
Journal of Computer and Communications, 2017, 5, 40-59 
http://www.scirp.org/journal/jcc 

ISSN Online: 2327-5227 
ISSN Print: 2327-5219 

 

DOI: 10.4236/jcc.2017.511004  Sep. 20, 2017 40 Journal of Computer and Communications 
 

 
 
 

Programmable SoC for an XTEA Encryption 
Algorithm Using a Co-Design Environment 
Replication Performance Approach 

Mohamed H. Al Meer 

Computer Science & Engineering Department, College of Engineering, Qatar University, Doha, Qatar  

 
 
 

Abstract 
With the rapid development of wired and wireless networks, the security 
needs within network systems are becoming increasingly intensive owing to 
the continuous development of new applications. Existing cryptography algo-
rithms differ from each other in many ways including their security complex-
ity, size of the key and words operated on, and processing time. Nevertheless, 
the main factors that prioritize an encryption algorithm over others are its 
ability to secure and protect data against attacks and its speed and efficiency. 
In this study, a reconfigurable Co-Design multi-purpose security design with 
very low complexity, weight, and cost, has been developed using Extended 
Tiny Encryption Algorithm (XTEA) data encryption standards. The paper 
aims to discuss issues and present solutions associated with this system, as 
well as compare the Co-Design implementation approach with Full-Hardware 
and Full-Software solutions. The main contribution that this paper offers is 
the profiling of XTEA cryptographic algorithm to reach more satisfactory un-
derstanding of its computation structure that leads to fully software, fully 
hardware, beside the co-design implementations all together, of this light 
weight encryption algorithm. 
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1. Introduction 

Data security is of high concern in applications where user data is exchanged, 
especially regarding data transmission over network channels. Radio Frequency 
Identifiers (RFIDs), smart meters, smart thermostats, and smart grids are good 
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examples of such applications. We can see these types of applications used in de-
vices of all types including gadgets, health care devices, and environment and 
pollution monitoring systems. 

Such devices often connect to the Internet or a trusted destination by means 
of a network, but this exposes them to being hacked, snooped, cloned, counter-
feited, or even tracked, which may lead to the violation of user privacy. Most of 
these devices are small in size, inexpensive, and consume low power, but may 
not withstand more part area for security concerns. Since there is a growing 
need to ensure the security of data transmitted through such devices, many 
lightweight cryptographic algorithms have been developed and implemented. 

Lightweight cryptography is comprised of algorithms specialised for imple-
mentation in constrained environments, such as communication carried out by 
RFID tag systems, wireless sensor networks (WSNs), or contactless smart bank 
cards. With highly limited resources found in such applications, different 
lightweight cryptographic protocols have emerged, and can be categorised as 
block encryptions such as Present, Clefia, and Katan, or stream ciphers such as 
Grain, Bean, and Hummingbird. 

Tiny Encryption Algorithms (TEAs) and Extended TEAs (XTEAs) are two 
lightweight algorithms categorised as 64-bit Feistel Block network cryptographic 
algorithms that rely upon 32 rounds and use a 128-bit secret key. Various im-
plementations of lightweight cryptography have been mapped to Applica-
tion-Specific Integrated Circuit (ASIC) and Field-Programmable Gate Array 
(FPGA) devices, but unfortunately those implementations are often configured 
for old ASIC or FPGA families. One recently developed XTEA implementation 
offers acceptable security with efficient computation and use of power resources. 
It has been successfully implemented by FPGAs with high throughput as re-
ported by many researchers. 

In this study, it is thought that replicating an algorithm synthesised in an 
FPGA, where several computational devices can operate concurrently on differ-
ent data chunks, will fit closely within the definition of the parallel computing 
paradigm. Moreover, instead of tailoring the algorithm to cope with architectur-
al pipelining and/or performing extensive architectural optimization to reduce 
the processing path time, replication could be used if the required processing 
algorithm is of concurrent nature, i.e. if different computations can be carried 
out independently and simultaneously. 

