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Abstract 
Semi-cooperative games in strategic form are considered in which either a 
negotiation among the n players determines their actions or else an arbitrator 
specifies them. Methods are presented for selecting such action profiles by 
using multiple-objective optimization techniques. In particular, a scalar equi-
librium (SE) is an action profile for the n players that maximize a utility func-
tion over the acceptable joint actions. Thus the selection of “solutions” to the 
game involves the selection of an acceptable utility function. In a greedy SE, 
the goal is to assign individual actions giving each player the largest payoff 
jointly possible. In a compromise SE, the goal is to make individual player 
payoffs equitable, while a satisficing SE achieves a target payoff level while 
weighting each player for possible additional payoff. These SEs are formally 
defined and shown to be Pareto optimal over the acceptable joint actions of 
the players. The advantage of these SEs is that they involve only pure strate-
gies that are easily computed. Examples are given, including some well-known 
coordination games, and the worst-case time complexity for obtaining these 
SEs is shown to be linear in the number of individual payoffs in the payoff 
matrix. Finally, the SEs of this paper are checked against some standard 
game-theoretic bargaining axioms. 
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1. Introduction 

Game theory is the study of strategic interactions among n rational decision 
makers called agents (or players), whose decisions affect each other. Its syste-
matic development began with von Neumann and Morgenstern [1], who de-
scribed both non-cooperative and cooperative games. These categories have be-
come one approach for classifying games [2]. Either type involves a solution 
concept to recommend, predict, or explain player choices. Depending on the use 
of these solutions, game theory can be also divided into normative, predictive, 
and descriptive branches. The normative use of game theory is to recommend 
ideal decisions that the participants should make in a given game. The predictive 
application is to predict the choices of the participants. On the other hand, de-
scriptive game theory, which involves empirical data, attempts to explain the 
actual behavior of these decision makers. Of course, both classification schemes 
are inexact. For example, in the latter taxonomy, the normative, predictive, and 
descriptive uses are interrelated. Descriptive game theory can lead to better ma-
thematical model that give better recommendations and predictions. However, 
some decision theorists—including von Neumann [1], Savage [3], and Aumann 
[4]—believe that the principal use of game theory is normative. 

The purpose of this paper is to present normative models for games with both 
cooperative and noncooperative aspects. In each model, all players are assumed 
to have the same notion of rationality, which differs among the models. Solu-
tions to each model are obtained by solving a scalar optimization problem to 
avoid the difficulties associated with the usual game theoretic equilibria. Moreo-
ver, these solutions involve only pure strategies. The models developed here 
could also be used by an arbitrator to prescribe an action profile for the game. In 
this section, we will first summarize the basic ideas of both non-cooperative and 
cooperative games. Next, we review the literature on games with both competi-
tive and cooperative aspects, including that on arbitration for such decision 
problems. Then the restriction of our solutions to pure strategies will be dis-
cussed, and finally the notion of a scalar equilibrium will be defined. 

Modern game theory as described in Myerson [5] and Maschler et al. [6] is 
predominantly non-cooperative. A non-cooperative game involves two or more 
utility-maximizing players. The key feature is that it focuses on the actions of the 
individual players. Non-cooperative game theory requires the solution concept 
to be a Nash equilibrium [7] [8] [9]. In other words, rational players are consi-
dered selfish. They act in their individual self-interest in the sense that each 
player’s strategy would maximize his expected payoff for the strategy profile of 
the other 1n −  players. Thus in a Nash equilibrium (NE) no player can im-
prove his expected payoff by unilaterally changing his pure or mixed strategy. A 
NE always exists in mixed strategies but may not be Pareto optimal. Moreover, 
there may be multiple pure or mixed NEs in which various refinements such as 
properness have been proposed to eliminate implausible equilibria.  

Social dilemmas [10] [11] [12] illustrate that the selfish behavior manifested in 
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NEs may conflict with group or team interests. In Prisoner’s Dilemma, for ex-
ample, each player can do better by cooperating. To accommodate these situa-
tions, Berge [13] proposed a pure-strategy solution that was formalized by Zhu-
kovskiy [14]. A Berge equilibrium (BE) is a pure strategy profile in which every 

1n −  players choose strategies that maximize the remaining player’s payoff. For 
a game with unselfish players invoking this Golden Rule rationale, a BE is thus 
an equilibrium since no unilateral change of strategy by any player can improve 
another player’s payoff. Such mutual support has been studied in Colman [15], 
Corley and Kwain [16], Corley [17], and the references therein. The mixed BE is 
called a dual equilibrium to the NE in the latter two references because of the 
duality discussed there. Regardless, with this interpretation a pure or mixed BE 
can be considered as a mutually cooperative or altruistic solution concept for 
non-cooperative games when each player’s goal is to help the remaining players 
as opposed to himself. However, the BE is a solution concept for non-cooperative 
games since it is each player’s individual choice to be altruistic as above. Moreo-
ver, the players are rational in the following sense: a person is rational if the 
person makes decisions and acts in a manner consistent with his or her stated 
objective. In the BE model, it is assumed that each player’s objective is to be 
mutually supportive if possible.  

In contrast, cooperative (or coalitional) game theory focuses on groups of the 
n players, rather than individual players themselves. Players form coalitions in 
cooperative games so that the members can receive more benefit than they could 
individually. Cooperative game theory focuses on predicting the coalitions that 
will form, the joint actions the coalitions will take, the resulting collective payoffs, 
and the binding agreements the coalitions will make [18]. Given this informa-
tion, the cooperative model is concerned with identifying a fair allocation of 
benefits to the n players. Different solution concepts for cooperative games de-
fine fairness differently and thus assign different payoffs to the individual players. 
Common solution concepts include the stable set of von Neumann and Mor-
genstern [1], the Shapley value [19], and the core of Gillies [20], as well as the 
kernel of Davis and Maschler [21] and the nucleolus of Schmeidler [22].  

The essential difference between non-cooperative and cooperative game 
theory is that non-cooperative games focus on what individuals can do acting 
alone while cooperative games focus on what groups can accomplish if they 
work together. Contracts must be self-enforcing in non-cooperative games, 
whereas players can make enforceable contracts in cooperative games. However, 
the contracts in cooperative games are not enforced internally, but externally by 
an outside party such as an arbitrator. In this paper a class of hybrid games in 
strategic form, with aspects of both non-cooperative and cooperative games, are 
called semi-cooperative. They may involve either negotiation by the players or 
external arbitration.  

