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Abstract 
Invariant measures of Markov chains in discrete or continuous time with a 
countable set of states are characterized by its steady state recurrence rela-
tions. Exemplarily, we consider transition matrices and Q-matrices with up-
per bandwidth n and lower bandwidth 1 where the invariant measures satisfy 
an (n + 1)-order linear difference equation. Markov chains of this type arise 
from applications to queueing problems and population dynamics. It is the 
purpose of this paper to point out that the forward use of this difference equa-
tion is subject to some hitherto unobserved aspects. By means of the concept 
of generalized continued fractions (GCFs), we prove that each invariant 
measure is a dominated solution of the difference equation such that forward 
computation becomes numerically unstable. Furthermore, the GCF-based ap-
proach provides a decoupled recursion in which the phenomenon of numeri-
cal instability does not appear. The procedure results in an iteration scheme 
for successively computing approximants of the desired invariant measure 
depending on some truncation level N. Increasing N leads to the desired solu-
tion. A comparison study of forward computation and the GCF-based ap-
proach is given for Q-matrices with upper bandwidth 1 and 2. 
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1. Introduction 

This paper is dedicated to discrete-time Markov chains ( ) 0k k
X X

≥
=  with a 

countably infinite set of states (labelled as 0,1,2, ) and a stationary one-step 

How to cite this paper: Baumann, H. and 
Hanschke, T. (2017) Inherent Numerical 
Instability in Computing Invariant Meas-
ures of Markov Chains. Applied Mathe-
matics, 8, 1367-1385. 
https://doi.org/10.4236/am.2017.89101 
 
Received: August 14, 2017 
Accepted: September 27, 2017 
Published: September 30, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

   
Open Access

http://www.scirp.org/journal/am
https://doi.org/10.4236/am.2017.89101
http://www.scirp.org
https://doi.org/10.4236/am.2017.89101
http://creativecommons.org/licenses/by/4.0/


H. Baumann, T. Hanschke 
 

 

DOI: 10.4236/am.2017.89101 1368 Applied Mathematics 
 

transition matrix ( )0 ,ik i k
P P

≤ <∞
=  of the form  

00 01 02 0

10 11 12 1 1, 1

21 22 2 2, 1 2, 2

32 3 3, 1 3, 2 3, 3

n

n n

n n n

n n n n

P P P P O O
P P P P P O

P O P P P P P O
O O P P P P P

+

+ +

+ + +

… … … 
 … … … 
 = … …
 

… 
                  

(1) 

with 1n ≥  and , 0k k nP + ≠  for at least one { }0 0,1, 2,k∈ =  . In addition we 
assume that X is irreducible and recurrent. Notice that the irreducibility of X 
implies  

, 1 0 for 1,2,k kP k− ≠ =                       (2) 

For a recurrent irreducible Markov chain, the system 

( )

( )
0

0

0,1, 2,

1, 0 1,2,

k i ik
i

k

x x P k

x x k

∞

=

 = =

 = ≥ =

∑ 

                    

(3) 

has a unique solution which is strictly positive, see Karlin and Taylor ([1], 
chapter 11). Every constant positive multiple of ( )0 1, ,x x x= 

 is called an 
invariant measure of X. 

Substituting (1) into (3) and rearranging yields the (n + 1)th-order homogeneous 
linear recurrence relation  

( ) ( )1, 1 , ,1 0 0,1,2,k n k n k n k n k n k n k k n kP x P x P x k+ + + + + + + + ++ − + + = = 

     
(4) 

coupled to the side conditions 

00 0 10 1 0

01 0 11 1 21 2 1

0, 1 0 1, 1 1 , 1 1n n n n n n

P x P x x
P x P x P x x

P x P x P x x− − − −

+ =
 + + =


 + + + =





                

(5) 

From the theory of linear difference equations (see Miller [2]) it is known that 
there exist 1n +  linearly independent functions ( ) ( ) ( )0 1, , , nx x x  defined on 

0  which take on prescribed values at 0,1, ,k n=   and satisfy the 
homogeneous recurrence relation (4) for all 0k ≥ . 

Since 1, 0k n k nP + + + ≠  for all k the desired solution ( ) 0k k
x ∞

=
 is uniquely 

determined by its initial values 0 1, , , nx x x  and (5). An application of the 
recurrence relation (4) then should directly lead to the desired solution x. But 
unfortunately forward computation of x by means of the homogeneous equation 
(4) is not a meaningful procedure. In the sequel it is shown that the solution 
space S of the recurrence relation (4) is the direct sum  

1 2S S S= ⊕  

of two subspaces 1S  and 2S  with the property, that every solution 2y S∈  
dominates over every solution 1x S∈ , i.e.  

lim 0.k

k
k

x
y→∞

=  
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In addition, we have 1 2dim , dim 1S n S= =  and 1x S∈ . 
As pointed out by Cash [3], Gautschi [4] [5], Lozier [6] and Mattheij [7], 

forward computation of a dominated solution becomes numerically unstable. To 
avoid numerical instability, it is therefore necessary to construct a decoupled 
recursion in which the dominant solution 2y S∈  does not appear. In the sequel, 
it is shown that with each transition matrix P of the form (1) one can associate a 
set of so-called generalized continued fractions (GCFs) being convergent if the 
underlying Markov chain is irreducible and recurrent. It turns out that the limits 
of these fractions coincide with the coefficients of the desired decoupled 
recursion. 

