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Abstract 
It is well known that the line of intersection of an ellipsoid and a plane is an 
ellipse (see for instance [1]). In this note the semi-axes of the ellipse of inter-
section will be projected from 3d space onto a 2d plane. It is shown that the 
projected semi-axes agree with results of a method used by Bektas [2] and also 
with results obtained by Schrantz [3]. 
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1. Introduction 

Let an ellipsoid be given with the three positive semi-axes 1a , 2a , 3a  
22 2
31 2

2 2 2
1 2 3

1
xx x

a a a
+ + =                           (1) 

and a plane with the unit normal vector 

( )T
1 2 3, , ,n n n=n  

which contains an interior point ( )T
1 2 3, ,q q q=q  of the ellipsoid. A plane 

spanned by vectors ( )T
1 2 3, ,r r r=r , ( )T

1 2 3, ,s s s=s  and containing the point q  
is described in parametric form by 

( )T
1 2 3with , , .t u x x x= + + =x q r s x               (2) 

Inserting the components of x  into the equation of the ellipsoid (1) leads to 
the line of intersection as a quadratic form in the variables t and u. Let the scalar 
product in 3R  for two vectors ( )T

1 2 3, ,v v v=v  and ( )T
1 2 3, ,w w w=w  be 
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denoted by 

( ) 1 1 2 2 3 3, v w v w v w= + +v w  

and the norm of vector v  by 

( ), .v v=v  

With the diagonal matrix 

1
1 2 3

1 1 1diag , ,D
a a a

 
=  

 
 

the line of intersection has the form: 

( ) ( ) ( )
( ) ( )

( ) ( )( )

( )

1 1 1 1

1 1 1 1

1 1 1 1

1 1

, ,
,

, ,

2 , , ,

1 , .

D D D D t
t u

D D D D u

t
D D D D

u
D D

  
  

  
 

+  
 

= −

r r r s
r s s s

q r q s

q q

                 (3) 

As q  is an interior point of the ellipsoid the right-hand side of Equation (3) is 
positive. 
Let r  and s  be unit vectors orthogonal to the unit normal vector n  of the 
plane 

( )
( )

2 2 2
1 2 3

1 1 2 2 3 3

, 1,

, 0,

r r r

n r n r n r

= + + =

= + + =

r r

n r
                    (4) 

( )
( )

2 2 2
1 2 3

1 1 2 2 3 3

, 1,

, 0,

s s s

n s n s n s

= + + =

= + + =

s s

n s
                   (5) 

and orthogonal to eachother 

( ) 1 1 2 2 3 3, 0.r s r s r s= + + =r s                      (6) 

If vectors r  and s  have the additional property 

( ) 3 31 1 2 2
1 1 2 2 2

1 2 3

, 0
r sr s r sD D

a a a
= + + =r s                  (7) 

the 2 2×  matrix in (3) has diagonal form. If condition (7) does not hold for 
vectors r  and s , it can be fulfilled, as shown in [1], with vectors r  and s  
obtained by a transformation of the form 

cos sin ,
sin cos
ω ω
ω ω

= +
= − +

r r s
s r s




                          (8) 

with an angle ω  according to 

( )
( ) ( )

1 1

1 1 1 1

2 ,1 arctan .
2 , ,

D D
D D D D

ω
 

=  
−  

r s
r r s s

                 (9) 
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Relations (4), (5) and (6) hold for the transformed vectors r  and s  instead of 
r  and s . If plane (2) is written instead of vectors r  and s  with the 
transformed vectors r  and s  the 2 2×  matrix in (3) has diagonal form 
because of condition (7): 

( ) ( ) ( ) ( )
( )

2 2
1 1 1 1 1 1 1 1

1 1

, , 2 , 2 ,

1 , .

D D t D D u D D t D D u

D D

+ + +

= −

r r s s q r q s

q q

     

 

Then the line of intersection reduces to an ellipse in translational form 

( ) ( )2 2
0 0

2 2 1
t t u u

A B
− −

+ =                        (10) 

with the center ( )0 0,t u  

( )
( )

( )
( )

1 1 1 1
0 0

1 1 1 1

, ,
and

, ,
D D D D

t u
D D D D

= − = −
q r q s
r r s s

 

   

               (11) 

and the semi-axes 

( ) ( )1 1 1 1

1 1and ,
, ,
d dA B

D D D D
− −

= =
r r s s   

               (12) 

where 

( ) ( )
( )

( )
( )

2 2
1 1 1 1

1 1
1 1 1 1

, ,
, .