An early example of such a game was considered by Nash [23], who presents a 
unique solution for a two-person bargaining problem in strategic form with 
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complete information. This solution in mixed strategies involves a competitive 
component in which neither player will accept less than his status quo payoff, as 
well as a cooperative component modeled by the Nash product in which the 
players share in the benefits of cooperation. In [24] Nash extended this work to 
two-person demand games involving threats. Raiffa [25] defined an arbitration 
scheme as a mapping from a given generalized two-person game into a unique 
element of the set of mixed strategies for the game. Different imposed conditions 
gave different mappings that yield mixed strategies to be used as either a bar-
gaining solution or as strategies imposed by an arbitrator on the players. Rosen-
thal [26] developed an arbitration model for two-person cooperative games in 
strategic form for an arbitrator to select a single Pareto-optimal pure strategy re-
flecting the relative strengths of the players. Kalai and Rosenthal [27] gave 
schemes for an arbitrator to use under his ignorance and survey the game- 
theoretical arbitration literature to that point.  

More recently treatments of semi-cooperative games includes Baccharch et al. 
[28], who consider a team reasoning approach to strategic games in which the 
players make decisions best for their team of players and not simply themselves. 
Hart and Mas-Colell [29] studied cooperation in n-person strategic-form games 
and developed a multistage bargaining procedure based on proposer commit-
ment to obtain a ubgame-perfect equilibria that approaches Pareto efficiency. 
Diskin et al. [30] extended Raiffa’s arbitration model to an iterative procedure 
that converges to a Pareto optimum of the bargaining set for n players. Cao [31] 
modified the Hart-Colell procedure by delaying the realization of all threats to 
end of the game so that the Hart-Colell procedure would be consistent with the 
min-max solution in two-person zero-sum games. Finally, for two-person stra-
tegic-form games Kalai and Kalai [32] proposed a solution concept for coopera-
tion called the cooperative-competitive (or coco) value. Their approach was de-
veloped either as a bargaining solution or for an arbitrator to obtain fair mixed 
strategies to a two-person in strategic form. This coco value combines the two 
players’ payoff matrices into a max-max cooperative component as well as a 
max-min competitive one. An extensive literature survey of semi-cooperative 
games is also provided.  

We next justify seeking only pure strategies here by describing the difficulties 
with mixed strategies. Historically, according to both von Neumann [1] and later 
Nash [24], a randomizing process is an essential ingredient in the concept of a 
mixed strategy. According to Nash [24], “the use of mixed strategies involves de-
liberate decisions to randomize, to decide between alternative possibilities by 
using a randomizing process involving specified probabilities.” However, Au-
mann [4] considered the concept of mixed strategies to be “intuitively proble-
matic” since people rarely make decision choices by lottery. Thus randomization 
lacks behavioral support. This difficulty is compounded, Aumann argued, by the 
fact that people are usually unable to generate random outcomes without some 
type of random or pseudo-random number generator.  
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Rubinstein [33] later described two interpretations of mixed strategies. The 
first was based on the purification theorem of Harsanyi [34]. The basic idea be-
hind purification is that a mixed strategy merely reflects a player’s lack of know-
ledge of the other players’ information and decision-making process. In this view, 
random choices are seen as consequences of non-specified, payoff-irrelevant ex-
ogeneous factors, which to Rubenstein was unsatisfactory. Rubenstein’s second 
interpretation considers the game players standing for a large population of 
agents with n subpopulations, the members of which habitually choose specific 
actions, i.e., pure strategies. In other words, the fractions of the whole popula-
tion choosing different strategies resembles a mixed strategy. But then, Rubens-
tein argued, no reason is provided for the individual agents’ choices. An alter-
nate interpretation, perhaps the most intuitive, is that the probability of a player 
choosing a given action in a mixed strategy is the fraction of time that player 
would choose to it in a long series of repeated games. Unfortunately, games are 
often not repeated and certainly not enough for a frequentist interpretation of 
probability. Hence, Aumann and Brandenburger [35] interpret a mixed strategy 
for player i as an representation of the beliefs of i’s opponents about the action 
that player i will choose. However, opponents will likely have different beliefs, 
especially if they have different notions of rationality, so the predictive power of 
a mixed strategy is limited since a Nash equilibrium becomes an equilibrium in 
beliefs rather than actions.  

Thus the interpretation of mixed strategies is controversial. The principal ad-
vantage of mixed strategies seems to be theoretical. They provide NEs when 
none exist in pure strategies and allow for the development of a rich mathemati-
cal theory as opposed to a combinatorial one. Nonetheless, practitioners are fre-
quently ambivalent towards mixed strategies, which are currently difficult (if not 
impossible) to compute except for a relatively small games. Moreover, practi-
tioners often view the mixed strategy solution concept as incomplete since it 
does not specify why and how players randomize their decisions.  

In view of the above discussion, this paper develops pure-strategy solution 
concepts for n-person, strategic-form, semi-cooperative games with complete 
information and no threats. The solutions are normative since that they are sug-
gestions for assigning action profiles to the players, under the assumptions of the 
models. Each is the pure-strategy solution to a scalar optimization problem. 
Such a solution is designated as a scalar equilibrium and provides a rational as-
signment in either a binding agreement among the players or a decision by an 
arbitrator. However, no negotiations are considered here. If the players cannot 
reach an agreement, a model of this paper could also be used by arbitrator to 
yield a fair and rational decision. The latter situation would be similar to two 
bargaining players having an arbitrator impose either the Nash [23], Kalai- 
Smorodinsky [36], or Kalai [37] bargaining solution. The work here restricts 
such bargaining problems to pure strategies. If an arbitrator is employed, how-
ever, the solutions proposed here are not game-theoretical concepts in a strict 
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sense since the players do not choose their own actions.  
For the semi-cooperative games described above, a scalar equilibrium (SE) is 

defined as an assignment of actions to the players using a decision criterion that 
maximizes an appropriate utility function of the players’ payoff profiles over the 
players’ acceptable joint actions. This choice of this utility function would be the 
result of a binding agreement among the players or an arbitrator’s decision. It is 
designated an equilibrium only in the sense that no player would change his ac-
tion because the agreement or the arbitrator. In other words, for an n-person, 
strategic-form game, the agreed-upon utility function T associates a scalar value 
to each payoff profile in the payoff matrix. A payoff profile with a maximum 
utility is considered an optimal action profile. In the case of ties, an action pro-
file would be chosen according to secondary criteria, which are not studied here. 
As an agreement among the players, an SE could be either externally or inter-
nally enforceable. In the case of a treaty, for example, an external enforcement 
mechanism could be an international court, while an internal enforcement me-
chanism could be a war or trade sanctions. In an arbitration, the arbitrator 
would obviously be the enforcement mechanism. An SE need not be a NE or a 
BE. 

