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ABSTRACT 
 
The finite element method has been increas-
ingly adopted to study the biomechanical be-
havior of biologic structures. Once the finite 
element mesh has been generated from CT data 
set, the assignment of bone tissue’s material 
properties to each element is a fundamental 
step in the generation of individualized or sub-
ject-specific finite element models. The aim of 
this work is to simulate the inhomogeneous and 
anisotropic material properties of femur using 
the finite element method. A program is devel-
oped to read a CT data set as well as the finite 
element mesh generated from it, and to assign 
to each element of the mesh the material prop-
erties derived from the bone tissue density at 
the element location. Moreover, for cancellous 
bone in femoral neck and cortical bone in fe- 
moral stem, the principal orientations of trans- 
verse isotropy were defined based on the tra-
becular structures and the haversian system 
respectively. 
 
Keywords: Finite Element; Material Property; In-
homogeneous; Transverse Isotropy; Femur 
 
1. INTRODUCTION 

The determination of the mechanical stresses in human 
bones is of great importance in both research and clinical 
practice. Since the stresses in bones cannot be measured 
non-invasively in vivo, an effective way to estimate 
them is through the finite element (FE) analysis which is 
widely used in academic research and clinical applica-
tions, such as the theory of bone remodeling [1], the 
design of prosthesis [2] and the evaluation of facture risk 
[3]. In early period the methods used to get bone geome-
try and mechanical properties were inaccurate and some-
times highly invasive and destructive. It is well known 

that CT images can provide fairly accurate quantitative 
information on bone geometry based on high contrast 
between the bone tissue and the soft tissue around [4,5]. 
Moreover, it has been demonstrated that CT numbers are 
almost linearly correlated with apparent density of bio-
logic tissues [6]. Good empirical relationships have been 
established experimentally between density and me-
chanical properties of bone tissues [7,8]. 

In early studies, if a generic bone model was con-
structed, then the mechanical properties of the different 
bone tissues were usually derived from average values 
reported in published experimental studies [9]. For an 
individualized or subject-specific model, however, me-
chanical properties should be derived from CT data. It 
has been shown that the stress distribution of a bone is 
strongly related to the mechanical properties distribution 
in the bone tissue [10], and the mechanical properties of 
bone have been showed to depend on the subject, anat-
omic location, orientation, biological processes and time. 
Hence, it is important to find an effective method to 
properly map the material properties derived from CT 
data into finite element models. 

The CT data can be regarded as a three-dimensional 
scalar field (related to the tissue density) sampled over a 
regular grid. If the finite element mesh is generated 
starting from the same data, the mesh and the density 
distribution are perfectly registered in space. The only 
problem is how to account for this inhomogeneous dis-
tribution of material properties into the FE model. Many 
approaches were proposed in literature to perform this 
task [11,12,13,14,15,16,17,18,19]. However, these algo-
rithms only simulated the inhomogeneity of bone, and 
the isotropic material property assignment was adopted 
without considering the orientation of material. Since the 
bone material is widely recognized as being anisotropic 
rather than isotropic [8,20], the FE simulation of inho-
mogeneity and isotropy cannot reflect the actual charac-
teristics of bone structure. The aim of this study is to 
simulate the inhomogeneous and anisotropic material 
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properties of femur with finite element method. 

2. MATERIALS AND METHODS 

2.1. CT Data 

The CT dataset of a man’s femur is obtained from the 
public database which is created by VAKHUM project 
(http://www.ulb.ac.be/project/vakhum/index.html). The 
use of the data is free for academic purposes. The CT 
data are in standard DICOM formats. The slice thickness 
is 1mm in the epiphysis and 3mm in the diaphysis. 

2.2. Finite Element Mesh 

The finite element mesh of the right femur (Figure 1) 
generated from the corresponding CT dataset above is 
also obtained from the VAKHUM project. It is in a 
Patran Neutral file format. The mesh is made of linear 
hexahedral elements and is generated using the HEXAR 
(Cray Research, USA) automatic mesh generator that 
implements a grid-based meshing algorithm. The model 
mesh is spatially registered with the CT dataset. The 
complete finite element mesh consisted of 9,294 nodes 
and 7,934 elements. 