The phenomenon of inherent instability has been first recognized in 
connection with the computation of higher transcendental functions such as 
Bessel and associated Legendre functions (see Gautschi [4] and Wimp [8]). Our 
experience seems to indicate that also most of the recurrence relations arising 
from stochastic modelling are subject to numerical instability and require special 
attention. Transition matrices and Q-matrices with lower bandwidth n and 
upper bandwidth 1 have been discussed in [9]. 

Remark. Most of our considerations concerning the computation of invariant 
measures of Markov chains may be extended to more general infinite systems of 
equations. In Section 3, we will point out the properties of invariant measures 
which we explicitly used.  

2. Generalized Continued Fractions and Linear Difference  
Equations 

This chapter deals with the computation of dominated solutions of 
homogeneous linear difference equations by means of generalized continued 
fractions (GCFs). The theory of GCFs was initiated by Jacobi [10] and Perron 
[11] [12] and played a leading role in different areas of mathematics, especially 
in number theory, ergodic theory, linear difference equations and Padé 
approximations. 

Defintion 1. A generalized continued fraction (GCF) of dimension n  is an 
( )1n + -tuple ( ) ( )( )1 , , ,na a b  of real-valued sequences and a convergence 
structure as follows. Let ( ) ( )1 , , ,nA A B  be the principal solutions of the 
corresponding homogeneous linear difference equation  

( ) ( ) ( )1
1 1 0,1, 2,n

k n k k n k k n k kx b x a x a x k+ + + + −= + + + =            (6) 

satisfying  

( ) ( ), 1

1 for 1
1, , ; 0, ,

0 for 1
0 for 0, , 1 and 1.

i
j i j

j n

i j
A i n j n

i j
B j n B

δ +

 = +
= = = = ≠ + 

 = = − =

 



          

(7) 

The GCF is said to converge iff all the limits  
( ) ( ) ( )lim 1, ,i i

k kk
A B i nξ

→∞
= = 

                   
(8) 
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do exist.  
Convergence of a GCF is indicated by the notation  

( )

( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1
1 0 1 2

0 1 2

0 1 2

.k

n n n
n

a a a

a a a
b b b

ξ

ξ

 
   
   =   
   
    



  







 

Terminating a GCF after the N-th column we get the so-called N-th 
approximants  

( )

( )

( ) ( ) ( )

( ) ( ) ( )

1
1 1 11

0 1
1

0 1
1

0 1
1

.

N n
N

N n

n n n
n N

N n
N

N n

A
a a a

B

a a a
A

b b b
B

+ +

+ +

+ +

+ +

 
  
  
   =   
  
    

 



   







 

The term “GCF” becomes obvious if forward computation of the N-th 
approximant of a GCF is replaced by the equivalent backward algorithm. It is 
known that the recurrence relation (6) can be converted into a first order vector 
recursion of the form  

( )1 0,1, 2,k k ku W u k+ = =                      (9) 

by putting  

( ) ( ) ( )

( )
1

1
1 2

0 1 0 0 0
0 0 1 0 0

and 0,1,2, .
0 0 0 1

k

k

k k

k n
n

k n k k k k

x
x

u W k
x
x a a a b

+

+ −

+

  
  
  
  = = =
  
  
     





     

 

 

 

 

Comparing (6) and (9) it is seen, that the numerators ( ) ( )1
1 1, , n

N n N nA A+ + + +  and 
the denominators 1N nB + +  of the GCF appear in the last row of the matrix  

1 0 .N NW W W−   

Consider now the backward recurrence scheme  

( ) ( ) ( )1 , 1, ,0k k kN Nv v W k N N+= = − 

              
(10) 

with initial vector ( ) ( )1 0, ,0,1NN v + =  . Then  

( ) ( )
( ) ( )( )1

0 1 1 0 1 1 1, , , .n
N N N N n N n N nN Nv v W W W A A B+ − + + + + + += =   

Writing (10) in expanded form and inserting the structure of kW , we get 

( )
( )

( )
( ) ( ) ( )1 1 1

1 , 1, ,0 ,n
k k kN Nv v a k N N+

+= = −   

( )
( )

( )
( )

( )
( ) ( ) ( )1 1

1 1 2, , , , 1, ,0 ,i i n i
k k k kN N Nv v v a i n k N N− +

+ += + = = −   

( )
( )

( )
( )

( )
( ) ( )1 1

1 1 , 1, ,0n n n
k k k kN N Nv v v b k N N+ +

+ += + = −   

or, equivalently  
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( )
( ) ( )

( )

( )
( )

( )

( )
( ) ( )

( )
( ) ( )

( )

( )
( )

( )
( )

( )

( )
( ) ( )

1 1
1

1
1

1
1

1
1

: , 1, ,0

: 2, , ; , 1, ,0

kN k
kN n n

k k kN N

i i i
k k kN Ni

kN n n
k k kN N

v ar k N N
v b r

v a r
r i n k N N

v b r

+
+

−
+

+
+


 = = = −
 +


+
= = = = −

+



 

   

(11) 

with initial values ( )
( )

1 0i
NN r + =  for 1, ,i n=  . Hence  

( )

( )
( ) ( )1

0
1

1, ,
i

iN n
N

N n

A r i n
B

+ +

+ +

= = 
 

and  
( )

( )
( ) ( )0lim 1, , .i i

NN
r i nξ

→∞
= = 

                 
(12) 

Alternative procedures for computing GCFs are described in [13]. 
The relations between GCFs and linear difference equations have been first 

recognized by Perron [14]. Perron’s results were generalized by Van der 
Cruyssen [13], Hanschke [15] [16] and Levrie and Bultheel [17]. The following 
theorem is due to Van der Cruyssen [13]. 

