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Abstract 
Throughout the study, all rings are associative with identity and all modules 
are unitary right R-modules. Let M be a right R-module and ( )RS End M= , 
its endomorphism ring. A submodule X of a right R-module M is called a 
nilpotent submodule of M if XI  is a right nilpotent ideal of S and X be a nil 
submodule of M if XI  is a right nil ideal of S. By definition, a nilpotent sub-
module is a nil submodule. It is seen that X is a fully invariant nilpotent sub-
module of M if and only if XI  is a two-sided nilpotent ideal of S. In this pa-
per, we present some results of nil and nilpotent submodules over associative 
endomorphism rings. 
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1. Introduction and Preliminaries 

Ring theory is an important part of algebra. It has been widely used in Electrical 
and computer Engineering [1]. Historically, some of the major discoveries in 
ring theory have helped shape the course of development of modern abstract al-
gebra. Modern ring theory begins when Wedderburn in 1907 proved his cele-
brated classification theorem for finite dimensional semi-simple algebras over 
fields. Twenty years later, E. Noether and E. Artin introduced the ascending 
chain condition and descending chain condition as substitutes for finite dimen-
sionality. 

We know that Module theory appeared as a generalization of theory of vector 
spaces over a field. Every field is a ring and every ring may be considered as a 
module. Köthe [2] first introduced and investigated the notion of nil ideals in 
commutative ring theory. Amitsur [3] investigated radicals of polynomial rings. 
It is important to ascertain when nil and Jacobson radical coincide. It is known 
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that nil rings are Jacobson radicals. Again Jacobson radical of a finitely generated 
algebra over a field is nil [3]. There were some historical notes on nil ideals and 
nil radicals due to Amitsur [4]. Radicals of graded rings were introduced and 
investigated by Jespers et al. [5]. There is another notion of radicals in nil and 
Jacobson radicals in graded rings due to Smoktunowicz [6]. Puczylowski ([7], 
[8]) investigated some results concerning radicals of associative rings related to 
Köthe’s nil ideal problems. Following [9], if X is a prime submodule of a right 
R-module M, then the set xI  is a prime ideal of the endomorphism ring S and 
the converse is true if M is a self-generator. Ali [10] investigated the idempotent 
and nilpotent submodules of multiplicative modules. Chebotar et al. [11] and 
Klein [12] investigated some results concerning nil ideals of associative rings 
which do not necessarily have identities. Sanh et al. ([13] [14] [15]) introduced 
the notion of fully invariant submodules and characterized their properties.  

2. Nil and Nilpotent Rings 

Let R be a ring with DCC on right ideals. Let { }Iα  be the collection of all nil-
potent right ideals of R. Then N Iα= ∑  is called the radical of R. 

It was shown in [16] that every one-sided or two-sided nilpotent ideal is a nil 
ideal and the sum of two nilpotent right, left or two-sided ideals is again nilpo-
tent. Using these results we can prove the following corollary over associative 
arbitrary rings. 

Corollary 2.1: Let R be a right noetherian ring. Then each nil one-sided ideal 
of R is nilpotent. 

Proof. Let S be the sum of all the nilpotent right ideals of R. The S is an ideal. 
Since R is right noetherian, S is the sum of a finite number of nilpotent right 
ideals and hence S is nilpotent. It follows that the quotient /R S  has no non-
zero nilpotent right ideals. Let I be a nil one-sided ideal of R. Then the image of I 
in /R S  is zero. Hence I S⊆ .  

Again the following propositions give us the property similar to that of rings.  
Proposition 2.2 ([17]): If R is a semisimple ring then it has no two-sided 

ideals except zero and R. 
Proposition 2.3: Let R be a semiprime ring with the ACC for right annihila-

tors. Then R has no nonzero nil one-sided ideals. 
Proof. Let I be a nonzero one-sided ideal of R and let 0 a I≠ ∈  with ( )Rr a  

as large as possible. Since R is semiprime, there is an element x R∈  such that 
0axa ≠ . Thus axa  is a nonzero element of I such that ( ) ( )R Rr a r axa⊆ . So 

( ) ( )R Rr a r axa= . We have 0ax ≠ , i.e., ( )Rx r a∉ . Thus ( )Rx r axa∉ . So, 
( )2 0ax ≠ . Hence ( )Rxax r a∉  implying that ( )3 0ax ≠ . Therefore, ax  and 
hence, also xa  is not nilpotent and ax I∈  or xa I∈ . 

Definition 2.4: The nil radical of a ring R is defined to be the radical ideal 
with respect to the property that “a two-sided ideal is nil” and is denoted by 

( )N R . That is, ( )N R  is the largest two-sided ideal of R such that every ele-
ment of ( )N R  is nilpotent. 
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Recall that the prime radical of M is the intersection of all prime submodules 
of M and is denoted by ( )P M . The prime radical of a ring R is the intersection 
of all prime ideals of R and is denoted by ( )P R . 