Although studies have been conducted on XTEA implementation, none have 
addressed replication as a concept for increasing computational efficiency. Fur-
thermore, replication has seldom been used to increase cryptography speed us-
ing FPGAs. This thesis intends to determine the significance of XTEA Co-Design 
implementation as a means of conducting encryption computations. Hence, the 
replications and Co-Design encryption computations will be addressed in detail 
in this study to show how both can affect the throughput. 

All designs were synthesised and implemented using Altera Quartus 14.1 and 
simulated using ModelSim PE II. The end designs targeted an Altera Cyclone V 
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FPGA. The content of this paper is organised as follows: Section 2 introduces the 
XTEA algorithm, Section 3 describes the tools and technologies used, Section 4 
presents the built system architecture, Section 5 discusses the implementation 
results and performance comparison, and finally Section 6 provides a conclusion 
about the presented work. 

2. XTEA Implementationin Configurable Hardware Logic 

FPGA and ASIC implementations for cryptographic algorithms have been inves-
tigated by many researchers for several years, usually targeting Xilinx or Altera 
FPGAs and previous ASIC Hardware Description Language (HDL) programma-
ble devices. In [1], the latest Xilinx Virtex 5 FPGA device was incorporated be-
side the Modest Altera Cyclone III series of FPGA devices to implement a 
Lightweight Encryption Algorithm (LEA). Similarly, in [2] two LEAs, namely 
Present and Hight, were analysed and implemented using a Xilinx Spartan 3 
FPGA device. Yet another study [3] successfully proposed the implementation of 
Hummingbird, an LEA, after conducting extensive preliminary studies using the 
Altera Cyclone II FPGA device. 

The first investigations of TEA and XTEA LEAs were [4] and [5]. Following 
these studies, a significant number of research investigations appeared empha-
sizing different techniques for hardware implementation. Some studies focused 
on software rather than hardware implementations of TEA and XTEA algo-
rithms, such as [6]-[12]. A few major efforts have studied both hardware and 
software aspects of TEA for cost effective use of RFID applications [13] [14] [15] 
[16]. 

In [6] the author studied XTEA implementation on both the ASIC and FPGA 
programmable logic platforms. The FPGA implementation used Xilinx ISE 9.1 
tools with Xilinx Virtex 5 and Spartan 3 FPGAs, containing the XC3S50-5 and 
XC3S200-5 FPGA devices, respectively, and reached a real-time encryption 
throughput rate of 36 Mb/s. 

In various case studies [7] [8] [9], researchers identified three different VHDL 
architectural modification models of the main TEA algorithm, specifically, se-
quential (looping), parallel, and mixed implementations, but used a specific 
LeonardoSpectrum 0.35 um CMOS type ASIC to perform the implementations. 
Other XTEA studies showed that a throughput of 53 Mb/s could be achieved, 
and that ModelSim could be used for simulation in conjunction with the Xilinx 
ISE 10.1 development tool for synthesis [13]. Maximum operational frequencies 
of 129 MHz and 71 MHz were reported when tests were performed using the 
Virtex 4 and Spartan 3 FPGA devices, respectively. 

Furthermore, XTEA investigations have been reported [10] [11] [12] on ap-
plications that employ RFID communication security protocols, but using dif-
ferent FPGA platforms compared with the previous study. For example, in [12] 
XTEA was recommended for RFID wireless authentication security protocols, 
and was actually implemented using an Altera DE2 board.  

https://doi.org/10.4236/jcc.2017.511004


M. H. Al Meer 
 

 

DOI: 10.4236/jcc.2017.511004 43 Journal of Computer and Communications 
 

In another study, the development and validation of an RFID reader and tag 
modules incorporating the System On Programmable Chip (SOPC) tool with 
32-bit RISC Nios II processors, was reported. This was an example of a software 
implementation carried out using a soft processor running code with a system 
response of 1.06 ms. Still another FPGA implementation can be found in [15], 
where an Altera-DE0 platform embedded Altera Cyclone IV FPGA device was 
used to implement the XTEA encryption. When the researchers compared the 
FPGA results to CPU tests, a 21× speedup was found. 