A semi-cooperative game as considered here has both competitive and coop-
erative aspects. It is competitive in the sense that each player wants a good 
payoff, possibly meaning either a fair one or a large one. It is reasonable to as-
sume that no player would agree to an action profile giving him less than his 
pure-strategy security level. Nor—as argued by Aumann [38], Rubinstein [33], 
and Bacharach et al. [28]—would reasonable players accept a payoff profile that 
was Pareto dominated. Otherwise, there would be an alternate profile for which 
some players’ payoffs would be improved without diminishing any player’s. On 
the other hand, the games of this paper are also cooperative in the sense that 
ideally an agreement among the players is required to select T. The goal here is 
to reduce such semi-cooperative games to the selection of a reasonable T either 
by the players or by an arbitrator if the players are unable to reach an agreement. 
Such a T would then determine the players’ actions, and thus the approach is 
normative.  

In summary, the SE approach extends the classic bargaining results of (23), 
(36), and (37), for example, to n players and to different decision criteria. It also 
restricts previous results for semi-cooperative games to the more difficult and 
practical problem of obtaining pure strategies. In particular, the SE approach 
addresses four problematic areas of non-cooperative game theory.  

1) An SE, which always exists, assigns a specific action to each player, as op-
posed to a mixed strategy that is difficult to calculate, interpret, and implement.  

2) An SE can be obtained quickly as the maximum of a finite number of scalar 
values, as opposed to the computational effort required to determine mixed 
strategy NEs. A particular T might yield an approximation to a mixed NE or BE. 
In the latter case, even a mixed BE may not exist (17). However, approximation 
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is satisfactory since implicit in the equilibrium refinement literature is the idea 
that a game is not a complete description of a strategic situation but rather an 
approximation itself. 

3) SEs do not require that any particular notion of rationality for the individ-
ual players. An assignment is rational if it maximizes the utility function T se-
lected by the players. For example, a “rational” action profile could be one that 
gives each player a “fair” payoff relative to all the players. Another could model 
the team concept of Bacharach et al. [28]. T would capture the players’ notions 
of rationality, which could conceivably differ, though this possibility is not con-
sidered in this paper.  

4) For games with multiple NEs or BEs, one could also use T to refine these 
equilibria and choose one with the highest feasible value of T. 

The paper is organized as follows. In Section 2 we present preliminary nota-
tion, definitions, and results. In Section 3 we develop the greedy SE (GSE), es-
tablish that a GSE is Pareto optimal for a semi-cooperative game in strategic 
form, and present two-person examples including the coordination games Pris-
oner’s Dilemma, and Chicken games to compare the GSE with other solution 
concepts. In addition, it is shown that a GSE is computationally tractable. In 
Section 4 we define a compromise SE and then a satisficing SE in Section 5. Both 
are again Pareto optimal and computationally tractable, and examples are pre-
sented. In Section 6 we state some standard bargaining axioms and note those 
satisfied by the SEs here. In Section 8 we offer conclusions.  

2. Preliminaries 

Consider first a standard n-person, non-cooperative game in strategic form for 
pure strategies. Let ( ) ( ), ,n i ii I i I

G I S u
∈ ∈

=  denote such a game, where  
{ }1, ,I n=   is the set of players and iS  is the finite set of im  actions for  

player i. For an action profile ( )1, , n i
i I

s s s S S
∈

= ∈ =∏ , ( )iu s  is the von  

Neumann-Morgenstern (VMN) utility of player i, and the payoff matrix consists 
of the n-tuples ( ) ( ) ( )( )1 , , nu s u s u s=   ordered in the usual way. It is well 
known that VMN utilities are both ordinal and cardinal but that these utilities 
are usually incomparable between players. In other words, for any strategies 

, , s Ss s′ ′ ∈′  and i j≠ , ( ) ( )i ju s u s−  is not well defined but ( ) ( )i iu s u s′ ′′−  is. 
We assume here that nG  is a TU game with transferable utilities. This assump-
tion means that the players have a common currency, or numeraire, valued 
equally by all players and that there is no wealth effect. Thus all players derive 
the same utility for the same currency level. In such a currency (i.e., dollars), it 
follows that the players have quasi-linear utility functions in ( )1, , ns s S∈ . 
Furthermore, we assume that utilities for player i , i I∀ ∈ , have been standar-
dized by transformations of the form ( ) ( )ˆi i i iu s u sα β= +  for scalars 0iα >  
and iβ , which yield an equivialent game [5], so that each player’s VNM utility 
for $C is C utils and that a difference of one util is as significant for any player as 
any other. We call this Assumption U on the utilities. 
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The Nash and Berge equilibria are next defined as in (17) for pure strategies to 
contrast with an SE defined below. 

Definition 2.1. The action profile *s  an NE for nG  if and only if  
( ) ( )* *max , , .

i i
i i i is S

u s u s s i I−∈
= ∀ ∈   

Definition 2.2. The action profile *s  is a BE for nG  if and only if  
( ) ( )* *max , , .

i i
i i i is S

u s u s s i I
− −

−∈
= ∀ ∈   

Now let the n-person, pure-strategy, strategic-form, semi-cooperative game 

nΓ  corresponding to nG  be denoted by ( ) ( ), , ,,n i ii I i I
I S u T

∈ ∈
Γ = Ω , where 

, , , ,i i iI S S s u  are as in nG . Only the action profiles ( )1, , ns s s=   in Ω  are 
deemed acceptable to the n players, so the feasible set Ω  for nΓ  should in-
corporate the pure-strategy security level. Finally, ( ) 1:T u RΩ →  is a utility 
function defined according to the particular situation modeled by a game nΓ .  