2.3. The Procedure of Material Property  
Assignment 

2.3.1. Calculation of the Average CT Number 
( HU ) 

For each element of the mesh, an average HU value is 
calculated with a numerical integration as follows [17]: 
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Figure 1. (1) The finite element mesh of 
femur (2) The geometrical model of femur. 

where  indicates the volume of the element n, (x,y,z) 

are the co-ordinates in the CT reference system, (r,s,t) 
are the local co-ordinates in the element reference sys-
tem, and J represents the Jacobian of the transformation. 
The integrals in (1) are evaluated numerically, and the 
order of the numerical integration can be chosen by us. 
The value of HU(x,y,z) in a generic point of the CT do-
main is determined by a tri-linear interpolation between 
the eight adjacent grid points’ values. 

nV

2.3.2. Calibration of the CT Dataset and    
Simulation of the Inhomogeneity 

CT numbers are dependent on many factors related to 
the specific exam. It is assumed that the relationship 
between CT numbers and apparent density is linear. A 
calibration phantom with bone-equivalent (solution of 
hydroxyapatite) insertions of different densities, embed-
ded in a water-equivalent resin-based plastic (The Euro-
pean Spine Phantom, [21]) was used to obtain the pa-
rameters of the linear regression. The calibration equa-
tion is then: 

nn HU                 (2) 

where n  is the average density assigned to the ele-

ment n of the mesh, nHU  is the average CT number 
and   and   are the coefficients provided by calibra-
tion. 

Referenced values for calibration are selected for ap-
proximate calibration from [16]: Radiographic and ap-
parent density of water (0 HU, 1 g/cm3); Average radio-
graphic density in the cortical region and the apparent 
density value for cortical bone (1840 HU, 1.73 g/cm3). 

With the steps above, each element of the mesh is as-
signed different apparent density. Therefore, this proce-
dure makes the simulation of inhomogeneity of femoral 
material come true. 

2.3.3 The Density-Modulus Relationship and the 
Simulation of Anisotropy 

Various empirical models of the relationship between 
Young’s modulus and the apparent bone density can be 
found in the literatures [7,8]. The relations are generally 
reported: 

c
n nE a b               (3) 

where nE  is the average Young’s modulus assigned to 

the element n of the mesh, n  is its apparent density 

and a, b and c are the coefficients. 
In most of these works [11,12,13,14,15,16,17,18,19], 

the isotropic material property assignment was adopted 
without considering the direction of material property as 
its simplicity. Many previous studies had clearly demon-
strated the anisotropic behavior of bone, and the deter-
mination of bone material properties as a function of 
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direction is the essential requirement [22]. The axial 
direction is defined according to the Haversian osteons 
of the cortical bone and according to the spatial main 
direction of the trabecular structures of cancellous bone. 
The relationship between bone material properties and 
apparent density is given by [8]: 

coincide with the structure of bone. 
As we know, bone structure is customarily recognized 

as confirming to ‘wolff’s law’ which is essentially the 
observation that bone changes its external shape and 
internal architecture in response to stresses acting on it. 
Thus, the structure of bone (or material orientation) 
strongly coincides with the principal stress track. The 
directions of the femoral neck and stem can be approxi-
mately regarded as stress track in femur. 

 Cortical bone:  
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    (4) Femoral bone can be recognized as transversely iso-

tropic material. According to the cortical bone structure 
in femoral stem and cancellous bone structure in femoral 
neck, the principal material orientation of cancellous 
bone is defined by the direction of the trabecular struc-
tures and the principal material orientation of cortical 
bone by the direction of the haversian system. 

 Cancellous bone: 
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     (5) 

3. RESULTS 
where E is the Young’s modulus (MPa), G the shear 
modulus (MPa),   is the apparent density (g/cm3),   

the Poisson’s ratio. All parameters are set in elemental 
Cartesian coordinate system of Patran (MSC, USA).  

3.1. Material Properties Distribution 

This material assignment procedure produces 165 dif-
ferent material cards. The distribution of the material 
properties in femur are shown in Figure 2. The maxi-
mum and minimum values for apparent density and elas-
tic modulus are listed in Table 1. The maximum values 
are corresponding to the Mat-1 and the minimum to 
Mat-165 as a result of the definition in the program. The 
numbers of elements for each material property card are 
showed in Figure 3. 

This procedure may, theoretically, lead to a different 
material card (Mat) for each element of the mesh, which 
may result in computational problems with those codes 
that can handle a limited number of materials. We can 
reduce the number of materials by choosing a E  
threshold. Then the maximum computed value of the 
elastic modulus,  is assigned to the material Mat-1. 

All the elements with are assigned the 

material Mat-1. Mat-2 is characterized by the maximum 
E of the remaining elements and so on until the whole 
set of the model material is defined. In this paper, the 
threshold 

maxE

)( max EEE 

E  is taken as 50 MPa. 

3.2. The FE Simulation of Transversely   
Isotropic Material Property 

Figure 2 only showed the inhomogeneous distribution 
of material properties. After separating the femoral stem 
and neck, the principal material orientations for elements 
in neck and stem are defined respectively. Figure 4 il-
lustrates the vector form of the principal orientations in 
femoral neck. Figure 5 presents the vector form of the 
principal orientations in femoral stem. 

