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Abstract 
Object classification in high-density 3D point clouds with applications in pre-
cision farming is a very challenging area due to high intra-class variances and 
high degrees of occlusions and overlaps due to self-similarities and densely 
packed plant organs, especially in ripe growing stages. Due to these applica-
tion specific challenges, this contribution gives an experimental evaluation of 
the performance of local shape descriptors (namely Point-Feature Histogram 
(PFH), Fast-Point-Feature Histogram (FPFH), Signature of Histograms of 
Orientations (SHOT), Rotational Projection Statistics (RoPS) and Spin Im-
ages) in the classification of 3D points into different types of plant organs. We 
achieve very good results on four representative scans of a leave, a grape 
bunch, a grape branch and a flower of between 94 and 99% accuracy in the 
case of supervised classification with an SVM and between 88 and 96% accu-
racy using a k-means clustering approach. Additionally, different distance 
measures and the influence of the number of cluster centres are examined. 
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1. Introduction 

The automatic analysis of 3D point clouds generated from plant data is an 
important step on the way to automatic phenotyping, where phenotypes refer to 
the observable attributes of a plant. Manual phenotyping is widely recognized to 
be labour-intensive and highly time-consuming, also known as the “phenotyping 
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bottleneck” [1]. A lot of effort is poured into the automatization of this task. 
3D scanners allow the generation of 3D data from plants in a non-invasive 

way, simply by moving the scanner around the object. Today, there are relatively 
cheap scanners providing a sufficient resolution to scan even fine stalks and 
being independent of the illumination, giving rise to the possibility to scan 
directly in the field. 

In this work, we concentrate on the classification of points into different plant 
organs, like stalks, leaves or berries. Based on this, it is possible to estimate yield 
or reconstruct the plant organs for the final phenotyping [2] [3]. The 
classification itself consists of two vital parts: the features used to describe the 
properties of a point (descriptor) and the method employed to assign them to 
plant organs (classification). Both choices are dependent on each other, as with a 
good descriptor, a rather simple classification method can be sufficient, while a 
sophisticated classification method can compensate for a more basic descriptor. 
As there is no benchmark data available in the field of precision farming, we 
apply well-known descriptors from the literature to four representative 
scenarios. To show the influence of the classification, results achieved with a 
supervised and an unsupervised classification method are presented. 

There are several studies examining the performance of descriptors in 
different contexts. In urban environments, 3D descriptors like the Signature of 
Histograms of Orientations (SHOT) were found to deliver the best results [4]. 
For object recognition, the Rotational Projection Statistics (RoPS) descriptor was 
reported as the best choice in [5], but in other studies, the Point-Feature 
Histograms (PFH) delivered good results as well [6] [7]. Regarding the matching 
of point clouds, recent publications rank the RoPS descriptor on top [8] [9], with 
[10] and [11] additionally reporting good results for the SHOT and 
Fast-Point-Feature Histogram (FPFH) descriptor, respectively. To the best of 
our knowledge, there is no detailed evaluation of descriptors applied to 3D data 
in the context of precision farming. This field provides several special challenges: 

1) Descriptors have to be able to deal with a high intra-class variance, i.e. 
different classes of plant organs need to be distinguished, but not instances of 
the same plant organ. E.g. a grape bunch usually includes berries of different 
sizes, all of which have to be assigned to the same class.  

2) Plants have such fine structures that it is usually not possible to obtain a 
perfect scan. Therefore, descriptors have to be robust to noise and holes in the 
data.  

3) While in other applications the objects can be expected to be well-separated 
from each other, a plant consists of several, smoothly connected components. 
The descriptor must be able to deal with regions with neighbouring points from 
different plant organs.  

In precision farming, different illumination conditions have to be expected, 
depending on whether the scan was taken inside or outside, day or night and 
under what weather conditions. This changes the colours of the plant organs. In 
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the case of grape bunches, depending on the cultivar, the berries often have a 
very similar colour as the leaves or, in early development stages, even the stem 
skeleton. Additionally, including colour information will likely influence all 
descriptors in the same way, leading to the same relations. Therefore, while 
colour information is generally available, we decided not to include it in the 
descriptors. 