, ,
D D D D

d D D
D D D D

= − −
q r q s

q q
r r s s

 

   

             (13) 

Because of ( )1 11 1 , 0d D D− ≥ − >q q  the numerator 1 d−  in (12) is positive. 
Putting 

( ) ( )1 1 1 2 1 1, and ,D D D Dβ β= =r r s s                     (14) 

the semi-axes A, B given in (12) can be rewritten as 

1 2

1 1and .d dA B
β β
− −

= =                        (15) 

In [1] it is shown that 1β  and 2β  according to (14) are solutions of the 
following quadratic equation 

2 2 2 2
1 2 32 2 2 2 2 2

2 3 1 3 1 2

22 2
31 2

2 2 2 2 2 2
2 3 1 3 1 2

1 1 1 1 1 1

0.

n n n
a a a a a a

nn n
a a a a a a

β β
      

− + + + + +      
      

+ + + =

         (16) 

Furthermore it is proven in [1] that d according to (13) satisfies 
2

2 2 2 2 2 2
1 1 2 2 3 3

.d
a n a n a n

κ
=

+ +
                      (17) 

2. Projection of the Ellipse of Intersection onto a 2-d Plane 

The curve of intersection in 3d space can be described by 
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( ) ( )cos sinA Bθ θ= + +x m r s                       (18) 

with center 0 0t u= + +m q r s  , where 0t  and 0u  are from (11), semi-axes A 
and B from (12), [ )0,2πθ ∈  and vectors r  and s  obtained after a suitable 
rotation (8) starting from initial vectors r  and s  (see for instance [1]). 
Without loss of generality the plane of projection of the ellipse (18) shall be the 

1 2x x−  plane. The angle between the plane of intersection (2) containing the 
ellipse (18) and the plane of projection is denoted by Ω . The same angle is to 
be found between the unit normal n  of the plane of intersection (2) and the 

3x -direction, normal to the plane of projection. Denoting the unit vector in 3x
-direction by 3e  the definition of the scalar product (see for instance [4]) yields 

( )3 3 3, cos cosn = = Ω = Ωn e n e                   (19) 

where cos 0Ω >  holds for π0
2

≤ Ω < . 

Let us assume that the plane of intersection (2) is not perpendicular to the  

plane of projection, the 1 2x x−  plane. This means that π0
2

≤ Ω <  is valid and  

according to (19) 3 0n >  holds. 
The ellipse of intersection (18) projected from 3d space onto the 1 2x x−  plane 
has the following form: 

1 1 1 1

2 2 2 2

cos sin
cos sin .

x m A r B s
x m A r B s

θ θ
θ θ

= + +
= + +

 

 

                    (20) 

In general the two dimensional vectors ( )T
1 2,r r   and ( )T

1 2,s s   are not 
orthogonal because their orthogonality in 3d space implies 

1 1 2 2 3 3,r s r s r s+ = −       

which need not be zero. In order to calculate the lenghts of the semi-axes A and 
B projected from 3d space onto the 1 2x x−  plane the following linear system 
deduced from (20) with the abbreviations 1 1 1x x m′ = −  and 2 2 2x x m′ = −  is 
treated: 

1 1 1

2 2 2

cos
sin

Ar Bs x
Ar Bs x

θ
θ

′    
=     ′    

 

 

                     (21) 

The determinant of the linear system (21), ( )1 2 2 1AB r s r s−    , is different from 
zero. This can be shown by noting that 1 2 2 1r s r s−     is the third component of the 
vector ×r s  . At first this vector is not affected by rotation (8): 

( ) ( )
( )( )2 2

cos sin sin cos

cos sin .

ω ω ω ω

ω ω

× = + × − +

= + × = ×

 r s r s r s

r s r s
 

This result was obtained by applying the rules for the cross product in 3R . 
Furthermore one obtains employing the Grassman expansion theorem (see for 
instance [4]): 

( ) ( ) ( ), ,× = × × = − =r s r n r r r n r n r n  
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because of ( ), 1=r r  and ( ), 0=r n . Thus one ends up with 

1 2 2 1 1 2 2 1 3,r s r s r s r s n− = − =                          (22) 

which is positive because of (19) for angles Ω  with π0
2

≤ Ω < . 