Definition 2.3. An action profile ŝ  is a security profile for nΓ  if and only if 
( )ˆ arg max min , , .

i i i i
i i i is S s S

s u s s i I
− −

−∈ ∈
∈ ∀ ∈  For each player i I∈ , îs  is called a securi-

ty action and ( )max min ,
i ii i

i i i is Ss S
L u s s

− −
−∈∈

=  is called the security level.  
The value iL  is the least payoff that player i can be guaranteed to receive 

from his action in the game, regardless of what the other players’ actions are. It 
is possible that ( )ˆi iu s L>  since ˆ is−  is not necessarily a worst response to îs  in 
a security profile. Regardless, it is reasonable to assume that no player would 
agree to an action profile in which he received less than iL . Define  

( ){ }: i is S u s LΨ = ∈ ≥ . It follows that ⊆Ω Ψ . Leyton-Brown and Shoham [39], 
for example, show that any pure NE of the non-cooperative game nG  is a 
member of Ψ . 

An SE is an action profile *s ∈Ω  determined from a decision criterion in-
volving an aggregate utility function ( ) 1:T u S R→  for all players in I  that 
induces a preference relation T≤  on ( )u Ω  as described in [40]. In particular, 
for all ,s s′ ′′∈Ω , 

i) ( ) ( )Tu s u s′ ′′<  if ( ) ( )T u s T u s′ ′′<       , 
ii) ( ) ( )Tu s u s′ ′′=  if ( ) ( )T u s T u s′ ′′=       ,  

iii) ( ) ( )Tu s u s′ ′′≤  if either ( ) ( )Tu s u s′ ′′<  or ( ) ( )Tu s u s′ ′′= . 
We next maximize the aggregate utility function ( )T u T u s=     over Ω  

according to this preference relation and assign actions profiles to the players 
based on this decision criterion. Such an approach is consistent in the sense that 

T≤  is complete and transitive. An SE is now formally defined. 
Definition 2.4. Let ( ) 1:T u RΩ →  be the utility function for a semi-cooperative 

game nΓ . The joint action profile *s ∈Ω  is an SE for nΓ  if and only if 
( ) ( )*T u s T u s ≤      for all s∈Ω . Thus *s  is an SE if and only if *s  max-

imizes the aggregate utility function composition ( )T u T u s=     over Ω . 
If nΓ  has multiple SEs resulting from ties in the maximization, it is assumed 

that a negotiation among the players, similar to the one stipulating T  and Ω , 
will choose a single *s . If the game nΓ  is arbitrated, the arbitrator will select 

,T Ω , and a single SE. A further significant application of the SE approach is the 
use as a refinement mechanism for multiple equilibria of nG . For example,Ω
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could be taken as the set of pure NEs for nG , all of which are in Ψ , with T  
specified either by the players, by an arbitrator, or possibly by the game’s model 
builder for normative purposes. Then the number of NEs could be reduced to 
those maximizing T u  over Ω . 

For a certain class of T , an SE *s  for nΓ  will be Pareto optimal. To estab-
lish this fact, the following definitions and results are used. 

Definition 2.5. For the game nΓ , the action profile s′′∈Ω  dominates 
s′∈Ω  if and only if ( ) ( ) ,i iu s u Is i′ ′ ∀′ ∈≤  and ( ) ( )j ju s u s′ ′′<  for some j . 
An action profile *s ∈Ω  is a Pareto maximum for nΓ  if *s  is not dominated 
by any s∈Ω . A Pareto maximum *s  is said to be Pareto maximal. 

Definition 2.6. For the game nΓ , the utility function ( ) 1:T u RΩ →  is said 
to be strictly increasing on ( )u Ω  if and only if ( ) ( )T u T us s′ ′′   <     for any 

,s s′ ′′∈Ω  for which s′′  dominates s′ . 
An immediate consequence of Definitions 2.5 and 2.6 is the next result. 
Lemma 2.7. If s∗  is an SE for nΓ  and T  is strictly increasing on ( )u Ω , 

then s∗  is Pareto maximal for nΓ . 
Proof. Let *s ∈Ω  be an SE for nΓ . We prove the contrapositive. If s∗  is 

not a Pareto maximum, there exists s′∈Ω  that dominates s∗ . But since T  is 
strictly increasing, it follows from Definition 2.5 that ( ) ( )T u s T su∗ <  ′    . 
Thus s∗  is not an SE for nΓ  to establish the result. 

3. Greedy Scalar Equilibrium 

It is now assumed that each player is greedy and wants a payoff as high as jointly 
possible. A greedy semi-cooperative equilibrium (GSE) for nΓ  is defined as 
follows. For Ω = Ψ  and ( )maxi is

M u s
∈Ω

= , consider the utility function  
( ) 1:GT u RΩ →  for which  

( ) ( )
1 , 

1G
i I i i

T u s s
M u s∈

= ∈   Ω
− +∏

               
 (1) 

Because of Assumption U, the multiplication in (1) defines a reasonable ag-
gregate utility function GT u  on Ω . The number 1 in the denominators of (1) 
prevents a division by 0 if any ( )i iu s M= .  

Definition 3.1. The pure strategy profile s∗  is a GSE for nΓ  if and only if 
s∗  maximizes the aggregate utility function ( )GG T u sT u =    over Ω . 

From Definition 3.1, a GSE always exists even though a pure NE modeling 
player selfishness may not. Moreover, from (3.1), it follows that ( )0 1GT u s< ≤    
for all s∈Ω . Maximizing ( )GT u s    over Ω  requires that each ( )*

iu s  be as 
close to iM  as jointly possible. This maximization of (3.1) is a discrete version  

of maximizing ( )1
1, ,

1n
i I i

f x x
x∈

=
+∏  over the region 0,ix i I≥ ∀ ∈ . In this 

continuous version, 0,
i

f i I
x
∂

< ∀ ∈
∂

, over the feasible region, so the maximum is 

the point 0,ix i I= ∀ ∈ . We now establish that a GSE is a Pareto maximum. 