Theorem 2.5 ([16]): Let 1I  and 2I  be two ideals of a ring R and let 
{ }1 2 1 2 1 1 2 2: ,I I a a a I a I+ = + ∈ ∈ . Then 1 2I I+  is an ideal of R. 

For convenience, we propose a theorem of nil right ideals over associative ar-
bitrary rings here. 

Theorem 2.6: If R is a ring and ,I J  are two nil right ideals of R, then the 
sum ( )I J+  is a nil right ideal. 

Proof. Let { }1 2 3, , , , sI a a a a= 
 and { }1 2 3, , , , tJ b b b b= 

 be such that 
31 2

1 2 10, 0, 0, , 0sn nn n
sa a a a= = = =

 where 1 2 3 sn n n n≥ ≥ ≥ ≥  and  
32

1 2 10, 0, 0, , 0tm mmm
tb b b b= = = =

 where 1 2 3 tm m m m≥ ≥ ≥ ≥ . 
Let n and m be positive numbers such that 1 ,in n n i= ≥ ∀  and 1 ,jm m j= ≥ ∀ , 

hence 0,n
ia i= ∀  and 0,m

jb j= ∀ . 
Since ia I∀ ∈  we have ia r I∈  implies i ka r a=  where 0;k n

k ka a n k= = ≥ . 
Also, jb J∀ ∈  we have jb r J∈  implies j tb r b=  where 0;t m

t ta a m t= = ≥ . 
Take for example 3, 2n m= = . 
Also let a I∈  such that 3 0a =  and b J∈  such that 2 0b = . 
So, as 3n = , we get ( ) ( ) ( )

33 32 0ab a b aba= = = = , where 2, ,ab a b aba I∈ . 
Similarly, as 2m = , we get ( ) ( ) ( )2 22 2 2 0ba ba b a= = = = , where 

2 2, ,ba ba b a J∈ . 
Now { }: ,I J a b a I b J+ = + ∈ ∈ . Then 

( )2 2 2 2a b a ab ba b a ab ba+ = + + + = + +  

( )3 3 2 2 2 2

2 2 2

a b a a b aba ab ba bab b a

a b aba ab ba bab

+ = + + + + + +

= + + + +
 

( )4 2 2 2a b a ba aba abab ba b+ = + + +  

( )5 2 2 2 2 2a b a ba a bab aba b ba ba+ = + + +  

( )6 2 2 2 2 2a b a ba b aba ba aba b ba ba+ = + + +  

( )7 2 2a b a ba ba+ =  

( ) ( )8 2 2 2 0a b ba ba ba ba ba+ = = =  

If we take 3n =  and 3m = , then we get 

( )19 0a b+ = . 

So if 0; 1,2,3, ,n
ia i s= = 

 and 0; 1,2,3, ,m
jb j t= =    

Then there exists in n i≥ ∀  and jm m j≥ ∀  such that 

( ) ( )0, ; , 0, ;
mnn m

i i i j j ja a r i a r I b b r j b r J= = ∀ ∈ = = ∀ ∈  

Then for any ,a I b J∈ ∈  there exists k  such that ( ) 0ka b+ = . 
Thus the theorem is proved. 
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3. Nil and Nilpotent Modules 

We see that the vector spaces are just special types of modules which arise when 
the underlying ring is a field. If R is a ring, the definition of an R-module M is 
closely analogous to the definition of a group action where R plays the role of the 
group and M the role of the set. The additional axioms for a module require that 
M itself have more structure (namely that M is an abelian group). Modules are 
the “representation objects” for rings, that is, they are, by definition, algebraic 
objects on which rings act. As the theory develops, it will become apparent how 
the structure of the ring R is reflected by the structure of its modules and vice 
versa.  

In [11], many basic properties of nil and nilpotent modules and submodules 
have been given. In this paper, we give some more properties of nil and nilpotent 
modules and submodules in some special cases.  

We first begin with the proposition that shows some properties of nil and nil-
potent modules and submodules similar to that of nil and nilpotent rings. 

The following theorem is an extension of the above theorem for modules over 
associative endomorphism rings. 

Theorem 3.2: Let R be a ring with identity and with DCC on right ideals. Let 
N be the radical of R and let M be an R-module. Then 0MN =  if and only if M 
is the sum of irreducible submodules. 

Proof. Let M is the sum of irreducible submodules, then any m M∈  is in 

1
n

kk M
=∑ , where kM  are irreducible. 