Solving the linear system (21) leads to 

( )
( )

1 2 2 1

1 2 2 1

cos ,
B x s x s
AB r s r s

θ
′ ′−

=
−

 

   

 

( )
( )
1 2 2 1

1 2 2 1

sin .
A r x r x

AB r s r s
θ

′ ′−
=

−

 

   

 

Since 2 2cos sin 1θ θ+ =  together with (22) the following quadratic equation in 

1x′  and 2x′  is obtained: 

( ) ( ) ( )2 2 22 2 2 2 2 2 2
1 2 2 1 1 2 2 1 1 2 2 1 3 .B x s x s A r x r x A B r s r s A B n′ ′ ′ ′− + − = − =         

Expanding the squares on the left side and using the denotations 

( )
2 2 2 2

11 2 2

2 2
12 1 2 1 2

2 2 2 2
22 1 1

,

,

l A r B s

l A r r B s s

l A r B s

= +

= − +

= +

 

   

 

                    (23) 

arranged as a 2 2×  matrix L  

11 12

12 22

l l
L

l l
 

=  
 

                            (24) 

leads to 

( ) 1 2 2 2
1 2 3

2

, .
x

x x L A B n
x
′ ′ ′ = ′ 

                      (25) 

L  as a real symmetric matrix can be diagonalized and thus is similar to the 
diagonal matrix of its eigenvalues ( )1 Lλ , ( )2 Lλ : 

( ) ( )( )1
1 2diag ,L S L L Sλ λ−=  

with a nonsingular transformation matrix S , being orthogonal, i.e. 1 TS S− = , 
the inverse of S  is equal to the transpose of S . Putting 

( ) ( ) 1 1T
1 2 1 2

2 2

, , ,
x x

x x x x S S
x x
′ ′′   ′′ ′′ ′ ′= =   ′ ′′   

 

the quadratic equation (25) in ( )1 2,x x′ ′  reduces to 

( ) ( ) ( )( ) 1 2 2 2
1 2 1 2 3

2

, diag , .
x

x x L L A B n
x

λ λ
′′ ′′ ′′ = ′′ 

            (26) 

The eigenvalues ( )1 Lλ , ( )2 Lλ  are positive because L  is positive definite; 
this is true since the terms 11l  and 2

11 22 12l l l−  are positive. For 11l  this is clear; 
for the second term, the determinant of L , holds because of (22): 
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( )( ) ( )
( ) ( )

22 2 2 2 2 2 2 2 2 2 2
11 22 12 2 2 1 1 1 2 1 2

2 22 2 2 2 2 2 2
1 2 2 1 1 2 2 1 3

det

.

L l l l A r B s A r B s A r r B s s

A B r s r s A B r s r s A B n

= − = + + − +

= − = − =

       

   

     (27) 

Dividing (26) by 2 2 2
3A B n  yields 

( ) ( ) ( ) ( )2 21 2
1 22 2 2 2 2 2

3 3

1.
L L

x x
A B n A B n
λ λ

′′ ′′+ =  

This is an ellipse projected from 3d space (18) onto the 1 2x x−  plane with the 
semi-axes 

( ) ( )
3 3

1 2

, .L L
ABn ABnA B

L Lλ λ
= =                   (28) 

With (19) one obtains from (28) 

( ) ( )1 2

cos cos, .L L
AB ABA B

L Lλ λ
Ω Ω

= =                 (29) 

3. Calculation of Semi-Axes According to a Method Used by  
Bektas 

Let the ellipsoid (1) be given and a plane in the form 

1 1 2 2 3 3 4 0.A x A x A x A+ + + =                     (30) 

The unit normal vector of the plane is: 

( )1 2 32 2 2
1 2 3

1 , , .A A A
A A A

=
+ +

n                   (31) 

The distance between the plane and the origin is given by 

4
2 2 2

1 2 3

.A

A A A
κ = −

+ +
                         (32) 

The plane written in Hessian normal form then reads: 

1 1 2 2 3 3 0.n x n x n x κ+ + − =  

Without loss of generality 3 0A ≠  shall be assumed. Then 3 0n ≠  holds: 

( )3 1 1 2 2
3

1 .x n x n x
n

κ= − −  

Forming 2
3x  and substituting into equation (1) gives: 

2 2
11 1 12 1 2 22 2 13 1 23 2 332 2 2 0m x m x x m x m x m x m+ + + + + =      (33) 

with 
2
1 1 2

11 122 2 2 2 2
1 3 3 3 3

2
2 1

22 132 2 2 2 2
2 3 3 3 3

2
2

23 332 2 2 2
3 3 3 3

1 , ,

1 , ,

, 1.

n n nm m
a a n a n

n nm m
a a n a n

nm m
a n a n

κ

κ κ

= + =

= + = −

= − = −

                  (34) 
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In the sequel the determinant of the following matrix will be needed: 