Result 3.2. If s∗  is a GSE for nΓ , then s∗  is Pareto maximal for nΓ . 
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Proof. By Lemma 2.7, it suffices to show that ( ) 1:GT u RΩ →  is strictly in-
creasing. Let ,s s S′ ′′∈  be pure strategies such that s′′  dominates s′ . Thus  

( ) ( )
1 10 ,

1 1i i i i

i I
M u Ms su

< ≤ ∀ ∈
− + − +′ ′′

 and  

( ) ( )
1 10

1 1j j j js sM u M u
< <

+ −′ ′′− +
 for some j I∈ . Since these fractions are 

all positive, ( ) ( ) ( ) ( )1 1
1 1G G

i I i Ii i i i

T u T u
M u M u

s s
s s∈ ∈

′ ′′  = < =   − + −′ +  ′′∏ ∏ , and 

GT  is strictly increasing on ( )u Ω . 

A special case of Result 3.2 is the following corollary.  
Corollary 3.3. If s∗  is a GSE for nΓ , then s∗  is not dominated by any pure 

NE of the associated nG . 
On the other hand, the next example shows that a GSE for nΓ  can dominate 

a pure NE for nG . This fact and Corollary 3.3 raise the possibility that a GSE for 

nΓ  models player selfishness better than a pure NE for nG .  
Example 3.4. Consider the two-person prescriptive game 2Γ  with the 3 3×  

payoff matrix in Figure 1 below, where for simplicity we write 

( ){ }, : , 1, 2,3i jS a b i j= = . In this case, the security levels 1 2L =  and 2 1L = , so 
SΩ = . Immediately from Figure 1, 1 7M =  and 2 6M = . We calculate  
( )GT u s    for each cell of Figure 1 to give the GSE corresponding to the under-

lined number in the scalar matrix of the ( )GT u s    values shown in Figure 2.  
From Figure 1 and Figure 2, the unique GSE for 2Γ  is ( )3 3,a b  with payoff 

profile ( )6,6 . The two pure NEs for 2G  are ( )1 1,a b  and ( )2 3,a b  with payoff 
profiles ( )3,4  and ( )7,4 , respectively, while the two BEs are ( )1 1,a b  and 
( )3 3,a b  with payoff vectors ( )3, 4  and ( )6,6 , respectively. This example illu-
strates that a GSE for nΓ  is not necessarily an NE for nG  and vice versa. Mo-
rever, the GSE ( )3 3,a b  dominates the NE ( )1 1,a b . There is also a BE that is a  

 
  Player II 

  1b  2b  3b  

 1a  (3, 4) (2, 2) (2, 1) 

Player I 2a  (2, 3) (7, 1) (7, 4) 

 3a  (2, 1) (5, 6) (6, 6) 

Figure 1. Payoff matrix for Example 3.4. 
 

  Player II 

  1b  2b  3b  

 1a  0.0667 0.0333 0.0278 

Player I 2a  0.0417 0.1667 0.3333 

 3a  0.0278 0.3333 0.5000 

Figure 2. Scalar matrix for Example 3.4. 
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GSE. Finally, we note that if the payoff for ( )3 3,a b  were changed to ( )6,5  for 
( )3 3,a b  and if Figure 2 were recalculated, then the scalar value ( ) 0.255 0, 06GT    = , 
( )3 3,a b  is not a GSE, and no BE is a GSE and vice versa. 

Example 3.5. Consider now the classic two-person Prisoner’s Dilemma (PD) 
game with the payoff matrix of Figure 3. The associated scalar matrix for 2Γ  is 
shown in Figure 4. In this case, 1 1L =  and so 2 1L = . Thus  

( ) ( ){ }1 1 2 2, , ,a b a bΩ = , and the symbol × denotes that a strategy profile is not in 
Ω . From Figure 4, ( )2 2,a b  is the unique GSE, which is not an NE. However, it 
is the unique BE. Thus in this example, ( )2 2,a b  is both a greedy and mutually 
supportive action profile. Being mutually supportive in PD is better for each 
player than being selfish in the sense of an NE.  

Example 3.6. For 1 3x< < , Figure 5 is the payoff matrix of a Hawk-Dove 
game 2G  in which two countries vie for a contested resource. The Hawk pure 
strategy involves an escalated fight or even war for the resource, while the Dove 
pure strategy eschews such a fight. When 1 3x< < , 1 1L =  and 2 1L = , so 

( ) ( ) ( ){ }1 2 2 1 2 2, , , , ,a b a b a bΩ = . The pure NEs are ( )1 2,a b  and ( )2 1,a b  for 2G , 
and the BE is ( )1 1,a b , which is not feasible. The scalar matrix for 2Γ  is shown 
in Figure 6. For 1 2.2679x< < , ( )1 2,a b  and ( )2 1,a b  are GSEs as well as NEs. 
In this case, the greedy decision criterion has one player fighting and the other 
not. Such a situation could possibly lead to eventual retaliation by the Dove 
country and years of turmoil. When 2.2679 3x< < , however, the GSE is 
( )2 2,a b , while ( )1 2,a b  and ( )2 1,a b  are NEs. Hence, the GSE approach recog-
nizes that a larger payoff 2.2679x >  would result in a greedy Dove-Dove 

 
  Player II 

  1b  (Defect) 2b  (Cooperate) 

Player I 1a  (Defect) (1, 1) (5, 0) 

 2a  (Cooperate) (0, 5) (3, 3) 

Figure 3. Payoff matrix of Example 3.5. 
 

  Player II 

  1b  (Defect) 2b  (Cooperate) 

Player I 1a  (Defect) 0.04 × 

 2a  (Cooperate) × 0.1111 

Figure 4. Scalar matrix of Example 3.5. 
 

  Player II 

  1b  (Hawk) 2b  (Dove) 

Player I 1a  (Hawk) (−2, −2) (3, 1) 

 2a  (Dove) (1, 3) (x, x) 

Figure 5. Payoff matrix of Example 3.6. 
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  Player II 

  1b  (Hawk) 2b  (Dove) 

Player I 1a  (Hawk) × 0.3333 

 2a  (Dove) 0.3333 ( )2

1
1 4x−

 

Figure 6. Scalar matrix of Example 3.6. 
 

strategy and avoid war, whereas the non-cooperative NE strategy does not. 
Computational Procedure 3.7. A general procedure for obtaining the GSEs 

for nΓ  is outlined below. ( )GT u s    will be maximized over S  and not Ω . 
However, for any s S∈  such that ( )i iu s L< , the method will replace ( )iu s  
by a very negative number to ensure that an s∗  maximizing ( )GT u s    over 
S  also maximizes it over Ω .  