In summary, this paper presents an experimental evaluation of five of the 
most prominent local shape descriptors for the classification of 3D point clouds 
in precision farming. In more detail, we examine the Point-Feature Histogram 
(PFH), Fast-Point-Feature Histogram (FPFH), Signature of Histograms of 
Orientations (SHOT), Rotational Projection Statistics (RoPS) and Spin Images 
with respect to their suitability to assign points in a 3D point cloud to different 
plant organs. Results on four scans including one representative scene each are 
presented. For the classification part, a supervised approach using an SVM is 
compared to an unsupervised k-means clustering. 

2. Descriptors 

In the literature, most descriptors can be divided into two classes: histogram and 
signature descriptors. Descriptors falling into the first class build histograms of 
the properties of neighbouring points. The second class uses the values of such 
properties directly as features. 

A variety of descriptors representing shape properties of surfaces in 3D point 
clouds were introduced in the context of object recognition [5] [7] and matching 
of point clouds [8] [9] [10] [11] over the last years. Point-Feature (PFH) and 
Fast-Point-Feature Histograms (FPFH) [7] [11] have both been shown to be 
suitable in the context of precision farming [2] [12] [13]. Still, in the literature 
they are often outperformed by other descriptors. An example for this is the 
Rotational Projection Statistics (RoPS) [5], a signature descriptor that we 
included in this work as well. The Signature of Histograms of Orientations 
(SHOT) [10] descriptor is chosen as a representative for a combination between 
signature and histogram descriptor. Finally, Spin Images [14] as an often used 
and very well known descriptor are included as a baseline in this work. 

All descriptors require the computation of normals. They are derived for each 
point using a Principal Component Analysis (PCA) based on the neighbours in a 
radius nr  around the point. A local reference frame makes the computation of 
the features invariant of the viewpoint. 

We used implementations from the Point Cloud Library [15]. 

2.1. Point-Feature Histogram (PFH) and Fast-Point-Feature  
Histogram (FPFH) 

The PFH [7] and its approximation, the FPFH [11], represent the local surface 
properties of a point p based on geometrical relations between p and its 
neighbours. 
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For the PFH, the properties of the surface spanned by a point p and its 
neighbours in a support radius r∈  are derived by computing the Darboux 
frame as local reference frame between all pairs of points in the neighbourhood. 
The difference between the normals is then expressed as a set of three angular 
features. The PFH is derived by binning every combination of these angular 
features into a histogram with a number of 3b  with b∈  bins representing a 
fully correlated feature space. 

The computation of the FPFH is similar, but instead of computing the angular 
features for every combination of points in the neighbourhood, a so called 
Simplified-Point-Feature Histogram (SPFH) is created containing the set of 
angular features computed only between the point and each of its neighbours. 
The FPFH is then derived by collecting the SPFHs of the point itself and those of 
its neighbours in a support radius r weighted by their Euclidean distance. 
Additionally, instead of using a fully correlated feature space, the angular 
features are binned into three separate histograms and concatenated. This 
significantly reduces the histogram size for the FPFH. 

Both PFH and FPFH are parametrized by the number of bins b and the 
support radius r. 

2.2. Signature of Histograms of Orientations (SHOT) 

The SHOT descriptor [16] is a combination of histograms and signatures. The 
space around each point p is divided into an isotropic spherical grid with 8 
divisions along the azimuth, 2 along the elevation and 2 along the radius. For 
each grid cell a histogram of normal orientations between p and the neighbouring 
points inside a support radius r inside the cell is computed, using a local 
reference frame determining the eigenvectors from a weighted covariance. 

We leave the parameters concerning the division of the support structure 
fixed, relying on the suggestion of the authors that this is a robust choice. This 
leaves the support radius r and the number of bins b in the histograms as 
remaining parameters. 

2.3. Rotational Projection Statistics (RoPS) 

Other than the descriptors used so far, RoPS [5] require a triangle mesh to work 
with. This mesh is generated following the approach for fast triangulation of 
unordered point clouds described in [17]. 

For each query point and its neighbours in a radius r, a local reference frame 
is computed to achieve rotational invariance. Several steps are applied to each of 
the axes of this reference frame:  

1) The local surface is rotated around the current axis; 
2) All points in the local surface are projected onto the XY, XZ and YZ planes; 
3) For each plane, statistical information about the distribution of the 

projected points is computed and concatenated in the final descriptor. 
The available parameters are the support radius r and the number of bins b in 

the final descriptor. 
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2.4. Spin Images 

A Spin Image [14] is a very well known histogram descriptor. For its derivation, 
a grid is spun around a reference axis and the number of points lying inside each 
grid cell in a radius r around the query point is added up to produce the 
descriptor. 