Now k kM N M=  or, 0kM N = . If 0jN = , then k kM N M=  implies 
0kM = , a contradiction. 

Thus 0kM N = , where 0mN =  and so 0MN = . 
Conversely, suppose that 0MN = . Then we can consider M as R/N-module, 

by putting 
( )m r N mr+ =  for all r R∈ . Now R/N is semisimple and so, M is the sum 

of irreducible R/N-modules. Now let M  be an irreducible R/N module, then 
since 0MN = , M  is an R-module, where ( )mr m r N= + . Moreover, M  
has no non zero proper R-submodules, since this would induce proper non zero 
R/N-submodules. Thus M  is an irreducible R-module. 

Theorem 3.1 ([18]): Let M be an R-module, where R is a semisimple. Then 
M is the sum of irreducible submodules. 

The following propositions and theorems give some properties of nil and nil-
potent modules. 

Proposition 3.3: Let M be a quasi-projective, finitely generated right R-module 
which is a self-generator. Let X be a simple submodule of M. Then either 

2 0XI =  or ( )  X f M=  for some idempotent Xf I∈ . 
Proof. Since X is a simple submodule of M, XI  is a minimal right ideal of S. 

Suppose that 2 0XI ≠ . Then there is a Xg I∈  such that 0XgI ≠ . Since XgI  
is a right ideal of S and X XgI I⊂ , we have X XgI I=  by the minimality of XI . 
Hence there exists Xf I∈  such that gf g= . The set { }: 0XI h I gh= ∈ =  is a 
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right ideal of S and I is properly contained in XI  since f I∉ . By the mini-
mality of XI , we must have 0I = . It follows that 2

Xf f I− ∈  and 

( )2 0g f f− = , and hence 2f f= . Note that ( )f M X⊂  and ( ) 0f M ≠ , 
and from this we have ( )f M X= . 

Proposition 3.4: Let M be a quasi-projective, finitely generated right 
R-module which is a self-generator. If M satisfies the ACC on fully invariant 
submodules, then ( )P M  is nilpotent. 

Proof. If M satisfies the ACC on fully invariant submodules, then S satisfies 
the ACC on two-sided ideals. Indeed, 1 2I I⊂ ⊂  is an ascending chain of 
two-sided ideals of S, then ( ) ( )1 2I M I M⊂ ⊂  is an ascending chain of fully 
invariant submodules of M. Since M has the ACC on fully invariant submodules, 
there exists a positive integer n such that ( ) ( )n kI M I M=  for all k n> . Thus 

n kI I=  for all k n> , showing that S satisfies the ACC on two-sided ideals. 
Therefore ( )P S  is nilpotent. Since ( ) ( )P MS I= , we have ( )P M  is nilpotent. 

Theorem 3.5: Let M be a quasi-projective, finitely generated right R-module 
which is a self-generator. Then M is a semiprime module if and only if M con-
tains no nonzero nilpotent submodules. 

Proof. By hypothesis, 0 is a semiprime submodule of M. If X is a nilpotent 
submodule of M, then 0n

XI =  for some positive integer n, and hence 
( ) 0n

XI M = . 
Note that ( ) 0XI M = , we can see that 0X = . 
Conversely, suppose that M contains no nonzero nilpotent submodules. Let 

I  be an ideal of S such that ( )2 0I M = . Then we can write ( )I MI I=  and 
hence ( )

2 0I MI = . It follows that ( )I M  is a nilpotent submodule of M and we 
get ( ) 0I M = . Thus 0 is a semiprime submodule of M and thus M is a semi-
prime module. 

Theorem 3.6: Let M be a quasi-projective, finitely generated right R-module 
which is a self-generator and ( )P M  be the prime radical of M. If M is a noe-
therian module, then ( )P M  is the largest nilpotent submodule of M. 

Proof. Let   be the family of all minimal submodules of M. Then we can 
we write ( ) X

P M X
∈

=
  . But ( )P M  contains all nilpotent submodules of 

M. Again ( ) ( )XP M X
I I P S

∈
= =
 

. Note that from our assumption we can see 
that S is a right noetherian ring. Then there exist only finitely many minimal 
prime ideals of S and there is a finite product of them which is 0, say 1 0nP P = . 
Since ( )P MI  is contained in each , 1, ,iP i n=  , we have ( ) 0n

P MI = . Thus 

( )P M  is nilpotent. 

4. Conclusion 

Nil and nilpotent rings and modules are very essential part of Abstract algebra. 
In the class of noetherian ring, nil ideals are nilpotent. Many properties of nil and 
nilpotent ideals of rings are not transferable to nil and nilpotent submodules. 
Modifying the structure of nil and nilpotent ideals we transferred the notions to 
modules. We also introduced a new concept of nil and nilpotent submodules. 
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