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Abstract 
Miss distance is an important parameter of assessing highly maneuvering tar-
gets interception. Due to the noise-corrupted measurement and the fact that 
not all the state variables can be directly measured, the miss distance becomes 
a random variable with a priori unknown distribution. Currently, such a dis-
tribution is mainly evaluated by the method of Monte Carlo simulation. In this 
paper, an analytic approach is obtained in discrete-time controlled system with 
noise-corrupted state information. The system is subject to a bang-bang control 
strategy. The analytic distribution is validated through the comparison with Monte 
Carlo simulation.  
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1. Introduction 

With the emergence of maneuverable tactical ballistic missiles (TBM) since the 
1991 Gulf War, great challenge is put on the air-defense system. Successful inter-
ception of such a highly maneuvering target requires a very small miss distance 
or even direct hit [1] [2]. Due to the bounded missile controls, non-Gaussian 
noise and system’s nonlinearity, the certainty equivalence theorem (CEP) does 
not hold for the terminal guidance [3]. However, when the relative state between 
pursuer and evader is observable, the partial separation theorem still holds, when 
the estimator can design separately from guidance law [4]. 

The homing guidance of an interceptor missile is a stochastic optimal control 
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problem with the objective to minimize the expected value of the miss distance. 
Under the assumption that perfect state information is available, a series of de-
terministic control strategies ( , ( ))u u t z t=  ( ( )z t  means ZEM, zero-effort miss 
distance and its terminal value is actual miss distance itself) are proposed, among 
them are bang-bang strategies, as well as various linear, saturated linear strate-
gies [5] [6] [7]. However, in practical application perfect state information could 
not hold, on the one hand, there is a certain error in the observed information of 
the sensor, and even if the above measurement is very accurate, the target acce-
leration (especially lateral acceleration) cannot be directly measured and only re-
lays on the means of state estimation; On the other hand, the guidance law like OGL 
(Optimal Guidance Law) unconstrained the range of missile acceleration, which 
is bounded in reality. These facts impede significantly the implementation of 
theoretically robust transferring strategies, in order to use these noise-corrupted 
measurements as a basis of a feedback control, an estimator, restoring and fil-
tering the state variables, becomes an indispensable component of control loop. 
Therefore, the control function ( , ( ))u t z t  receives, instead of the accurate value 
of ( )z t , a random output ˆ( ) ( ) ( )z t z t tη= + , where ( )tη  is the estimation error 
of ZEM. As a consequence, the miss distance becomes a prior unknown variable.  

To guarantee guidance performance and evaluate the extent of performance 
deterioration by using such a stochastic data, it is necessary to obtain the distri-
bution of miss distance. In current practice, such a distribution is acquired by a 
large set of Monte Carlo simulations with system dynamic, estimator/control 
strategy combination, specific disturbance and noise model given. Unfortunately, 
this method is very suitable for validate purpose while not proper in the stage of 
system design. With the assumption that the distributions of ( )tη  and initial 
state 0z  are given, Glizer and Shinar [8] have obtained the recursive formula 
for the distribution of miss distance in discrete-time controlled system with dis-
turbance and noise corrupted measurements under a linear saturated control 
strategy. In this paper, a recurrence formula for the distribution of 1nz +  is ob-
tained under a bang-bang control strategy. The use of bang-bang control strate-
gy is motivated by its feature that the maximum capture zone of missile would 
reach. At the same time, the analytic distribution of ( )tη  in this case is also 
acquired. 

The rest of the paper is organized as follows: Section 2 formulates the estima-
tion problem of terminal guidance for highly maneuvering target interception. 
Section 3 is devoted to the derivation of MD’s distribution. Section 4 validates 
the above derivation by comparing the results with Monte Carlo simulations. 
Conclusions are presented in the last section. 

2. Problem Formulation 
2.1. Continuous-Time Motion Model 

Consider the planar interception scenario—a pursuer (interceptor) and an evad-
er (target), as shown in Figure 1. In what follows, let P  and E  denote the pursuer 
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Figure 1. Planer interception geometry. 

 
and evader respectively, and we make the following assumptions: 

1) The control dynamics of P  and E  are expressed by a first-order transfer 
function with time constants pτ  and eτ  respectively; 

2) The velocities of P  and E  are constant, denoted by pV  and eV  respec-
tively; 

3) The lateral accelerations of P  and E  are both bounded, with maximum 
values max

pa  and max
ea  respectively. 