Theorem 1. A GCF ( ) ( )( )1 , , ,na a b  converges iff there are 1n +  linearly 
independent solutions ( ) ( )1 , , ,nx x y  of the recurrence relation (6) satisfying  

( )
( )lim 0 1, ,

i
k

k
k

x i n
y→∞

= = 

                    
(13) 

and  
( ) ( )

( ) ( )

1 1
0 1

0 1

0.
n

n n
n

x x

x x

−

−

≠


 

                       

(14) 

As pointed out by Gautschi [4] [5] and Van der Cruyssen [13], forward 
computation of a solution ( ) ( )( )1span , , nx x x∈   is numerically unstable. Van 
der Cruyssen [13] establishes that if the limits  

( )

( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1
1 1 2

1 2

1 2

l l l
l

n n n
n l l l

l
l l l

a a a

a a a
b b b

ξ

ξ

+ +

+ +

+ +

 
   
   =   
   
    



  





                  

(15) 

exist for all 0l ≥ , then ( ) ( )( )1span , , nx x x∈   iff  
( ) ( ) ( )1

1 0,1, 2, .n
l n l l n l lx x x lξ ξ+ + −= − − − =              (16) 

Combining (11), (12) and (16), one obtains an efficient algorithm (which we 
will refer to as Van der Cruyssen’s algorithm) for approximating the first 1L +  
components 0 , , Lx x  of an element ( ) ( )( )1span , , nx x x∈   with prescribed 
values 0 1, , nx x − : 

Step 1: Select N L n> −  and define ( )
( )i

lN r  for 1, , ; 0,1, , 1i n l N= = +   
by 
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( )
( )

( )
( )1

1 1 0,n
N NN Nr r+ += = =  

( )
( )

( )

( )
( ) ( )

1
1

1

, 1, ,0 ,l
lN n

l lN

ar l N N
b r +

= = −
+

  

( )
( )

( )
( )

( )

( )
( ) ( )

1
1

1

2, , ; , 1, ,0
i i

l lNi
lN n

l lN

a r
r i n l N N

b r

−
+

+

+
= = = −

+
 

. 

Step 2: Set ( ) ( )0 0 1 1, , n nN Nx x x x− −= =  and  

( ) ( )
( )

( ) ( )
( )

( )
1

1
n

l n l l n l lN N N N Nx r x r x+ + −= − − −  

for 0,1, ,l L n= − . 
Step 3: Increase N until the accuracy of the iterates is within prescribed limits. 
For any l , the vector ( )

( )
( )

( )( )T1 , , n
l lN Nr r

 is an approximant of a GCF. 
Hence, convergence of the algorithm is related to convergence of GCFs. For the 
latter, we cite two helpful results. 

Theorem 2. (Levrie [18], Perron [12]). The GCF  
( ) ( ) ( )

( ) ( ) ( )

1 1 1
0 1 2

0 1 2

0 1 2

n n n

a a a

a a a
b b b

 
 
 
 
 
  



  





 

converges if it satisfies the so-called dominance condition, i.e.  
( ) ( ) ( )1 2 1 for all 0.n
k k k ka a a b k+ + + + ≤ ≥  

Theorem 3. (De Bruin [19], Perron [12]). Consider a GCF of the form (8) 
with νth approximant numerators ( ) ( )1 1, ,i

nA i nν + + =   and denominators 1nBν + +  
and the GCF given by 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1
0 0 1 1 1 0 1 1
2 2 2

0 0 1 1 1 1 0 2 1 1

0 0 1 1 1 0 1

0 0 1 1

n n n

n n n

n n n

a a a

a a a

a a a
b b b

ν ν ν ν

ν ν ν ν

ν ν ν

ν ν

ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ

− − − − −

− − − − − +

− −

 
 
 
 
 
 
 
  

    

   

  

      

(17) 

with νth numerators ( ) ( )1 1, ,i
nA i nν + + =

  and denominators 1nBν + +
  where the 

real numbers 1 0 1, , , , ,n nρ ρ ρ ρ− − +    are all different from zero. Then  
( ) ( ) ( )1 1 1 0 1 1

0
1 1 0 1

1, ,i i
n n i n

n n

A A i n
B B
ν ν ν ν

ν ν ν ν

ρ ρ ρ ρ ρ ν
ρ ρ ρ

+ + − − + − + +

+ + − + +

= =  ∈
= 



  





  

In other words, if one of these two GCFs converges so does the other.  
Notice that the GCF (17) may be interpreted as an equivalence transformation 

of the GCF (12). 