Step 1. Enumerate the s S∈  (i.e., the cells of the payoff matrix) as 
1, , j

j I
m

∈
∏ , and let Q  be a positive number much larger than any ( )iu s  in 

the matrix. Read a single player’s payoff at a time from each cell in order the or-
der 1, , n . The length of the input is thus j

j I
N n m

∈

= ∏  numbers. As these 

numbers are read, if any ( )i iu s L< , set ( )iu s Q= −  so that s  cannot max- 

imize ( )GT u s   . After all cells have been read and all replacements have been 
made, every n numbers from the beginning of the input list represents an 
n-tuple ( ) ( )( )1 , , nu s u s  for some s S∈ ; and every action profile s∉Ω . 
will have at least one ( )iu s  with value Q− .  

Step 2. For i I∀ ∈ , compute ( )maxi is
M u s

∈Ω
= , which is the maximum of the 

individual inputs , , 2 , , 1j
j I

i i n i n i n m
∈

 
+ + + − 

 
∏  one or more of which have 

value at least iL . 

Step 3. For each of the possible j
j I

m
∈
∏  cells, i.e., joint actions s S∈ , com-

pute ( ) ( )
1

1G
i I i i

T v s
M u s∈

=   − +∏ . 

Step 4. Find the action profiles *s S∈  that maximize ( )GT u s    in Step 3.  
The worst-case time complexity of obtaining all GSEs for nΓ  is now shown 

to be linear in the size of the input data. Recall that in the standard Random 
Access Machine (RAM) model [41], each addition, subtraction, multiplication, 
division, replacement, if statement, and call is considered to take one time step.  

Result 3.8. The worst-case time complexity for obtaining all GSEs for nΓ  is 
( )O N  for j

j I
N n m

∈

= ∏ . 
Proof. Without loss of generality it may be assumed that all have players have 

the same number of actions, so let ,im M i I= ∀ ∈ , in which case nN nM=  is 
the size of the input. The maximum possible number of replacements in the Step 
1 is 1nnM −  with time complexity ( )nO nM . Finding all the n maxima iM  in 
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Step 2 has complexity ( )O nM  as established by Blum et al. [42]. With all iM  
computed, finding each term of the product in Step 3 for a given s S∈  takes 
3n  time steps. But there are nM  joint actions s S∈  and thus 1nM −  mul-
tiplications. Hence, determining the product in Step 3 for each s S∈  has com-
plexity ( )nO nM . Next finding the GSEs by taking the maximum in Step 4 over 
all s S∈  has complexity ( )nO M . It follows that all GSEs can be obtained in 
time complexity ( ) ( ) ( ) ( )n n nO nM O nM O nM O M+ + + , which is ( )nO nM  
to establish the result. 

It is worth noting that the problem of determining if pure NEs exists for a 
strategic-form game and then finding them is ( )logO N N  as shown by Gottlob, 
et al. [43]. A similar result holds for BEs [44]. However, finding a mixed NE is a 
PPAD-complete problem [45], a different type of complexity than NP-comple- 
teness but still a strong evidence for intractability [46]. 

4. Compromise Scalar Equilibrium 

Now assume now that each player wants a fair payoff or compromise as com-
pared with the other players. Again, because of Assumption U, a reasonable no-
tion of fairness is proposed as a compromise semi-cooperative equilibrium (CSE) 
for nΓ , which is defined in a manner similar to Definition 3.1. For Ω = Ψ ,  

( )mini is
m u s

∈Ω
= , and ( )maxi is

M u s
∈Ω

= , consider the aggregate utility function 

( ) 1:CT u RΩ →  for which  

( ) ( )
1

1
, 

1

n
i i

C
i i i

u s m
T u s s

M m=

− +
= ∈ +

Ω  −∏                 (2) 

From the definition of im  and iM  it follows that ( )0 1CT u s< ≤    for all 
s∈Ω . The number 1 in the numerators of (4.1) prevents ( )CT u s    from being 
0 if ( )i iu s m=  for some i , while the number 1 in the denominators prevent a 
division by 0 if i im M= . Maximizing ( )CT u s    over Ω  requires that each 

( )*
iu s  be as close to iM  as jointly possible. Thus the players with i iM m>  

will receive payoffs in approximately the same percentile of their payoff ranges 
over the feasible action profiles. Players with i iM m=  will receive iM . For this 
decision criterion, the outcome can be construed as an equitable compromise 
between the players’ selfishness and unselfishness. A CE differs substantially from 
the fairness equilibrium of Rabin [47] for two players and from other notions of 
fairness in Korth [48]. However, ( )CT u s    could be considered as a discrete ana-
log to the Nash product for the two-person bargaining problem [23]. More precisely, 
maximizing ( )CT u s    over Ω  is a discrete version of maximizing 

 
 

( )1, , n i
i I

f x x x
∈

=∏  over the region 0 1,ix i I< ≤ ∀ ∈ , in which case 0
i

f
x
∂

>
∂

  

for 0 1,ix i I< ≤ ∀ ∈ , and the maximum is at 1,ix i I= ∀ ∈ . The following defi-
nition extends one in Corley et al. [49]. 

Definition 4.1. The pure strategy profile s∗  is a CSE for nΓ  if and only if 
s∗  maximizes the aggregate utility function ( )C CT T u su =     over Ω . 

https://doi.org/10.4236/tel.2017.76113


H. W. Corley 
 

 

DOI: 10.4236/tel.2017.76113 1680 Theoretical Economics Letters 
 

CT  is easily shown to be strictly increasing on ( )u Ω , much as in the proof 
of Result 3.2, so the next result follows directly from Lemma 2.7.  