In Figure 1, the X  axis of coordinate system is aligned with the initial line 
of sight (LOS); the Y  axis is normal to X  axis; ( , )p px y , ( , )e ex y  are cur-
rent coordinates of the P  and E ; pφ  and eφ  are respective aspect angles 
between the velocity vector of the players and X  axis. Note that these aspect 
angles satisfy such conditions ( sin , sinp p e eφ φ φ π φ= = − ), the trajectories can 
linearize along the initial LOS. Assuming a constant closing velocity, let the ini-
tial time 0 0st =  then the final time of the interception can be easily computed 
for a given initial relative distance 0r  along with LOS, i.e. the final time is as 
follows 

0

cos (0) cos (0)f
p p e e

r
t

V Vφ φ
≈

−
                  (1) 

Let denote the state vector 1 2 3 4[ ( ), ( ), ( ), ( )] [ ( ), ( ), ( ), ( )]T e p T
y yx t x t x t x t y t y t a t a t= = x , 

and for brevity, the time t  is omitted hereafter. Under above assumptions, the 
interception takes place between [0, ]ft t∈  and the dynamics of interception has 
a linear form: 

1 2 1

2 3 4 2

3 3 3

4 4 4

, (0) 0,
, (0) (0) (0),

( ) / , (0) 0,
( ) / , (0) 0,

e e p p
c
e e
c
p p

x x x
x x x x V V
x a x x
x a x x

φ φ
τ
τ

= =
= − = −
= − =
= − =









           (2) 
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where 1 e px y y= −  is the relative distance between P  and E  normal to LOS; 

2x  is the relative lateral velocity; 3x  and 4x  are the lateral accelerations of P  
and E ; c

pa  and c
ea  are the commanded accelerations of the P  and E  re-

spectively , and satisfy 
max

max

, | | 1
, | | 1

c
p p
c
e e

a a u u
a a v v

= ≤
= ≤

                    (3) 

The dynamic model can be rewritten as a state vector form 

1 2 2, (0) (0, (0),0,0)TA u v x= + + =x x B B x            (4) 

where 

max
1 2

max

0 1 0 0 0 0
0 0 1 1 0 0

1 00 0 0 , ,

10 0 0 0

e
e

p e

p
p

A a
a

τ
τ

ττ

      −          −    = = =           −          

B B        (5) 

By using the scalarizing transformation, the planar interception problem will 
reduce to a scalar one. In this case, the system variable in the interceptor is ( )z t , 
zero-effort miss distance, which means the miss distance acquired with no con-
trol effort until the final time ft  reached. It can be formulated as 

( ) ( , ) ( )T
fz t t t t= ΦD x                       (6) 

where T[1,0,0,0]=D , ( , )ft tΦ  is the state transition matrix and subjects to the 
original homogeneous system A=x x , 

( )( , ) fA t t
ft t e −Φ =                         (7) 

Therefore, the zero-effort miss distance is 

( ) ( ) ( )Tz t t t= g x                         (8) 

where T
1 2 3 4( ) [ ( ), ( ), ( ), ( )]t g t g t g t g t=g , with 

{ }
{ }

1

2

( )/2
3

( )/2
4

( ) 1
( )

( ) ( ) / 1

( ) ( ) / 1

f e

f p

f

t t
e f e

t t
p f p

g t
g t t t

g t e t t

g t e t t

τ

τ

τ τ

τ τ

− −

− −

=
= −

= + − −

= − + − −

              (9) 

The zero-effort miss distance varies in accordance with the following differen-
tial equation: 

1 2 0 0( ) ( ) , ( )z h t u h t v z t z= + =                 (10) 

where 

{ }( )/max
1( ) ( ) / 1f pt t

p p f ph t a e t tττ τ− −= − + − −            (11) 

{ }( )/max
2 ( ) ( ) / 1f et t

e e f eh t a e t tττ τ− −= + − −             (12) 
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It is assumed that the control is given by a bang-bang strategy 
( , ) { ( )}u t z sign z t=                       (13) 

where 
1, 0

( )
1 0

x
sign x

x
>

= − <
                     (14) 