The Spin Image is parametrized by the support radius r and the size of the 
Spin Image b (representing width and height of the image). 

3. Experimental Setup  
3.1. Data Sets 

An experimental quantitative evaluation is performed on four different scans 
depicted in Figure 1, representing typical classification problems in precision 
farming. 

The first one (Figure 1(a)) contains a plant stalk with leaves. We try to 
differentiate between stalk and leaves. This data set mainly serves as baseline, as 
the shapes of stalk and leaves are different and thus, can be expected to be easy 
to distinguish. The scan contains a total of about 24 k points. 

The second scan (Figure 1(b)) is a 360˚ scan of a grape bunch and consists of 
about 180 k points. We classify the points into parts of a berry or the stem 
skeleton that is visible in between. This distinction is important to be able to 
estimate the yield of grapes [2] [16]. 

The third scan (Figure 1(c)) shows a grape branch, including stalks, leaves 
and a grape bunch, held by a supporting stick (about 100 k points total). We aim 
at a classification of the points in parts of the berry and the background, 
consisting of leaves, stalks and supporting stick. This is an extension of the grape 
scan. 

Finally, the last scan (Figure 1(d)) shows a flower represented by a number of 
about 47 k points. We aim at a classification of the points into parts of the petals  
 

 
(a)                   (b)                     (c)                  (d) 

Figure 1. The first scan (a) shows a plant stalk with leaves. It serves as baseline, as the 
shapes of stalk and leaves can be expected to be easy to distinguish. The second (b) and 
third (c) scan contain a single grape bunch and a more complex grape branch (including 
stalks, leaves and a grape bunch, held by a supporting stick), respectively. Both serve to 
evaluate the identification of berries for yield estimation of grapes. The final scan of a 
flower (d) is the most challenging one since petals and leaves reveal very similar shapes. 
The amount of blossoms in a field can be used as a early estimate of the yield.  
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and the background, including leaves and stalk of the flower. This is the most 
challenging data set, as the chosen descriptors rely on the shape to differentiate 
the objects, but petals and leaves are rather similar. The only difference is a small 
curvature in the petals, while the leaves are more smooth. In many cases, the 
number of blossoms in a field already can be used as an early estimate of the 
yield. Therefore, differentiating between them and the background would be an 
important step. 

We will refer to the scans as “Leaves”, “Grape”, “Branch” and “Flower” sets in 
the rest of the paper. All data sets were generated with the Artec Spider 3D 
scanner with a resolution of 0.1 mm and an accuracy of up to 0.05 mm [18]. The 
resolution was standardized using a voxelgrid filter with a voxel edge length of 
0.5 mm. Especially leaves and flower data set, but the others as well, contain 
holes and occluded parts are missing, as has to be expected when scanning under 
natural conditions. 

3.2. Classification 

The performance of the descriptors is compared based on one supervised and 
one unsupervised approach. 

For the supervised classification a Support-Vector-Machine (SVM) from the 
freely available svm-light library [19] with linear kernel, standard parameters 
and an inverse 10-fold cross validation was used. The training was done on one 
part of the data and validation of the model on the remaining nine parts. A gold 
standard was created manually for the leaves, branch and flower data set. This is 
very hard to do for grapes, as the stem structure is very fine and positioned 
between the berries. Therefore, we used a reconstruction approach based on 
sphere-RANSAC as presented in [2] with manual removal of erroneous berries 
for the grape data set. 

The unsupervised classification is based on a k-means++ approach [20] using 
either the Euclidean or the χ2-distance between histograms. As the RoPS 
descriptor does not represent a histogram and, thus, can contain negative values, 
a normalization to [ ]0,1  is carried out whenever the χ2-distance is applied. 

We vary the number of cluster centres k as former examination showed that 
in some cases, even when only two types of objects are present in the data (like 
in our case in the grape and leaves data sets) using more cluster centres can be 
beneficial, as it allows for a finer clustering [13]. For the branch and flower data 
set, there is the additional reasoning that three types of objects exist in the data 
(stalks, leaves and berries for the branch data set and stalks, leaves and petals in 
the flower data set). While those objects are to be separated into only two classes 
(berries/petals and background), clustering into multiple classes and then 
manually assigning the clusters to the two classes promises to be more robust. 

4. Results and Discussion 

We optimize the radius parameters for normals (rn) and support region (r) 
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separately for each data set using a grid search on the SVM approach. The 
resulting best parameter combinations can be seen in Table 1. 