3. Main Results 

To make (4) congruent with (6) we put  
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( ) ( )1,

1,

1, , , 0,1, 2, ,i k i k n
k

k n k n

P
a i n k

P
+ − +

+ + +

= − = = 

           
(18) 

( ),

1,

1
0,1,2, .k n k n

k
k n k n

P
b k

P
+ +

+ + +

−
= − = 

                
(19) 

Theorem 4. Let ( ) ,i
k ka b  be defined as in (18) and (19). The limits  

( )

( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1
1 1 2

1 2

1 2

l l l
l

n n n
n l l l

l
l l l

a a a

a a a
b b b

ξ

ξ

+ +

+ +

+ +

 
   
   =   
   
    



  





                  

(20) 

exist for all 0l ≥  if the corresponding Markov chain is irreducible and 
recurrent. In case of convergence the invariant measure is a dominated solution 
of (6) and satisfies the decoupled recursion  

( ) ( ) ( )1
1 0,1, 2, .n

l n l l n l lx x x lξ ξ+ + −= − − − =              (21) 

Proof. Denote by ( ) ( )0 ,ikN i k N
P P

≤ ≤
=  the ( ) ( )1 1N N+ × +  northwest corner 

truncation of P . Since P  is assumed to be irreducible and recurrent we 
conclude from Seneta [20] [21] [22] that the finite system  

( ) ( ) ( )( ) 0N N Nh I P e− =
                     

(22) 

where ( )N I  is the unit matrix and ( ) 0N e  is the vector with unity in the first 
position and zeros elsewhere has a unique solution ( ) ( ) ( ) ( )( )0 1, , , NN N N Nh h h h=   
satisfying  

( )

( )
( )

0 0

lim 0,1,2, .kN k

N
N

h x k
h x→∞

= =   

The vector ( )N h  satisfies the homogeneous linear difference Equation (6) for 
0,1, ,k N n= −  and is subject to the boundary conditions 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

00 0 10 1

01 0 11 1 21 2

0, 1 0 1, 1 1 , 1

1 1

1 0

0

N N

N N N

n n n n nN N N

P h P h

P h P h P h

P h P h P h− − −

− − =


− + − − = 


− − − − = 





            

(23) 

and  

( ) 1 0.NN h + =
                         

(24) 

Notice that the numerators ( ) ( )1 , , n
l lA A  and the denumerators lB  of the 

GCF (20) satisfy  

( ) ( ) ( )1
1 1 0,1, 2,n

k n k l k n k l k n k l kx b x a x a x k+ + + + + + − += + + + =          (25) 

and build up a fundamental system of solutions to Equation (6) for k l≥ . 
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Hence any solution of the recurrence relation (6) can be expressed in terms of 
these functions. In view of their initial values  

( ) ( ), , 1

, ,

1 for 1
1, , ; 0, ,

0 for 1
0 for 0, , 1 and 1;

i
l j i j

l j l l n

i j
A i n j n

i j
B j n B

δ +

+

 = +
= = = = ≠ + 

 = = − =

 



        

(26) 

we get  

( ) ( )
( )

( )
( )

( ) ( )1
, 1 , , , 1, .n

k l l k l l n l k l l n l k lN N N Nh h A h A h B k l l− + − − + −= + + + = + 

  
(27) 

Choosing 1k N= +  and utilizing (24) equation (27) reduces to  

( ) ( )
( )

( )
( )1

, 1 , 1 1 , 1.
n

l n l N l l l N l l n l N lN N Nh B h A h A+ − + − + + − − += − − −

          
(28) 

Dividing both sides of (28) by , 1l N lB − +  and ( ) 0N h  we formally arrive at  

( )

( )

( )

( )

( )
( )

( )

( )1
1, 1 , 1

0 0 , 1 0 , 1

.
n

l n l l nN N Nl N l l N l

l N l l N lN N N

h h hA A
h h B h B
+ + −− + − +

− + − +

= − − −

           
(29) 

Passing to the limit N →∞  we get the decoupled recursion (21) provided 
that the limits ( )

, 1 , 1lim i
N l N l l N lA B→∞ − + − +  do exist for 0,1, ,i n=  . 

To prove our assertion we utilize that the invariant measure ( ) 0k k
x

≥
 of the 

irreducible and recurrent Markov chain (1) is strictly positive and satisfies the 
recurrence relation (4) which can be rewritten as  

( ) ( )

, 1, 1 1, 1

1, 1 1, 1 1, 1

,

1, 1

1

1
0,1, 2, .

k k n k k k n k k n k n k n

k n k n k n k n k n k n k n k n k n

k n k n k n

k n k n k n

P x P x P x
P x P x P x

P x
k

P x

+ + + + + − + + −

+ + + + + + + + + + + + + + +

+ + +

+ + + + +

⋅ ⋅ ⋅
+ + + +

⋅ ⋅ ⋅

−
= =

⋅





      

(30) 

Define 
1

k n
k

k n

x
x

ρ +

+ +

=  for 0,1,2,k =   Then (30) becomes equivalent to  

( ) ( )

( ) ( )

1 2
1 1 1

1 1 0,1,2,

k k k k n k k k k n

n
k k k k k

a a

a b k

ρ ρ ρ ρ ρ ρ

ρ ρ ρ

− − − − +

−

+

+ + + = =

 

 

 

implying that the GCFs 

( ) ( )

( ) ( )

( ) ( )

1 1
1 1 1 1

2 2
1 1 1 1 2

1 1 1

1

l l l l n l l l l n

l l l l n l l l l n

n n
l l l l l l

l l l l

a a

a a

a a
b b

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ
ρ ρ

− − + + − +

− − + + + − +

− + +

+

 
 
 
 
 
 
 
  

  

  

 





 

converge for all 0l ≥  by means of Theorem 2. From Theorem 3, we then 
conclude that the same is true for the GCFs (8).  