2.2. Discrete-Time Estimation Problem 

Define the division of interval [0, ]ft : 0 10 ... N ft t t t= < < < = , where 1n nt t t+ − = ∆ , 
0,1,..., 1n N= − . For the sake of simplicity, it is assumed that the system is dis-

turbance free, that is 0v = , then the equivalent discrete-time Equation of (8) 
is 

1n n n nz z b u+ = +                        (15) 

where 1( )n nb h t t= ⋅∆  and the control  
( )n n nu sign z η= +                      (16) 

In our previous work, we have acquired the recursive expression of the ZEM 
estimation error distribution. It can be reached that nη  is subject to Gaussian 
distribution at every time with mean nµ  and variance 2

nσ , i.e., 2~ ( , )n n nNη µ σ . 
In this case, nµ  and 2

nσ  satisfy 

1 1 1( )T
n n n nI K Hµ + + += − Φg ξ                     (17) 

{ }2 T T
1 1 1 1 1 1 1 1( )( )( )T T

n n n n n n n n n nI K H Q I K H K R Kσ + + + + + + + += − ΦΣ Φ + − +g g   (18) 

where nK  is the current Kalman gain; H  is the measurement matrix; nQ  
and nR  are the covariance matrix of process noise and measurement noise re-
spectively; nξ  and nΣ  are the mean and covariance matrix of state estimation 
error, which satisfy 

1 1 1 1 0 0ˆ{ } ( ) ,n n n n nE I K H+ + + += − = − Φ = ξ x x ξ ξ x            (19) 

{ } T T
1 1 1 1 1

T
1 1 1 0 0

ˆcov ( )( )( )

,
n n n n n n n

n n n

I K H Q I K H

K R K P
+ + + + +

+ + +

Σ = − = − ΦΣ Φ + − +

Σ = 
x x

    (20) 

Therefore, the initial ZEM estimation error satisfies 2
0 0 0~ ( , )Nη µ σ  with 

0 0 0
Tµ = ⋅ g x  and 2

0 0 0 0
T Pσ = ⋅ ⋅g g  where 0 (0)=g g . Once the initial state of es-

timator ˆ (0)x  is given, the distribution of 0z  can be computed as  

( )2
0 0 0 0 0ˆ~ ,Tz N µ σ⋅ −g x . 

3. Probability Density Function of zn+1 

From (15) and (16) it can be seen that nz  and nu  is dependent, hence the con-
volution formula cannot be used when calculating the distribution of 1nz + . The 
cumulative distribution of 1nz +  satisfies 

1 1 1 2( ) ( ) ( 0) ( ) 0)
nz n n n n nF x P z x p P z p P zη η
+ += < = + > + + <        (21) 

where 

1 ( | 0)n n n np P z b x z η= + < + >                   (22) 
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2 ( | 0)n n n np P z b x z η= − < + <                   (23) 

By using the formula for the probability of the product of dependent event, we 
can obtain 

1
( , 0)

( 0)
n n n n

n n

P z b x zp
P z

η
η

+ < + >
=

+ >
                  (24) 

then 

1

0

( ) ( )

( )

n

n n

n n

x b

z
y

z

f y f s dsdy
p

f y dy

η

η

− ∞

−∞ −
∞

+

=
∫ ∫

∫
                   (25) 

Note that the random variables nz  and nµ  are independent, therefore 

( ) ( ) ( ) ( ) ( )
n n n n n nz z zf y f y f y f y s f s dsη η η

∞

+
−∞

= ∗ = −∫            (26) 

where the symbol “∗ ” means convolution, then 

1

0

( ) ( )

( ) ( )

n

n n

n n

x b

z
y

z

f y f s dsdy
p

f y s f s dsdy

η

η

− ∞

−∞ −
∞ ∞

−∞

=
−

∫ ∫

∫ ∫
                  (27) 

Similarly, the following formula can be obtained 

2

0

( ) ( )

( ) ( )

n

n n

n n

x b y

z

z

f y f s dsdy
p

f y s f s dsdy

η

η

+ −

−∞ −∞
∞ ∞

−∞

=
−

∫ ∫

∫ ∫
                 (28) 

By substituting (27), (28) into (21) the following formula can be obtained 

1
( ) ( ) ( ) ( ) ( )

n n

n n n n n

x b x b s

z z z
s

F x f s f y dy ds f s f y dy dsη η+

− +∞ −

−∞ − −∞ −∞

   
= ⋅ + ⋅   

   
∫ ∫ ∫ ∫     (29) 

for 0nb ≥ , by simplifying (29) 