11 12

12 22

m m
M

m m
 

=  
 

 

2 2 2 2
2 1 2 1 2

11 22 12 2 2 2 2 2 2 4 4
1 3 3 2 3 3 3 3

2 2 2 2 2 2 22 2
3 1 1 2 2 3 31 2

2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 2 3 3 1 3 3 1 2 3 3

1 1det

.

n n n nM m m m
a a n a a n a n

n a n a n a nn n
a a n a a n a a n a a a n

  
= − = + + −  

  
+ +

= + + =

      (35) 

In order to get rid of the linear terms 1x  and 2x  in (33) the following 
translation can be performed: 1 1x x h′= + , 2 2x x k′= +  with parameters h and k 
to be determined later. After substitution into (33) one obtains: 

( )
( )

2 2
11 1 12 1 2 22 2 11 12 13 1

2 2
12 22 23 2 11 12 22

13 23 33

2 2

2 2
2 2 0.

m x m x x m x m h m k m x

m h m k m x m h m hk m k
m h m k m

′ ′ ′ ′ ′+ + + + +

′+ + + + + +

+ + + =

        (36) 

The terms 1x′  and 2x′  in (36) vanish if h and k are determined by the linear 
system: 

11 12 13

12 22 23

,
.

m h m k m
m h m k m

+ = −

+ = −
                       (37) 

The linear system (37) has M  as matrix of coefficients, the determinant of 
which is given in (35). It is nonzero because of the assumption 3 0n ≠ . Solving 
the linear system (37) yields: 

13 22 23 12
2

11 22 12

11 23 12 13
2

11 22 12

,

.

m m m mh
m m m

m m m mk
m m m

− +
=

−
− +

=
−

                     (38) 

Substituting the terms (34) into (38) gives the result: 
2
1 1

2 2 2 2 2 2
1 1 2 2 3 3

2
2 2

2 2 2 2 2 2
1 1 2 2 3 3

,

.

a nh
a n a n a n

a nk
a n a n a n

κ

κ

=
+ +

=
+ +

                    (39) 

With the terms h and k from (39) the constant term in (36) turns out to be, 
together with (17): 

( )

2 2
11 12 22 13 23 33

2

2 2 2 2 2 2
1 1 2 2 3 3

2 2 2

1 1 .

m h m hk m k m h m k m

d
a n a n a n

κ

+ + + + +

= − = − −
+ +

 

Thus the quadratic equation (36) reduces to: 

( ) 1
1 2

2

, 1 .
x

x x M d
x
′ ′ ′ = − ′ 

                     (40) 
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M  as a real symmetric matrix can be diagonalized and thus is similar to the 
diagonal matrix of its eigenvalues ( )1 Mλ , ( )2 Mλ : 

( ) ( )( )1
1 2diag ,M T M M Tλ λ−=  

with a nonsingular transformation matrix T , being orthogonal, i.e. 1 TT T− = , 
the inverse of T  is equal to the transpose of T . Putting 

( ) ( ) 1 1T
1 2 1 2

2 2

, , ,
x x

x x x x T T
x x
′ ′′   ′′ ′′ ′ ′= =   ′ ′′   

 

the quadratic equation (40) in ( )1 2,x x′ ′  reduces to 

( ) ( ) ( )( ) 1
1 2 1 2

2

, diag , 1 .
x

x x M M d
x

λ λ
′′ ′′ ′′ = − ′′ 

             (41) 

The eigenvalues ( )1 Mλ , ( )2 Mλ  are positive because M  is positive definite; 
this is true since the terms 11m  and 2

11 22 12m m m−  are positive. For 11m  this is 
clear; the second term, the determinant of M , is given in (35). If a point of the 
plane (30) exists which is an interior point of the ellipsoid (1), then 1 d−  is 
positive (see Section 1). Dividing (41) by 1 d−  yields 

( ) ( ) ( ) ( )2 21 2
1 2 1.

1 1
M M

x x
d d

λ λ
′′ ′′+ =

− −
 

This is an ellipse in the 1 2x x−  plane with the semi-axes 

( ) ( )1 2

1 1, .M M
d dA B

M Mλ λ
− −

= =                  (42) 

4. Calculation of Projected Semi-Axes According to Schrantz 

In [3] the ellipse 

[ )1 2cos , sin , 0, 2πx A t x B t t= = ∈                 (43) 

with the semi-axes A and B is projected from plane E onto plane E′ . As in  

Section 2 the angle between the two planes is denoted by Ω , with π0
2

≤ Ω ≤ . 