Theorem 2 says that the numerical calculation of the invariant measures of X 
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can be reduced to Van der Cruyssen’s algorithm with (23) as initial conditions. 
Remark. It is important that the statement of Theorem 4 consists of two parts:  

• The invariant measure is dominated by other solutions of the difference 
Equation (4).  

• By means of GCFs, we are able to construct a decoupled recursion which is 
not affected to numerical instability.  

Our main goal was the derivation of the first statement. Although the 
existence of dominating solutions has been pointed out in specific examples (e.g. 
([8], p. 167) where the exact solutions of the difference equations are known), to 
our knowledge, no statement in this generality has been published. Since the 
desired solution being dominated directly implies numerical instability, the 
system x xP=  should not be solved by forward computation. Note, that up to 
some slight modifications concerning the boundary conditions, the truncated 
system (22) yields the same difference Equation (4) for 0,1, , 1k N n= − − . 
Thus, forward computation could be applied to (22), too, but at least for large N, 
the result of numerical instability and hence, the recommendation not to use 
forward computation, holds for (22) as well. 

The observation of inherent numerical instability of (4) is essential since the 
transition structure under consideration arises in many practical applications, 
e.g. state-dependent queueing systems with bulk arrivals, and it is also valid in a 
more general context, e.g. as an approximation to state-dependent variants of 
the traditional G/M/1 queueing model. 

Basically, we have exploited that the solutions of the truncated system (22) 
converge to invariant measures as N →∞ . For Markov chains with a general 
transition structure, there is no way of solving x xP=  directly (in particular, 
forward computation cannot be applied if 0klP >  for some 1k l< − ). In this 
situation, Seneta [20] [21] [22] as well as Golub and Seneta [23] already 
recommended to use the convergence of the solutions of the truncated system 
(22) to the invariant measure for numerical issues. Furthermore, Seneta [22] 
discussed numerical aspects (in terms of the condition number) of the finite 
system (22) and stated numerical stability of Gaussian elimination or LU 
decomposition. The above comment concerning forward computation as a 
solution method for (22) emphasizes on the fact that it is important to solve this 
finite system in an appropriate way. The GCF-based algorithm can be 
interpreted as a combination of building up the truncated system (22), and then 
applying a modification of Gaussian elimination procedure. Therefore, it follows 
both steps recommended in the literature cited above and represents the 
complete procedure in a combined mathematical form, which is interesting from 
a structural point of view.  

4. Continuous-Time Markov Chains 

The results of the preceding chapter can easily be extended to continuous-time 
Markov chains ( ) 0t t

Y Y
≥

=  generated by a conservative, irreducible and regular 
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Q-matrix of the form 

00 01 02 0

10 11 12 1 1, 1

21 22 2 2, 1 2, 2

32 3 3, 1 3, 2 3, 3

n

n n

n n n

n n n n

q q q q O O
q q q q q O

Q O q q q q q O
O O q q q q q

+

+ +

+ + +

 
 
 
 =
 
 
  

  

  

 



               

(31) 

where 1n ≥  and , 0k k nq + ≠  for at least one 0k∈ . Notice that the 
irreducibility of Y implies  

, 1 0 for 1,2,k kq k− ≠ =   

If Y is positive recurrent, the limits  

( ) ( )0lim | 0,1,2,k tt
P Y k Y i kπ

→∞
= = = =   

exist independently of the initial state and build up a probability distribution 
which is strictly positive. For the construction of a continuous-time Markov 
process from its infinitesimal properties the reader is referred to Reuter [24] and 
Kendall and Reuter [25]. Now let ( )N Q  be the ( ) ( )1 1N N+ × +  northwest 
corner truncation of Q. If Y is regular and positive recurrent, then the finite 
system 

( ) ( ) ( ) 0N N Nz Q e=
                       

(32) 

has a unique solution ( ) ( ) ( ) ( )( )0 1, , , NN N N Nz z z z=   satisfying  

( )

( )
( )

0 0

lim 0,1,2, ,kN k

N
N

z
k

z
π
π→∞

= =   

see Tweedie [26]. Now let 

( ) ( )1,

1,

1, , , 0,1, 2, ,i k i k n
k

k n k n

q
c i n k

q
+ − +

+ + +

= − = = 

            
(33) 

( ),

1,

0,1, 2, .k n k n
k

k n k n

q
d k

q
+ +

+ + +

= − = 

                
(34) 

By substituting (31) into (32) it is seen that ( )N z  satisfies the ( )1 thn +  
order homogeneous linear difference equation 

( ) ( ) ( )1
1 1 0,1, 2,n

k n k k n k k n k kd c c kπ π π π+ + + + −= + + + =          (35) 

for 0,1, ,k N n= −  and the boundary conditions 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

00 0 10 1

01 0 11 1 21 2

0, 1 0 1, 1 1 , 1

1

0

0

N N

N N N

n n n n nN N N

q z q z

q z q z q z

q z q z q z− − −

+ = 


+ + = 


+ + + = 





            