1
( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

n n

n n n n n

n

n n
n

n n

n n n n
n

x b x b s

z z z
s

x b s

z
x b

x b x b s

z z
x b

F x f s f y dy ds f s f y dy ds

f s f y dy ds

f s f y dy ds f s f y dy ds

η η

η

η η

+

− −∞ −

−∞ − −∞ −∞

+ −

− −∞

− +∞ −

−∞ −∞ − −∞

   
= ⋅ + ⋅   

   
 

+ ⋅ 
 

   
= ⋅ + ⋅   

   

∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ∫ ∫

    (30) 

from the characteristic of probability density function ( ) 1
n

f y dyη

∞

−∞

=∫ , then 

1
( ) ( ) ( ) ( )

n n

n n n n
n

x b x b s

z z z
x b

F x f s ds f s f y dy dsη+

− + −

−∞ − −∞

 
= + ⋅ 

 
∫ ∫ ∫          (31) 

Similarly, for 0nb <   
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1
( ) ( ) ( ) ( )

n n

n n n n
n

x b x b

z z z
x b s

F x f s ds f s f y dy dsη+

+ − ∞

−∞ + −

 
= + ⋅ 

 
∫ ∫ ∫          (32) 

By differentiating (31) and (32) with respect to x , a same expression for the 
probability density function of 1nz +  can be acquired 

1
( ) ( ) ( ) ( ) ( ) ( )

n n

n n n n n n

x b x b

z z n z n z nf x f x b f x b f y dy f x b f y dyη η+

− − − +

−∞ −∞

= − + + ⋅ − − ⋅∫ ∫  (33) 

The probability density function ( )
Nzf x  is computed by applying the recur-

rence Formula (33) N  times.  

4. Numerical Simulation 

To validate the correctness of theoretical derivation in Section 3, this experiment 
compares the results of Monte Carlo simulation with the analytic results through 
a typical instance of TBM interception, where the simulation parameters are 
listed in Table 1. The number of Monte Carlo simulation is set to be 1000. In 
this interception scenario, the evader is assumed to move with maximum veloc-
ity eV , and its command acceleration is subject to uniform distribution between 
−0.3 g and 0.3 g. The initial state estimation errors of 1(0)x , 2 (0)x  and 3(0)x  
for the estimator are set to be 10 m, 5 m/s and 1 g respectively. Cumulative dis-
tribution of the miss distance | |Nz  is calculated as 

| | ( ) ( ) ( )
N N Nz Z ZF x F x F x= − −                  (34) 

where ( ) ( )
N N

x

Z zF x f y dy
−∞

= ∫ . Figure 2 shows the result, it is seen that two curves 

match very accurately. 
 

 
Figure 2. Theoretical and simulative distribution functions of | |Nz . 
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Table 1. Simulation parameters. 

Parameter Type Parameter Description Units Value/Range 

Pursuer and  
Evader’s  

Parameters 

pV  m/s 2300 

eV  m/s 2700 

max
pa  g 30 

max
ea  g 15 

pτ  s 0.2 

eτ  
s 0.2 

Sensor  
Parameters 

t∆  s 0.01 

θσ  mrad 5 

aσ  m/s2
 1 

Scenario  
Parameters 

0r  km 15 

(0)pφ  deg uniform distribution (−10,10) 

(0)c
pa

 
g 0 

(0)eφ  
deg / 2π> , satisfies Collision Triangle 

(0)c
ea  g uniform distribution (−0.3,0.3) 

Estimator  
Parameters 

initial state - Tˆ (0) [0,0,0,0]=x  

initial estimation error - T(0) [0,0,0,0]=x  

initial covariance matrix - 0 2

100 0 0 0
0 25 0 0
0 0 g 0
0 0 0 0

P

 
 
 =
 
 
 



 

5. Conclusions 

In this paper, an analytic method for evaluating the probability distribution of miss 
distance in discrete-time controlled system is proposed. In this problem, the sys-
tem is assumed without disturbance, and the control is realized by a bang-bang 
strategy. Results are proved by Monte Carlo simulations in the context of highly 
maneuvering target interception. 

The problem is mathematically nontrivial, because the evaluation of the sum 
of two dependent random variables is required. Conclusions in this paper allow 
to evaluate the distribution of miss distance without carrying out a large amount 
of Monte Carlo simulations. 
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