Result 4.2. If s∗  is a CSE for nΓ , then s∗  is Pareto maximal for nΓ . 
Obviously a CSE always exists for nΓ . A computational procedure to obtain 

all CSEs is a simple modification of the Computational Procedure 3.7 in which 
any ( )i iu s L>  is now replaced by ( ) 1i iu s m= −  and CT  is used instead of  

GT . This procedure again has worst-case time complexity ( )O N  for  

j
j I

N n m
∈

= ∏ . 
Example 4.3. Consider again two-person PD game 2G  of Figure 3 above. 

The associated scalar matrix for 2Γ  is shown in Figure 7. Thus ( )2 2,a b  is the 
unique CSE, which is not an NE but is a BE.  

Example 4.4. Consider again the Hawk-Dove of Figure 5 with associated 
compromise scalar matrix in Figure 8. Now ( )2 2,a b  is the unique CSE for 
1.7321 3x< < , which gives a larger range on x  for avoiding war by compro-
mise than by greed as in Example 3.6.  

5. Satisficing Scalar Equilibrium 

Aspiration levels are widely used in decision theory [50] [51] and will be used 
here in a satisficing scalar equilibrium (SSE) unrelated to the satisficing games of 
Stirling [52]. The SSE achieves four objectives.  

1) An SSE gives each player i I∈  at least some targeted payoff level ip  re-
quired for the player to accept a binding agreement gives each player i I∈  at 
least the targeted payoff level ip  that is required for the player to accept a 
binding agreement for an action profile s∗ . It is assumed that ,i ip L i I≥ ∀ ∈ , 
with some k kp L>  to distinguish the aspiration levels from the security levels, 
which are always obtainable.  

2) The SSE model focuses the players or arbitrator on the parameters ip  and 

id . For example, if all ip  cannot be simultaneously satisfied, they can be mod-
ified by negotiation.  

 
  Player II 

  1b  (Defect) 2b  (Cooperate) 

Player I 1a  (Defect) 0.1111 × 

 2a  (Cooperate) × 1 

Figure 7. Scalar matrix of Example 4.3. 
 

  Player II 

  1b   (Hawk) 2b   (Dove) 

Player I 1a  (Hawk) × 0.3333 

 2a  (Dove) 0.3333 
2

9
x  

Figure 8. Scalar matrix of Example 4.4. 
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3) An SSE can give certain players higher relative payoffs than other players. 
Each each player i I∈  will be assigned a weighting factory 0id > . If j kd d> , 
then player j  will receive a higher payoff than player k  if possible.  

4) For any 0,id i I> ∀ ∈ , an SSE is Pareto optimal over the joint actions 
achieving the players’ aspiration levels.  

Definition 5.1. For any ( ) ( )1 1, , , , , n
n np p d d R= = ∈p d  , where  

0,id i I> ∀ ∈ , let ( ) ( ), W i i
i I

T u s d u s s
∈

= Ω∈  ∑ , where  

( ){ }: ,i iu ss S p i IΩ ≥= ∈ ∈ . Then the action profile s∗  is an SSE for the game 

nΓ , if and only if s∗  maximizes the aggregate utility function  
( )W WT T u su =     over Ω . 

Result 5.2. For all ( ) ( )1 1, , , , , n
n np p d d R= = ∈p d  , where 0,id i I> ∀ ∈ , 

any *s S∈  solving  

( )

( )

maximize

subject to , ,

i is S i I

i i

d u s

u s p i I

∈ ∈

≥ ∀ ∈

∑
                   (3) 

is an SSE and Pareto maximal for nΓ .  
Proof. Let 0,id i I> ∀ ∈ , and let ,s s′ ′′∈Ω  be such that s′  dominates s′′ . 

Then it immediately follows that  

( ) ( ) ( ) ( )0 i i i i i i i
i I i I i I

sd u u d u d us s s
∈ ∈ ∈

′ ′′ ′ ′′      < − = −∑ ∑ ∑ , from which  

( ) ( )i i i i
i I i I

d u d us s
∈ ∈

′ ′′  >∑ ∑ . Thus WT  is strictly increasing on ( )u Ω , and the 

result follows from Lemma 2.7. 

One method of determining feasible aspiration levels ip  satisfied by at least 
one s S∈  in Definition 5.1 is to select the weights 0,id i I> ∀ ∈ , and then to 

( )maximize i is S i I
d u s

∈ ∈
∑ . The aspiration levels ( )* ,i ip u s i I= ∀ ∈  are then feasible. 

Moreover, this method could be construed as fair if 1,id i I= ∀ ∈ . The approach 
suggests the following counterpart to Result 5.2.  

Result 5.3. If s∗  is Pareto maximal for nΓ , then for any 0,id i I> ∀ ∈ , s∗  
is an SSE for the aspiration levels ( )* ,i ip u s i I= ∀ ∈ . 

Proof. Let *s  be Pareto maximal for nΓ . Then *s  is obviously feasible for 

(3) with ( )* ,i ip u s i I= ∀ ∈ . Now suppose there exist 0,i Id i>′ ∀ ∈ , for which 
*s  does not solve (3). Then for some Ss′∈  satisfying  

( ) ( )* ,i i iu p u s i Is′ ≥ = ∀ ∈ , it follows that ( ) ( )*
i i i i

i I i I
d s u sdu

∈ ∈

>′ ′ ′∑ ∑  and hence 

( ) ( )* 0i i i
i I

u u sd s
∈

 −′  ′ >∑ . But since 0, Id i>′ ∀ ∈ , then ( ) ( )* ,i iu u s Is i≥′ ∀ ∈  

and ( ) ( )*
k k ssu u>′  for some k . Thus *s  is not Pareto optimal for nΓ , in 

contradiction to the assumption. It follows that for any 0,id i I> ∀ ∈ , *s  

solves (3) and is an SSE for aspiration levels ( )* ,i ip u s i I= ∀ ∈ .■ 

Example 5.4. Consider now the payoff matrix of Example 3.4 in Figure 1. 
Note that ( ) ( )1 2, 7,5p p =  yields no feasible action profiles. When  
( ) ( )1 2, 5, 4p p = , problem (3) has a solution, and the feasible s∈Ω  are ( )2 3,a b   
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  Player II 

  1b  2b  3b  

 1a  × × × 

Player I 2a  × × 6.1 

 3a  × 5.3 6.0 

Figure 9. Scalar matrix for Example 3.4. 
 

with payoff profile ( )7,4 , ( )3 2,a b  with ( )7,4 , and ( )3 3,a b  with ( )6,6 . Set-
ting 1 2 1d d= =  in (3) gives the unique SSE ( )3

*
3,s a b=  with payoff profile 

( )6,6 . For ( ) ( )1 2, 5, 4p p =  and ( ) ( )1 2, 0.7,0.3d d = , however, the scalar matrix 
of ( )WT u s    values for the feasible payoffs is shown in Figure 9, where cells 
with × have infeasible payoffs. The unique SSE is ( )2 3,a b  with payoff profile 
( )7,4 . Its scalar value is underlined.  