(36) 

( ) 1 0.NN z + =
                         

(37) 

By replacing (33) with (18) and (34) with (19), it is readily seen that the 
scheme (35)-(37) formally coincides with that of the discrete time case. Hence 
(26)-(29) also hold for ( ) lN z . To prove convergence of the associated GCFs 
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( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1
1 1 2

1 2

1 2

0,1, 2,

l l l
l

n n n
n l l l

l
l l l

c c c

l
c c c
d d d

+ +

+ +

+ +

 
 Λ  
   = =   
   Λ    



  

 



           

(38) 

we use the same arguments as in the proof of Theorem 4. Notice that ( ) 0k k
π ∞

=
 

satisfies (35). Rearranging yields 

( ) ( ) ( )1 1

1 1 1

1 0,1,2, .nk k n k n
k k k

k n k n k n

c c d kπ π π
π π π

+ − +

+ + + + + +

− − − + = = 

      
(39) 

Define 
1

k n
k

k n

π
γ

π
+

+ +

=  for 0,1,2,k =  . Since ( ) 0i
kc− >  for 1, , , 0i n k= ≥  

and 0kd >  for 0k ≥ , (39) is equivalent to 

( ) ( ) ( )

( )

2
1 1 1 1 1

0,1,2, .

i n
k k k k n k k k k n k k k

k k

c c c

d k

γ γ γ γ γ γ γ γ

γ

− − − − + −+ + + +

= =

  



 

By Theorem 3, the GCF 
( ) ( )

( ) ( )

( )

1 1
1 1 1 1

2 2
1 1 1 1 2

( )
1 1 1

1

l l l l n l l l l n

l l l l n l l l l n

nn
l l l l l l

l l l l

c c

c c

c c
d d

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ
γ γ

− − + + − +

− − + + + − +

− + +

+

 …
 
 …
 
 
 … 
  

 

 

 



 

then converges for all 0l ≥ . Hence the same is true for the GCFs (38). 
Summarizing we arrive at the following theorem. 

Theorem 5. Let ( ) ,i
k kc d  be defined as in (33) and (34), respectively. The 

limits (38) exist for all 0l ≥  if the corresponding Markov process is irreducible, 
regular and positive recurrent. In case of convergence the limiting distribution 
( ) 0k k
π ∞

=
 is a dominated solution of (35) and satisfies the decoupled recursion. 

( ) ( ) ( )1
1 0,1, 2, .n

l n l l n l l lπ π π+ + −= −Λ − −Λ =             (40) 

For executing (40), we make use of Van der Cruyssen’s algorithm with (36) as 

initial conditions. The resulting sequence ( )( )
0

N

kN k
z

=
 can be normalized such 

that ( )
0

1
N

kN
k

z
=

=∑ . 

Remark. As for discrete-time Markov chains, the key statement of Theorem 5 
is that the invariant measure is a dominated solution of the difference equation 
(35). Again, the GCFs additionally combine the two-step method consisting of 
considering the truncated system (32) and applying Gaussian elimination or LU 
decomposition.  

5. Numerical Examples 

As an example we consider the continuous-time Markov chain ( ) 0t t
Y Y

≥
=  

generated by the Q-matrix ( )0 ,ij i k
Q q

≤ <∞
= , where  
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0 1

1 0

1 0

0 1 1 0

1, 1

1
, 1

1 , 2

, 0

, 1

0, elsewhere

i

i

i
ik

i

i

a a k i i

a a k i

k i
q

a a k i

a a a a k i

γ

γ

γ

γ

γ

 = − ≥

 − −

= +



= += 
 −− = =

 + −− = ≥


                

(41) 

with parameters 0 1a γ> >  and 1 0 1a a≥ + . Such a Markov chain may be 
interpreted as a model for a single-server queueing system with state-dependent 
arrival and service rates, and with customers arriving in groups of size 1 or 2. 

It is easy to check that Q is irreducible. To prove that Y is regular and positive 
recurrent we make use of Tweedie’s [27] criterion. The condition is to find some 

0ε >  and a non-negative sequence ( )0 1, ,z z z= 
 satisfying iz →∞  as 

i →∞  and 

0
ik k

k
q z ε

∞

=

≤ −∑
                        

(42) 

for almost all i. By substituting (41) into (42) we get  

1 0 1 0 0 1
2 1 1

11
i i i ii i i i

a a a a a az z z z ε
γ γ γ γ+ + −

− − −
+ − + ≤ −  

for almost all i. The substitution i
iz γ=  for 0,1, 2,i =   implies the condition  

( )( )( )0 11 a aγ γ γ
ε

γ
− − +

≤ −  

for almost all i which is true because of 0 1a γ> > . 
Under these conditions there exists a unique invariant measure of Y (up to 

multiplication by a constant), which satisfies the following set of equations:  

( )0 1
1 1 0 0 0,

a a a aπ π
γ

− − =
                   

(43) 

( )0 1 0 1 1 0
2 1 1 0 02 1 0

a a a a a a a aπ π π
γγ
+ −

− + − − =
           

(44) 

and  

0 1 0 1 1 0 1 0
3 2 13 2 1

1 1 0k k k kk k k k

a a a a a a a a
π π π π

γ γ γ γ+ + ++ + +

+ − − −
− + + =  

or, equivalently,  

( ) ( ) 2 3
0 1 3 0 1 1 0 2 1 0 11 0k k k ka a a a a a a aπ γπ γ π γ π+ + +− + − + − − + =      (45) 

for 0,1,2,k =  . (45) leads to the recursion  
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( ) ( )2 3
0 1 1 0 2 1 0 1