A program was developed to read the original data in-
cluding CT data, finite element mesh data and some pa-
rameters and then to implement the procedure described 
above. In this way, each element is assigned different 
density, elastic modulus and Poisson’s ratio. At last, a 
finite element mesh provided with the assigned material 
properties is written out in a Patran Neutral file format. 4. DISCUSSION 

Every element of the finite element model has its own 
element coordinate system used to determine the mate-
rial’s principal axe of this element. As the element coor-
dinate systems vary from element to element, the prin-
cipal material orientations need to be defined so as to 

As is well-known, it is of significance to explore the 
biomechanical behavior of bone. FE analysis has been 
adopted by many researchers based on CT data that can 
provide useful information on the geometrical topology 

 
Table 1. Material properties of femur (the unit for density is g/cm3, and for elastic modulus is MPa). 

Material properties Maximum Minimum 

  1.787 0.686 

E1 (E2) 5755.799 591.512 

E3 12410.846 1026.157 
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Figure 2. Right femur with different material properties 
mapped on it, observed from different angles of view. 

 

 
Figure 3. The number of elements for each material property card. 
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Figure 4. The principal material orientations 
in femoral neck showed in vector form (the
purple arrows). 

Figure 5. The principal material orientations in 
femoral stem showed in vector form (the pur-
ple arrows). 

 
and material properties of bone. However, how to con-
struct accurate FE models that reflect the real material 
properties of bone remains a problem. This work is 
aimed to simulate the inhomogeneity and anisotropy of 
the femur in order to make the FE material model more 
accurate. 

As the relationship between density and Young’s 
modulus is power law, different results will be produced 
when firstly averaging on each element the HU field and 
then calculating the element Young’s modulus, or, on the 
contrary, averaging Young’s modulus derived from HU 
value. It has been demonstrated that the latter can 
achieve more accurate results [18]. In the present work, 
CT number over each element volume is averaged first 
and then the Young’s modulus is calculated with the ex-
periential relationships. However, it has no influences on 
the FE simulation of anisotropy. 

Different algorithms are adopted to assign material 
properties into elements of the mesh model [17]. Most of 
these algorithms are based on the assumption that the 
variability of the CT numbers within the volume of each 
element can be neglected. All differences rely on how 
the average value of each element is computed. As we know, inner of the femur is marrow cavity that 

contains marrow or air. However, the mesh model in this 
study does not take into account the endosteal surface. 
Thus, the elements that belong to marrow cavity are as-
signed density and elastic modulus as well. 

Some simple methods are introduced to assign to each 
element the value by averaging the CT numbers of the 
CT sampling grids which are nearest to corresponding 
nodes of element or by averaging the CT numbers of the 
eight CT sampling points surrounding the element cen-
troid [10,15]. These methods may produce inaccurate 
results when the element size is significantly larger than 
the spacing of the CT sampling grid. 

FE simulation of complete anisotropy of femoral bone 
is impossible at present. Thus, femoral material is sim-
plified as being transversely isotropic in this study. It has 
been demonstrated that the structure of femur is highly 
variable, especially to cancellous bone. Thus, a clear and 
exact definition of the principal axes of transversely 
isotropy is impossible. In this study, we only separated 
the femoral neck and stem. Then, the principal orienta-
tions of neck were defined on the basis of the direction 
of trabecular structure and the principal orientations of 
stem on the basis of the direction of harversian system. 
As the structure of femur (or material orientation) coin-
cides with the track of principal stress, the orientation 
definition based on pass of stress is reasonable. 

A second approach that can avoid those shortcomings 
determines all CT sampling points that fall inside the 
element volume and assigns to the element the average 
of these values [16]. However, this method may not 
produce satisfactory results when the elements are of 
comparable dimension or smaller than the voxel size. 

An advanced method adopted in our study estimates 
the average CT numbers by numerical integration over 
the element volume [17]. In this case, the dimension of 
the finite element is not influent on the accuracy of the 
average CT number estimation since the calculation of 
CT numbers takes into account the spatial distribution of 
the CT number in the eight surrounding CT lattice verti-
ces. 

Muscle, as well as bone, is one of the most important 
parts of the biologic body. Musculoskeletal loading in-
fluences the stresses and strains within the human bone 
and thereby affects the processes of bone modeling and 
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remodeling. Therefore, three-dimensional FEA for mus-
cle is also of great importance. Assignment of the mate-
rial properties to muscle FE mesh using the method in 
this paper may encounter some difficulties as the muscle 
belong to soft tissue that do not have steady shape. Thus, 
further research may be focused on the assignment of 
muscle material property. 
Although the inhomogeneous and transversely isotropic 

material properties simulated in this work are theoreti-
cally close to that of real femur, experimental validation 
need be performed in the future. 
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