Let α , with π0
2

α≤ ≤ , be the angle between the major axis of the original  

ellipse (43) and the straight line of intersection of the two planes E and E′   

( )E E′  and let ψ  be a phase-shift with π0
2

ψ≤ ≤  and ψ τ σ= −  where  

the angles τ  and σ  are determined by 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

coscos ,
cos sin

sinsin ,
cos sin

coscos ,
sin cos

sinsin .
sin cos

A

A B
B

A B
B

A B
A

A B

α
σ

α α
α

σ
α α

α
τ

α α
α

τ
α α

=
+

=
+

=
+

=
+

                    (44) 
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The projected ellipse in the plane E′  is given by 

( ) [ )1 2cos , sin , 0, 2πx A t x B t tψ= + = ∈               (45) 

with 

2 2 2 2cos sin ,A A Bα α= +  

2 2 2 2cos sin cos .B A Bα α= Ω +                  (46) 

Eliminating parameter t  from (45) yields a quadratic equation in 1x  and 2x  

2 2
21 1 2 22sin cosx x x x

A A B B
ψ ψ      + + =      

      
 

or written with the elements 

11 12 222 2

1 sin 1, ,g g g
ABA B
ψ

= = =                  (47) 

forming matrix 

11 12

12 22

g g
G

g g
 

=  
 

 

one obtains 

( ) 1 2
1 2

2

, cos .
x

x x G
x

ψ
 

= 
 

                    (48) 

G  as a real symmetric matrix can be diagonalized and thus is similar to the 
diagonal matrix of its eigenvalues ( )1 Gλ , ( )2 Gλ : 

( ) ( )( )1
1 2diag ,G R G G Rλ λ−=  

with a nonsingular transformation matrix R , being orthogonal, i.e. 1 TR R− = , 
the inverse of R  is equal to the transpose of R . Putting 

( ) ( ) 1T 1
1 2 1 2

2 2

, , ,
x x

x x x x R R
x x

  
= =   

   
 

the quadratic equation (48) in ( )1 2,x x  reduces to 

( ) ( ) ( )( ) 21
1 2 1 2

2

, diag , cos .
x

x x G G
x

λ λ ψ
 

= 
 

            (49) 

The eigenvalues ( )1 Gλ , ( )2 Gλ  are positive, if G is positive definite; this is the 
case if the terms 11g  and 2

11 22 12g g g−  are positive. For 11g  this is true; the 
second term, the determinant of G, given by 

2 2
2

11 22 12 2 2 2 2 2 2

1 sin cosdet G g g g
A B A B A B

ψ ψ
= − = − =              (50) 

is positive for π0
2

ψ≤ < . Dividing (49) by 2cos ψ  for π0
2

ψ≤ <  yields 
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( ) ( ) ( ) ( )2 21 2
1 22 2 1.

cos cos
G G

x x
λ λ

ψ ψ
+ =  

This is an ellipse in the 1 2x x−  plane with the semi-axes 

( ) ( )1 2

cos cos, .G GA B
G G
ψ ψ

λ λ
= =                  (51) 

5. Some Auxiliary Means 

Let H  stand for the following 2 2×  matrix: 

11 12

12 22

h h
H

h h
 

=  
 

                           (52) 

and be a place holder for the matrices M  and G  used above. The semi-axes 

LA , LB  projected onto the 1 2x x−  plane, given in (28), are compared with the 
semi-axes HA , HB . It will be shown that the two polynomials 

( ) ( )
( ) ( )

2

2

,

,
L L L L L

H H H H H

Q z z A B z A B

Q z z A B z A B

= − + +

= − + +
                  (53) 

have the same coefficients and thus have the same zeros: 

( ) ( )( )
( ) ( )( )

,

.
L L L

H H H

Q z z A z B

Q z z A z B

= − −

= − −
                     (54) 

In the first step L L H HA B A B=  will be proven. In the second step 
2 2 2 2
L L H HA B A B+ = +                             (55) 

will be shown. This is sufficient, since by adding 2 2L L H HA B A B=  to both sides 
of (55) one obtains: 

( ) ( )2 22 2 2 22 2L L L L L L H H H H H HA B A A B B A A B B A B+ = + + = + + = +  

which yields L L H HA B A B+ = +  since the semi-axes are positive. 
( )1 Lλ , ( )2 Lλ  are the zeros of the characteristic polynomial of L . This can be 

expressed in two ways: 

( ) ( )( ) ( )2 2 2
11 22 12 11 22 11 22 12 ,LP l l l l l l l lλ λ λ λ λ= − − − = − + + −  

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )2
1 2 1 2 1 2 .LP L L L L L Lλ λ λ λ λ λ λ λ λ λ λ= − − = − + +  

Comparing the coefficients one obtains 

( ) ( )
( ) ( )

1 2 11 22

2
1 2 11 22 12

,

.