3
0 1

1k k k
k

a a a a a a
a a

γ π γ π γ π
π + +

+

+ − − − − −
=

       
(46) 

which is used for forward computation. 
Since (45) is a homogenous linear difference equation with constant 

coefficients a fundamental set of solutions can easily be derived from the roots of 
its characteristic equation. A simple manipulation yields the following set of 
linearly independent solutions: 

( )
0

0 1
00

, , .
k k

k

k
kk

a a
γ γ

γ

∞ ∞

∞

=

==

         −           
 

The desired invariant measure ( ) =0k k
π ∞  of Y with initial value 0 1π =  is a 

linear combination of the first two solutions, that is: 

( )01

0 1 0 0 1 1

0,1, 2, .
k k

k
aa k

a a a a a a
γ γ

π
   

= + − =   + +   
  

Therefore, choosing 1γ >  yields that there is a geometrically increasing 
solution of (46), which explains why forward computation cannot cope with this 
problem, whereas the GCF-based algorithm becomes a stable procedure. This 
effect is reflected in Table 1 and Table 2, where data type double in C++ was used. 

 
Table 1. Numerical values for 0 13, 5, 7.a aγ = = =  

k Forward computation GCF based solution Exact solution 

0 1 1 1 

1 0.171429 0.171429 0.171429 

2 0.286531 0.286531 0.286531 

3 0.0932012 0.0932012 0.0932012 

4 0.0896566 0.0896566 0.0896566 

5 0.0393357 0.0393357 0.0393357 

17 59.85074 10−×  59.85075 10−×  59.85075 10−×  

18 55.93420 10−×  55.93424 10−×  55.93424 10−×  

19 53.55023 10−×  53.55035 10−×  53.55035 10−×  

20 52.13423 10−×  52.13458 10−×  52.13458 10−×  

21 51.27782 10−×  51.27888 10−×  51.27888 10−×  

22 67.64963 10−×  67.68128 10−×  67.68128 10−×  

23 64.51039 10−×  64.60533 10−×  64.60533 10−×  

24 62.47987 10−×  62.76467 10−×  62.76467 10−×  

25 78.03766 10−×  61.65817 10−×  61.65817 10−×  

26 61.56804 10−− ×  79.95173 10−×  79.95173 10−×  

27 67.09265 10−− ×  75.96988 10−×  75.96988 10−×  

28 52.27107 10−− ×  73.58242 10−×  73.58242 10−×  

29 56.89918 10−− ×  72.14924 10−×  72.14924 10−×  

30 −0.000207491 71.28964 10−×  71.28964 10−×  

40 −12.2598 107.79771 10−×  107.79771 10−×  

50 −723,927 124.71497 10−×  124.71497 10−×  
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Table 2. Numerical values for 0 19, 10, 12.a aγ = = =  

k Forward computation GCF based solution Exact solution 

0 1 1 1 

1 0.15 0.15 0.15 

2 0.6975 0.6975 0.6975 

3 0.205875 0.205875 0.205875 

4 0.501694 0.501694 0.501694 

5 0.21422 0.21422 0.21422 

13 0.127849 0.127848 0.127848 

14 0.132884 0.132882 0.132882 

15 0.106256 0.10623 0.10623 

16 0.105863 0.10563 0.10563 

17 0.0896527 0.0875497 0.0875497 

18 0.10336 0.0844324 0.0844324 

19 0.242111 0.0717609 0.0717609 

20 1.60091 0.067756 0.067756 

21 13.857 0.058602 0.058602 

22 124.24 0.0545256 0.0545256 

23 1117.72 0.0477352 0.0477352 

24 10,059.1 0.0439651 0.0439651 

25 90,531.2 0.038816 0.038816 

 
Consider next the M/M/1 queueing system, in which the customers arrive 

according to a Poisson stream with rate 0λ >  and in which the successive 
service times are stochastically independent and exponentially distributed with 
parameter 0µ > . For this system it is known that the queueing process 

( )( ) 0t
L L t

≥
=  which counts the number of customers in line, forms a 

homogeneous continuous time Markov chain with state space { }0 0,1, 2,=    

being regular and positive recurrent for 1λ
ρ

µ
= < , see [28]. The model is 

convenient to get clear about the mechanism of our approach. 
The invariant measure ( ) 0k k

π ∞

=
 of L meets the second order linear difference 

equation  

( ) ( )1 1 0 1,2,k k k kλπ λ µ π µπ− +− + + = =              (47) 

subject to the side conditions  

0 0 11 and 0.π λπ µπ= − + =  

In principle, ( ) 0k k
π ∞

=
 could be computed by forward computation, that is  

0 1,π =  

1 0 ,π ρπ=  
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( ) ( )1 11 1,2, ,k k k kπ ρ π ρπ+ −= + − = 
 

where 1λ
ρ

µ
= < . 