In most cases, the tendency is the same for all parameters on the same data 
set. On branch, grape and leaves combinations of small rn and great r lead to the 
best results. The flower data set is a special case, as the petals only differ from the 
leaves on a small scale (petals are slightly curved while leaves are rather smooth). 
Therefore, some descriptors tend to deliver better results if r is chosen relatively 
small. Only FPFH and SHOT remain stable with small rn and great r over all data 
sets. 

Former studies showed that as long as the bin sizes are set to sufficiently great 
values and a fitting distance measure is chosen, the bin sizes do not significantly 
influence the result [4]. Therefore, we used fixed values of 33 bins for the FPFHs, 
125 bins for the PFHs, 352 for the SHOT descriptor, 135 for the RoPS and 153 
for the Spin Images. 

To judge the quality of the classification, the accuracy is computed on each 
data set, in the case of the SVM averaged over the 10 validation sets. 

4.1. Supervised Classification 

The accuracy achieved with a supervised classification is presented in Table 2. 
On all data sets, the descriptors achieved results of more than 85% and taking 

out the challenging flower data set even more than 90%. Still, differences are 
visible. 

The best results are achieved using the FPFHs. Even on the flower data set 
they yield more than 94% accuracy and up to over 99% on the branch data set.  
 
Table 1. The parameter combinations rn/r in mm leading to the best results with an SVM 
on the different data sets. 

Descriptor Leaves Grape Branch Flower 

PFH 1.5/6.0 1.0/5.0 0.5/5.0 0.5/2.5 

FPFH 2.5/6.0 1.0/5.0 1.5/5.0 0.5/5.0 

SHOT 1.5/6.0 1.0/5.0 1.5/6.0 0.5/5.5 

RoPS 0.5/6.0 1.0/4.0 0.5/4.5 1.0/1.5 

Spin Images 2.5/7.0 1.5/5.0 1.5/5.0 1.0/1.5 

 
Table 2. The average accuracy and standard deviation in percent achieved with an SVM 
on the different data sets. The best results are achieved with FPFHs (highlighted). 

Descriptor Leaves Grape Branch Flower 

PFH 96.00 ± 0.23 94.68 ± 0.05 95.91 ± 0.19 88.90 ± 0.20 

FPFH 96.87 ± 0.20 97.27 ± 0.06 99.20 ± 0.01 94.74 ± 0.15 

SHOT 96.38 ± 0.20 95.93 ± 0.03 96.71 ± 0.06 86.05 ± 0.26 

RoPS 94.57 ± 0.17 92.64 ± 0.08 93.79 ± 0.15 86.87 ± 0.16 

Spin Images 90.04 ± 0.21 94.35 ± 0.05 96.40 ± 0.04 88.29 ± 0.13 
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The other descriptors perform comparably, with the RoPS descriptor and the 
Spin Images leading to the worst results, but still close to the others. 

4.2. Unsupervised Classification 

The accuracy achieved using a k-means clustering approach with either 
Euclidean or χ2-distance is depicted in Figure 2 for the leaves and grape data set 
and Figure 3 for the branch and the flower data set for varying numbers of 
cluster centres. Again, the FPFH is at the top on all data sets, mostly delivering 
the best results of all descriptors. Additionally, it is very robust, showing only 
slight changes after reaching a sufficient number of cluster centres. It is also 
interesting that even when using the Euclidean distance that is usually not a 
good choice for histograms, the same quality of results can be achieved. The 
reason for this is that the FPFHs require only a small number of bins (33), 
making the problems with noise usually occurring with the Euclidean distance 
less prominent. 
 

 
(a)                                       (b) 

 
(c)                                       (d) 

Figure 2. The accuracy achieved using k-means clustering. The results on the leaves data 
set are presented in (a) and (b) and those on the grape data set in (c) and (d). The right 
side shows results achieved with Euclidean distance ((a), (c)) and with χ2-distance on the 
left ((b), (d)). The FPFHs are always on top and only the PFHs show slightly better results 
on the grape data set.  
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(a)                                       (b) 

 
(c)                                       (d) 

Figure 3. The accuracy achieved using k-means clustering. The results on the branch data 
set are presented in (a) and (b) and those on the flower data set in (c) and (d). The right 
side shows results achieved with Euclidean distance ((a), (c)) and with χ2-distance on the 
left ((b), (d)). While the FPFHs achieve comparable results to the PFHs on the flower data 
set, they outperform all other descriptors on the branch data set.  
 