L L l l

L L l l l

λ λ

λ λ

+ = +

= −
                      (56) 

Similarly the results for matrix H  instead of L  are 

( ) ( )
( ) ( )

1 2 11 22

2
1 2 11 22 12

,

.

H H h h

H H h h h

λ λ

λ λ

+ = +

= −
                    (57) 
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6. Comparison of the Semi-Axes AL, BL with AM, BM 

In the first step L L M MA B A B=  will be proven. According to (28) and (42) 
holds: 

( ) ( )

2 2 2
3

1 2

,L L
A B nA B

L Lλ λ
=                        (58) 

( ) ( )1 2

1 .M M
dA B

M Mλ λ
−

=                     (59) 

In the case of matrix L  combining (56) and (27) yields: 

( ) ( ) 2 2 2 2
1 2 11 22 12 3 .L L l l l A B nλ λ = − =                 (60) 

In the case of matrix M  combining (57), where M  is substituted for H , 
and (35) leads to: 

( ) ( )
2 2 2 2 2 2

2 1 1 2 2 3 3
1 2 11 22 12 2 2 2 2

1 2 3 3

.
a n a n a nM M m m m

a a a n
λ λ

+ +
= − =       (61) 

Because 1β  and 2β  are solutions of (16) 
2 2 2 2 2 2 22 2
3 1 1 2 2 3 31 2

1 2 2 2 2 2 2 2 2 2 2
2 3 1 3 1 2 1 2 3

n a n a n a nn n
a a a a a a a a a

β β
+ +

= + + =         (62) 

holds and because of (60), (15), (62) and (61) 

( ) ( ) ( ) ( )
( ) ( )

2 22 2 2 2
1 2 3 32

1 2 3 2 2 2 2 2 2
1 2 1 21 1 2 2 3 3

1 11 1 .
d a a a n dd dL L n

M Ma n a n a n
λ λ

β β λ λ
− −− −

= = =
+ +

    (63) 

Thus with (58), (60), (63) and (59) one concludes 

( ) ( )
( ) ( )
( ) ( )

( ) ( )

( ) ( )

2 2 2
1 23

1 2
1 2 1 2

1 2

1 .

L L

M M

L LA B nA B L L
L L L L

d A B
M M

λ λ
λ λ

λ λ λ λ

λ λ

= = =

−
= =

 

In the second step because of (28) and (60) holds 

( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

2 2 2 2 2
3

1 2

2 2 2
3

2 1 1 2
1 2

1 1

.

L LA B A B n
L L

A B n L L L L
L L

λ λ

λ λ λ λ
λ λ

 
+ = +  

 

= + = +

     (64) 

Because of (42), (61) and (62) holds 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

2 2
2 1

1 2 1 2

2 2 2 2
1 2 3 3

1 22 2 2 2 2 2
1 1 2 2 3 3

2
3

1 2
1 2

1 1 1

1

1
.

M M
d d dA B M M

M M M M

d a a a n
M M

a n a n a n

d n
M M

λ λ
λ λ λ λ

λ λ

λ λ
β β

− − −
+ = + = +

−
= +

+ +

−
= +

     (65) 
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Together with 

( ) ( )
2 2 2 2
3 3 1 2

1 2 11 22 2 2 2 2
3 1 2 3

1 n n n nM M m m
n a a a

λ λ
 +

+ = + = + + 
 

       (66) 

(65) yields 

( ) 2 2 2 2
2 2 3 3 1 2

2 2 2
1 2 1 2 3

1
.M M

d n n n nA B
a a aβ β

−  +
+ = + + 

 
              (67) 

In continuation of (64), because r  and s  are fulfilling (4) and (5), the 
following relations hold: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( )

2 2 2 2 2 2
1 2 11 22 1 2 1 2

2 2 2 2 2 2
3 3 3 3

1 2

2 2 2 2
2 3 1 3 1 2 2 3 1 3

1 2 1 2

1 11 1 1 1

1 11 1

L L l l A r r B s s

d dA r B s r s

d dr s r s

λ λ

β β

β β β β β β
β β β β

+ = + = + + +

− −
= − + − = − + −

− −
= − + − = + − −

   

   

   

