean square 

difference 
2⋅ . He showed that relatively similar values of D are obtained with 

either F G−  or f g− , where f and g are the corresponding density func-
tions. For example, f g

∞
−  obtains D = 1.6182. Minima of the expected value 

of other distance functions provide similar results. For example, minimizing the 
average absolute difference leads to D = 1.701. With this panoply of scaling op-
tions, the question arises “Which one is best?” The scaling constant D = 1.749 
seems to work the best, but this answer is somewhat misleading as shown below. 

4. Simulation Study 

While it is theoretically established than the use of a scaling constant results in a 
close match between F and G, the current paper provides empirical verification, 
and a new result. For this purpose, a simulation study was designed to compare 
estimates obtained with a logistic model (2PN) for data generated with a normal 
model (2PL). In theory, the estimated 2PL parameters scaled with D should be 
very close to the known 2PN parameters. In addition, the ability estimates of θ 
obtained with the 2PL model should closely match those of the known 2PN 
model. The steps in the simulation were as follows: 

1) For 100 items, generate item parameters with discrimination with a ~ log-
normal (0.25, 0.25) and intercepts b ~ normal (0, 0.85). These generating distri-
bution give adequate approximations to observed empirical distributions of item 
parameter estimates.  

2) For 100,000 persons, generate ability parameters with θ ~ normal (0, 1). A 
large sample size is used to minimize the effects of estimation errors on the es-
timation of a scaling coefficient. 

3) Estimate 2PL model parameters (a, b, θ) using the EM algorithm with 61 
quadrature points, and 

a) Compare â  to the normal generating value of a for each item. If the scal-
ing constant is accurate, it should be the case that ˆD a a∗≈  for all items. 

b) Compare b̂  to the normal generating value of b for each item 
c) Compare θ̂  to the normal generating value of θ for each person 
The idea here is to obtain the ratio of the estimate of the 2PL a to its normal 

generating parameter. This ratio is the empirical scaling value D. This process 
should reveal which of the proposed scaling values is most accurate. Note that 
the b and θ parameters do not need to be scaled; their metric is typically defined 
by the identification restriction θ ~ normal (0, 1), which is employed in many 

 

 

2Pingel [7] also showed that the approximation error can be decreased by an order of magnitude 
when F is approximated by a t distribution. 
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IRT software packages.  
For the purpose of this simulation, the R software was used to randomly gen-

erate item responses ijY  by (a) computing ( )ijG η  in Equation (1) from simu-
lated parameters obtained from steps 1 and 2 above, (b) drawing a uniform ran-
dom variate U[0, 1], and (c) setting 1ijY =  if ( )ijU G η<  and 0ijY =  other-
wise. Parameter estimates for the 2PL model were obtained using flexMIRT [8]. 
Person parameters for the 2PL model were estimated with the EAP method, 
which is the average of the posterior distribution of θ. 

5. Results 

To compare discriminations, the ratio was taken of the logistic estimate â  to 
its normal generating parameter a* for each item. In theory, this ratio should be 
close to D for all items. Across items, the median ratio was 1.751 and the mean 
ratio was 1.756. This is very close to Savalei’s [1] ratio of D = 1.749. However, 
the minimum ratio across items was 1.666, and the maximum 2.031. The unex-
pected finding here is that the ratios vary across items, and this variation is not 
due to sampling error: the standard error of a is about 0.01 - 0.03 units across 
items for the current sample size. The ratio tends to increase slightly as the 2PN 
generating value of a increases, but also increases more noticeably for tail values 
of b as shown in Figure 1. In the IRT context, it is therefore more appropriate to 
think of D as an average scaling value rather than a scaling “constant.”  

The b parameter estimates on average differed from the 2PN generating values 
by 0.002 on a unit normal scale, with a minimum difference of −0.021 and a 
maximum difference of 0.062. This indicates the 2PL IRT model provides esti-
mates that are empirically very similar to those of a 2PN model. To study the  

 

 
Figure 1. Plot of â a  against item difficulty b for simulation study. 
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ability parameter θ, estimated values were regressed on 2PN generating values. 
This resulted in an intercept of −0.003 and a slope of 0.981. A linear correlation 
of r = 0.989 was obtained. The plot (not shown) provided no evidence of nonli-
nearity.  

The empirical conclusion based on these results is nearly the same as the 
theoretical expectation: there is little difference between the 2PN and the scaled 
2PL estimates of item parameters for items having nonextreme values of b. In a 
simulation not shown, this result was also verified for IRT models for partial 
credit data, using the logistic model [9] to approximate the normal model [10]. 
However, the scaling becomes less accurate as |b| increases. 

6. Discussion 

So far, this paper has omitted consideration of the most fundamental question: 
Why scale? The term “accuracy” implies the normal metric is the correct one for 
obtaining IRT parameters, but this fundamental assumption is rarely recognized 
let alone tested. The logistic function due to its heavier tails may even be prefer-
able in situations involving noisy data. Ironically, one could even argue that D−1 
should be used to scale 2PN item parameters to the logistic metric. In short, 
there is no necessary relationship between scaling and the accuracy of the IRT 
model. 

The best choice of scaling in logistic IRT models would be not to scale at 
all—an approach taken in some current IRT software packages such as flex-
MIRT. The sole rationale for scaling with D is to establish historical continuity 
in interpreting the magnitude of item parameter estimates. More than two gen-
erations have passed since Alan Birnbaum’s suggested use of scaling [11]. Dur-
ing this time, the psychometric community and other interested parties have 
grown accustomed to discrimination parameters scaled with D = 1.7 through 
thousands of technical reports and journal articles, and years of day-to-day work 
activities in large-scale assessment programs. However, it should be recognized 
that scaling does not reproduce the normal metric in all cases, the bias is syste-
matic, and scaling in increasingly popular multidimensional logistic models is 
awkward. Figure 1 also suggests that the use of D = 1.749 leads to an unaccepta-
ble degree of bias in the approximation if the difficulty of a test is not matched to 
examinee ability, i.e., if item difficulty parameters are not centered over average 
ability. The time for traditional scaling with D = 1.7 may be drawing to a close. 
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