For appropriate aspiration levels, an SSE always exists for nΓ . Computational 
Procedure 3.7 can again be modified to determine if an SSE exists and then to 
obtain them all. To do so, iL  is replaced by iL  and GT  by WT  for a given set 
of 0id > . Whenever ( )i iu s p< , the replacement ( )iu s Q= −  in the maximi-
zation of (3) assures that s  will not be an SSE. This modified procedure also 
has worst-case time complexity ( )O N  for j

j I
N n m

∈

= ∏ . 

6. Axiomatic Considerations 

A set of standard axioms for bargaining solutions will now be applied to the 
semi-cooperative models studied here. Nash [23] proposed four axioms stated 
below as Axioms 1 - 4 for the game ( ) ( ), , ,,n i ii I i I

I S u T
∈ ∈

Γ = Ω . Axiom 5 was 
formulated by Kalai [37]. We add Axiom 6, which seems reasonable.  

Axiom 1 (Pareto Efficiency). If *s S∈  is an SE for  
( ) ( ), , ,,n i ii I i I

I S u T
∈ ∈

Γ = Ω , then ( ) ( ) ( )( )* *
1

*, , nu u s sus =   is Pareto optim-
al over Ω . In other words, no player’s payoff is better for another strategy 
s∈Ω  without at least one other player’s being worse. 

Axiom 2 (Symmetry). If the players are indistinguishable, the solution will 
not discriminate between them. The names of the players do not matter. In other 
words, if ( )1

* * *, , ns Ss s= ∈  is an SE for ( )1
* * *, , ns Ss s= ∈  with a feasible set 

Ω  and if the indices 1, , n  are permuted in ( )* *
1 , , ns s , then the resulting 

strategy profile is an SE for the permuted game n′Γ  where the indices are simi-
larly permuted.  

Axiom 3 (Invariance to Affine Transformations). If *s S∈  is an SE for 

( ) ( ), , ,,n i ii I i I
I S u T

∈ ∈
Γ = Ω , then *s  is an SE for the game 

( ) ( )( ), ,, ,n i i i ii I i I
su TI S α β

∈ ∈
′Γ = + Ω  for any real numbers 0iα >  and iβ . In 

other words, an affine transformation ( ) , 0,i i i iu s i Iα β α+ > ∀ ∈  of the utilities 

and aspiration levels will not change the SEs.  
Axiom 4 (Independence of Irrelevant Alternatives). If *s S∈  is an SE for 
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( ) ( ), , ,,n i ii I i I
I S u T

∈ ∈
Γ = Ω  with feasible set Ω  and if *s ∈Λ ⊂ Ω , then *s  

is an SE for ( ) ( ), ,, ,n i ii I i I
TI S u

∈ ∈
′Γ = Λ  with feasible set Λ . 

Axiom 5 (Resource Monotonicity). If *s S∈  is an SE for  

( ) ( ), , ,,n i ii I i I
I S u T

∈ ∈
Γ = Ω  with feasible set Ω  and if **s S∈  is an SE for a 

( ) ( ), ,, ,n i ii I i I
TI S u

∈ ∈
′Γ = Λ  with feasible set ⊃Λ Ω , then  

( ) ( )* ** ,i is su u i I≤ ∀ ∈ . In other words, if additional feasible action profiles are 

considered, a new solution should be at least as good for all agents as the pre-
vious solution.  

Axiom 6 (Individual Rationality). No player would agree to a payoff lower 
than his guaranteed security level, nor would a reasonable arbitrator impose 
such a payoff. 

The Nash two-person bargaining solution [23] satisfies the above axioms ex-
cept for Axiom 5 if the disagreement level is taken as a type of security level. The 
two-person bargaining solution of Kalai [37] satisfies all the axioms except 
Axiom 4 under the same assumption. However, the solution of Kalai and Smo-
rodinsky [36] satisfies Axioms 1-3 but not Axioms 4 - 5, again under the same 
assumption. 

The SEs of this paper satisfy Axioms 1, 2, 4, 6 but not Axioms 3, 5. However, 
an SSE is easily seen to be invariant for affine transformations of the form 

( ) , 0,i iu s i Iα β α+ > ∀ ∈ , where the same α  is applied to ,iu i I∀ ∈ , if the as-
piration levels are also transformed. Moreover, a GSE and CSE would be inva-
riant if not for the number 1’s added to prevent a numerator or denominator 
from having a value 0. It is likely that useful transformations T other than 

,G CT T  and WT  can be formulated to satisfy Axioms 1 - 4. On the other hand, 
satisfying Axiom 5 presents a difficulty. The aggregation of all individual utilities 
into some ( )T u s    may not dictate that the monotonicity requirement of 
Axiom 5 on the individual utilities ( ) , ,i Isu i∀ ∈  will be satisfied. 

7. Conclusion 

The normative SE approach presented here extends classical bargaining models 
to semi-cooperative games with alternate decision criteria for the players or an 
arbitrator. In effect, this paper attempts to reduce the negotiations of semi- 
cooperative games to the new approach of selecting an appropriate utility func-
tion T, of which three were offered. It also restricts previous work to the pure 
strategies actually required for implementation. In doing so, an SE can be ob-
tained quickly as the maximum of a finite number of scalar values, as opposed 
to the computational effort required to determine mixed equilibria. Future 
work should focus on formulating utility functions T that would model deci-
sion criteria besides the greedy, compromise, and satisficing ones presented in 
this paper. The next step would then be to form an aggregate utility function T 
by combining individual utility functions for players with different notions of 
rationality.  
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