     (68) 

with 

2 2 2
1 2 1 2 32 2 2 2 2 2

2 3 1 3 1 2

1 1 1 1 1 1n n n
a a a a a a

β β
     

+ = + + + + +     
    

        (69) 

because 1β  and 2β  are solutions of (16). Combining (64), (68), (69) and (67) 
one obtains: 

( )
2 2

2 2 2 2 2 21 2
2 3 1 32 2

1 2 2 1

1 .L L M M
n ndA B A B r s
a a

β β
β β

 −
+ − + = + − − 

 
          (70) 

To simplify the term in round brackets of (70) the following relations are used: 

1 2 3 3 2 2 3 1 1 3, ,n r s r s n r s r s= − = −         

because of × = × =r s r s n   (see Section 2), and 

( ) ( )2 1 1 1 1 1, , ,D D D Dβ β= =s s r r     

according to (14). The term in round brackets of (70) thus becomes: 

( ) ( )

( )

2 22 2 2 2
2 2 2 23 31 2 1 2

2 3 3 2 3 1 1 3 3 32 2 2 2 2 2 2 2
2 1 1 2 3 1 2 3

3 31 1 2 2
3 3 3 3 1 12 2 2

1 2 3

1 1

2 2 , 0,

s rs s r rr s r s r s r s r s
a a a a a a a a

r sr s r sr s r s D D
a a a

   
− + − − + + − + +   

   

 
= − + + = − = 

 

    

         

    

     r s

 

because r  and s  have been chosen in such a way that condition (7) is 
fulfilled. 

7. Comparison of the Semi-Axes AL, BL with AG, BG 

In the first step L L G GA B A B=  will be proven. According to (29) and (51) holds: 
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( ) ( )

2 2 2

1 2

cos ,L L
A BA B

L Lλ λ
Ω

=                       (71) 

( ) ( )

2

1 2

cos .G GA B
G G

ψ
λ λ

=                       (72) 

In the case of matrix L  combining (56), (27) and (19) yields: 

( ) ( ) 2 2 2 2
1 2 11 22 12 cos .L L l l l A Bλ λ = − = Ω               (73) 

In the case of matrix G  combining (57), where G  is substituted for H , and 
(50) leads to: 

( ) ( )
2

2
1 2 11 22 12 2 2

cos .G G g g g
A B

ψ
λ λ = − =               (74) 

Substitution of (73) into (71) and (74) into (72) yield 

cos cos .L L G GA B A B AB AB ψ− = Ω −               (75) 

According to the definition of ψ τ σ= −  given in the beginning of Section 4 
together with (44) and (46) one obtains: 

( ) coscos cos .AB
AB

ψ τ σ
Ω

= − =  

Substituting this into (75) one ends up with 0L L G GA B A B− = . 
In the second step because of (64), (56) and (23) holds 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2 2 2
1 2 11 22 1 2 1 2

2 2 2 2 2 2 2 2 2 2
3 3 3 31 1 .

L LA B L L l l A r r B s s

A r B s A B A r B s

λ λ+ = + = + = + + +

= − + − = + − +

   

   

     (76) 

Because of (51), (74), (57), where matrix G  is substituted for matrix H , and 
(47) holds 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

2 2 2
2 2

2 1
1 2 1 2

2 2 2 2
1 2 11 22

2 2 2 2
2 2

cos cos cos

1 1 ;

G GA B G G
G G G G

A B G G A B g g

A B B A
A B

ψ ψ ψ
λ λ

λ λ λ λ

λ λ

+ = + = +

= + = +

 = + = + 
 

      (77) 

(77) is continued by substituting B  and A  from (46) 

( )
( ) ( )

( )( ) ( )( )
( ) ( )
( ) ( )

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2

cos sin cos cos sin

cos cos sin sin cos cos

cos 1 sin sin sin 1 sin cos

cos sin sin sin sin cos sin cos

1 sin sin 1 sin cos

A B A B

A B

A B

A B

A B

A

α α α α

α α α α

α α α α

α α α α α α

α α

Ω + + +

= + Ω + + Ω

= + − Ω + + − Ω

= + − Ω + + − Ω

= − Ω + − Ω

= + ( )2 2 2 2 2 2sin sin cosB A Bα α− Ω +

 (78) 
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Comparing (76) and (78), in order to show equality 2 2 2 2
L L G GA B A B+ = + , it has to 

be proven: 

( )2 2 2 2 2 2 2 2 2
3 3 sin sin cos .A r B s A Bα α+ = Ω +                (79) 