The PFHs come close to the FPFHs in most cases, delivering better results on 
the flower data set, but worse on the branch data set. 

Both RoPS and SHOT descriptor and Spin Images as well show bad results 
when using few cluster centres, only for more than four to six they stabilize. But 
even then, they do not achieve the same quality as PFHs and FPFHs. An 
exception is the branch data set, where the Spin Images perform almost as good 
as the FPFHs, but requiring more cluster centres. 

All descriptors beside FPFHs and RoPS show a less robust behaviour when 
using the Euclidean distance compared to the χ2-distance. This suggests that for 
histogram descriptors with a greater number of bins (between 125 and 352) it is 
important to use a distance metric specific for histograms. 

On the leaves and grape data set, all descriptors achieve good results of more 
than 85%. The branch data set is more challenging, but FPFHs and Spin Images 
both achieve more than 90%. On the flower data set, SHOT and RoPS descriptor 
and Spin Images as well fall below 80%. Only PFHs and FPFHs are able to get 
close to 90%. 
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4.3. Discussion 

Both leaves and grape data set emerge to be rather simple classification problems, 
containing rather differently shaped plant organs. The branch data set provides a 
combination of the classes in the other data sets, being more challenging as more 
types of objects are included. The most problematic case is the flower data set. 

The choice of the radius parameters proves to be dependent on the application. 
While the normal radius rn can usually simply be set to a value equal or greater 
than the resolution, the support radius r has to be adjusted to the special 
requirements. If the plant organs that are to be distinguished vary only on a 
small scale, like on the flower data set, this has to be reflected by a smaller choice 
of r. 

As expected, choosing an SVM as more sophisticated classification method 
makes the choice of the descriptor almost irrelevant, as all of them achieve very 
good results. But for an SVM, a gold standard has to be prepared and depending 
on the use case, this can be hard (e.g. the labelling of the stem skeleton inside a 
grape bunch is almost impossible to do manually). Fortunately, even in the case 
of unsupervised classification FPFHs yield very good results. 

The evaluation on the representative sets shows a clear ranking for the 
SVM-based classification: FPFHs perform best, while the other descriptors all 
yield results similar to each other. In the case of the k-means clustering, we have 
on average the following ranking: FPFHs > PFHs > Spin Images > RoPS, SHOT. 
There are slight deviations, e.g., the Spin Images show the worst results of all 
descriptors on the Leaves data set, but reach almost the same quality of results as 
FPFHs on the Branch data set. The same effect can be seen in the SVM results. 
This suggests that the resolution chosen for the Spin Images in this paper is 
better suited to distinguish between round and flat or cylindrical shapes than 
between flat and cylindrical shapes only.  

All in all and despite the exemplary character of the evaluation the results 
clearly suggest using FPFHs as descriptor of choice when compared with SHOT, 
RoPS and Spin Images. 

In applications like scan registration, both RoPS and SHOT descriptor were 
found to outperform PFHs and FPFHs [8] [9]. In contrast to that, we strive to 
classify the whole set of points and assign them to the corresponding plant organ. 
This means that the descriptor has to be able to generalize over different sizes of 
plant organs. Additionally, scans can not be expected to be perfect, as they have 
to be taken in the field and for a high number of plants. Parts of the plant can be 
occluded by other parts and holes in the data are possible. The descriptor has to 
be robust against these issues. The good performance of the FPFHs and PFHs in 
our application together with the worse performance of RoPS and SHOT 
descriptors therefore hints that FPFHs and PFHs seem to have the generality 
that makes them less suitable for applications where different points on a similar 
shaped surface have to be distinguished, but optimal for point classification in 
the context of precision farming. 
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5. Conclusion and Future Work 

In this work, the performance of different descriptors and classification methods 
in the context of precision farming is shown, represented by four typical settings, 
including the distinction between leaves, stalks and berries. When using a 
supervised classification with an SVM, the FPFHs lead to the best result in a 
tight ranking with the other descriptors. The results achieved with unsupervised 
k-means clustering show an even more distinct tendency: while the performances 
of the other descriptors drop, FPFHs still yield results comparable to supervised 
classification. 

So far, we presented experimental results on one representative scan for each 
type of scan data. To validate our conclusions, the same experiments should be 
done on a much higher number of data sets. 

Furthermore, a reconstruction of plant organs with geometric primitives 
could be applied to the classified data to derive phenotypes e.g. for yield 
estimation directly from 3D input data. 
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