A simple induction argument shows that k
kπ ρ=  for 0,1,2,k =  . Another 

solution of (47) is given by 1kπ =  for 0,1,2,k =  , implying that ( ) 0k k
π ∞

=
 

becomes a dominated solution of (47), as claimed. Therefore ( ) 0k k
π ∞

=
 can also 

be characterized by the decoupled recursion (40), i.e.  
( ) ( )1

1 0,1, 2, .k k k kπ π+ = −Λ =                   (48) 

Substituting of (48) into (47) leads to  

( )

( ) ( ) ( )1
1 11 1

1 1,2, .
1k

k

k
ρ ρ

− − −
Λ = − =

+ + Λ


             
(49) 

By truncating this infinite continued fraction scheme at a certain level k N= , 
we get approximants for the desired coefficients ( )1

kΛ . A numerical example is 
given in Table 3. In this example the effect of numerical instability is comparatively 
small. 

6. Conclusion and Further Research 

For Markov chains with a specific transition structure, we have proven that the  
 

Table 3. Numerical values for the M/M/1 queueing system for 1
3

ρ = .  

k Forward computation GCF based solution Exact solution 

0 1 1 1 

1 0.333333 0.3333 0.3333 

2 0.111111 0.1111 0.1111 

3 0.03704 0.03704 0.03704 

4 0.01235 0.01235 0.01235 

5 0.004115 0.004115 0.004115 

6 0.001372 0.001372 0.001372 

7 44.572 10−×  44.572 10−×  44.572 10−×  

8 41.524 10−×  41.524 10−×  41.524 10−×  

10 51.694 10−×  51.694 10−×  51.694 10−×  

12 61.882 10−×  61.882 10−×  61.882 10−×  

15 86.969 10−×  86.969 10−×  86.969 10−×  

20 102.868 10−×  102.868 10−×  102.868 10−×  

25 121.180 10−×  121.180 10−×  121.180 10−×  

30 154.870 10−×  154.857 10−×  154.857 10−×  

40 171.312 10−×  208.225 10−×  208.225 10−×  

50 171.304 10−×  241.393 10−×  241.393 10−×  

90 171.304 10−×  431.146 10−×  431.146 10−×  
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invariant measure is a dominated solution of the corresponding steady-state 
recurrence relations, and therefore, it cannot be calculated by forward 
computation. As a by-product of our considerations, a GCF-based method for 
computing the invariant measure in a numerically stable way has been 
established. The effects of numerical instability of the original recurrence 
relations as well as the stability of the decoupled version have been illustrated by 
numerical examples. In some way, the GCF-based approach is similar to 
previously recommended methods (truncate the infinite system and solve the 
truncated one by Gaussian elimination or LU decomposition), but represents the 
steps in a combined mathematical form. Note that in previous literature, the 
generality of the transition structure did not allow forward computation, and 
hence, the question of instability of this method did not arise. 

At no point of our consideration, we used stochasticity of P (or the 
corresponding property of conservativity of Q) explicitly. Therefore, it seems 
reasonable to extend our results to more general infinite systems 0Sx =  of 
linear equations, where  
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In the context of computing invariant measures of Markov chains, we have 
TS I P= −  or TS Q= , respectively. In the general case, the main steps of the 

proofs of Theorem 4 or Theorem 5 can be restated in an abstract context as 
follows: If 0kks >  and , 1 0k ks + <  for 0,1, 2,k =  , and 0kls ≤  for 1,2,3,k =   
and l k< , and if there is a strictly positive solution x  of 0Sx = , all GCFs 
involved in the algorithmic procedure converge. If additionally, we have 

( )

( ) 0 0

lim nN n

N
N

x x
x x→∞

=  for all 0,1,2,n =   for the solutions ( )N x  of ( ) ( ) ( ) 0N N Nx S e⋅ = , 

then the GCF-based algorithm converges to x  as N  tends to infinity, see [29]. 
Usually, these assumptions are met in the context of computing Perron-Frobenius 
eigenvectors for infinite non-negative matrices with some communication 
structure (e.g. irreducibility, see [30] for more details). In the context of 
discrete-time Markov chains, invariant measures are right eigenvectors for the 
Perron-Frobenius eigenvalue 1, whereas left eigenvectors are related to hitting 
probabilities (or absorption probabilities). Therefore, an extension of our 
considerations could refer to the task of computing these probabilities under 
appropriate assumptions on the transition structure. Further generalizations 
could deal with the following generalizations:  
• In the tridiagonal case (that is, 1n = ), a generalization to block-matrices 
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(that is, the corresponding Markov chain is a quasi-birth-death process) by 
means of matrix-valued continued fractions has been studied in [31]. The 
resulting algorithm is similar to the matrix-analytic methods studied in [32] 
[33]. An intuitive combination is the study of transition probability matrices 
of the form (1) where all klP  are matrices. For practical issues, it would be 
desirable to find a memory-efficient algorithm for computing stationary 
expectations. For quasi-birth-death processes (that is, block-tridiagonal 
transition matrices), such a method has been suggested in [34].  

• Instead of banded matrices, we could consider upper Hessenberg matrices P 
(or lower Hessenberg matrices S). Then the difference equation (4) of order n 
is replaced by a difference equation of infinite order (sometimes referred to 
as sum equation). Furthermore, arbitrary lower bandwidthes for P could be 
considered (as in [9], where the upper bandwidth was restricted to 1).  
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