As already described in the beginning of Section 4 the ellipse (43) is projected 
from the original plane E  onto the plane E′ . Both planes are forming an  

angle Ω  with π0
2

≤ Ω ≤ . Without loss of generality the intersection of E   

and E′ , E E′ , shall be the 1x -axis of the coordinate system in plane E′ . 
The original plane E  thus contains the following three points: ( )1,0,0− , 
( )1,0,0 , ( )0,cos ,sinΩ Ω  and can therefore be described by the following 
equation: 

2 3sin cos 0.x x− Ω + Ω =                        (80) 

The unit normal vector n  of plane (80) given by (31) is 

( )0, sin ,cos .= − Ω Ωn                         (81) 

In order to describe a unit vector r  in the plane E  the equations (4) must 
hold: 

( )
( )

2 2 2
1 2 3

2 3

, 1,

, sin cos 0.

r r r

r r

= + + =

= − Ω + Ω =

r r

n r
                  (82) 

The second equation of (82) yields 3 2 tanr r= Ω . Substituting this into the first 
equation of (82) results in: 

( )2 2 2
1 2 1 tan 1r r+ + Ω =  

or 
2

2 2
1 2 1.

cos
rr + =
Ω

                          (83) 

If the unit vector r  is forming the angle α  with the 1x -axis and 1e  is 
designating a unit vector in 1x -direction according to the definition of the 
scalar product (see for instance [4]) holds 

( )1 1 1, cos cos .r α α= = =r e r e  

From (83) one obtains 

( )2 2 2 2 2
2 1 cos cos sin cos ,r α α= − Ω = Ω  

yielding 2 sin cosr α= ± Ω  and furthermore with the first equation of (82) 

3 sin sinr α= ± Ω . From 

( )cos , sin cos , sin sinα α α= ± Ω ± Ωr  

and = ×s n r  one obtains 

( )sin ,cos cos ,cos sin .α α α= Ω Ωs   
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By transformation (8) one obtains 

( )3 3 3cos sin sin sin ,r r sω ω ω α= + = ± Ω  

( )3 3 3sin cos cos sin .s r sω ω ω α= − + = ± Ω  

Thus equation (79) turns into 

( ) ( )( )
( )

2 2 2 2 2

2 2 2 2 2

sin cos sin

sin sin cos .

A B

A B

ω α ω α

α α

± + ± Ω

= Ω +
             (84) 

Equation (84) is fulfilled if ω α α± =  holds. The + -case leads to 0ω = , 
which means that (84) is fulfilled if transformation (8) is the identity, i.e. =r r , 
=s s ; the − -case leads to 2ω α= , meaning that if α , the angle between the  

major axis of the ellipse (43) and the 1x -axis, is chosen to be 
2
ω  then (84) is 

true. 

8. Numerical Example 

The following numerical example is taken from [2]. Let the semi-axes of the 
ellipsoid (1) be 

1 2 35, 4, 3a a a= = =  

and let the plane be given by 

1 2 32 3 4 0.x x x+ + + =  

The following calculations have been performed with Mathematica. According to 
(31) the unit normal vector n  of the plane is 

( )
2 2 2

1 1,2,3 .
1 2 3

=
+ +

n  

Furthermore in (32) the distance κ  of the plane to the origin is given 

2 2 2

4 .
1 2 3

κ = −
+ +

 

According to (17) d can be calculated. 
Starting with an arbitrary unit vector r  orthogonal to the unit normal vector 
n , for instance 

( )T

2 2

1 2, 1,0 ,
1 2

= −
+

r  

calculating s  to be orthogonal to both according to = ×s n r  and, as 
( )1 1, 0D D ≠r s , perform a rotation with angle ω  given in (9), yielding new 
vectors r  and s  according to (8), which are plugged into ( )1 1,D Dr r   and 
( )1 1,D Ds s  . 
The semi-axes A and B in 3d space according to (12) can be calculated to be 

4.59157, 3.39705.A B= =  
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Furthermore having calculated the eigenvalues ( )1 Lλ  and ( )2 Lλ  the 
semi-axes LA  and LB  projected onto the 1 2x x−  plane according to (28) are 

4.56667, 2.73855.L LA B= =  

The same results are obtained calculating MA  and MB  according to (42) by 
the method used by Bektas. 

9. Conclusion 

The intention of this paper was, to show that the semi-axes of the ellipse of 
intersection projected from 3d space onto a 2d plane are the same as those 
calculated by a method used by Bektas. Furthermore they are also equal to the 
semi-axes of the projected ellipse obtained by Schrantz. 
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