The previously discussed studies show that XTEA can effectively be used as an 
encryption engine for RFID secured communication protocols. 

Furthermore, ambitious experiments have been performed on an XTEA en-
cryption algorithm using General Purpose Graphical Processors (GPUs) [16]. In 
this study, three computing platforms were cooperatively tested, namely a GPU, 
an FPGA, and a CPU. Although the FPGA outperformed the CPU, the GPU 
performance recorded the fastest throughput, reaching 5.3 Gb/s. The FPGA 
board used in this work was the Xilinx Zynq-7000 SOC ZC702 evaluation board. 

3. Methods and Tools 
3.1. XTEA Encryption Algorithm 

The first TEA was developed by Wheeler and Needham [4] [5], who reported 
that with very simple operations, TEAs could contribute to the total confusion, 
such as XORs, logic shifts, and modulo 32-bit addition operations working on 
double 32-bit inputs. Table 1 illustrates pseudo code for both the encryption and 
decryption mentioned in (Wheeler and Needham, 1996). 

As the first systematic study, it has been noted that its small code size and low 
storage requirements qualify it for software encryption operations, which are 
usually hosted by small embedded systems. Subsequently, the XTEA encryption 
algorithm was developed from the original TEA by the same scholars as an ex-
tension, in which it was reported as a valuable and innovative alternative for in-
creased security when supplemented with key shuffling operations. Although 
XTEA is considered one of the most important lightweight algorithms, it suffers 
from low-round security weakness, and should be able to accommodate 32 
rounds in order to accommodate high security applications.  

In detail, the XTEA implements encryption using a 64-bit block split into two 
32-bit halves, v0 and v1, which are input to the algorithmic routine that per- 

 
Table 1. Pseudo code for XTEA encryption and decryption. 

Algorithm 1: Pseudo Code XTEA Encryption Algorithm 2: Pseudo Code XTEA Decryption 

Sum = 0; delta = 0x9E3779B9 
for i = 0 to N do 
v0+ = ((v1 << 4) xor (v1 >> 5) + v1) xor (sum + key[sum & 3]) 
sum+ = delta 
v1+ = ((v0 << 4) xor (v0 >> 5) + v0) (sum + key[sum >> 11 & 3]) 
end for 

Sum = 0; delta = 0x9E3779B9 
for i = 0 to N do 
v1− = ((v0 << 4) xor (v1 >> 5) + v0) xor (sum + key[sum >> 11 & 3]) 
sum+ = delta 
v0− = ((v1 << 4) xor (v1 >> 5) + v1) (sum + Key[sum &3]) 
end for 
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forms 32 rounds (Nr = 32). In XTEA, the key scheduling is modified to reflect 
different patterns for mixing the data and key continuously each round to add 
substantial confusion. Only four subkeys, each having a 32-bit length, are used, 
and basic addition and subtraction operations follow the modulo 232. The logic 
shifts are a logical left shift by four and a logical right shift by five, in addition to 
a simple 32-bit XOR logic operation. 

The permutation functions are expressed by f(x) = (x<<4 ⊕ x >> 5) + x, and 
subkey generation functions are expressed by sum + k (sum ∨ 3), and sum + k 
(sum >> 11 ∨ 3). Sum acts as a selector from the four subkeys k0, k1, k2, and k3 
dependent on bits 0 and 1 of the sum or bits 11 and 12. The results of the per-
mutation function and generated subkey generated are XORed and ADDed to v0 
and v1. It is worth noted that the value of sum is initialized to zero prior to the 
start of the computation, and the value of delta is fixed to 0x9E3779B9. 

3.2. Field Programmable Gate Arrays (FPGAs) 

FPGAs are a recently developed technology used to synthesise any type and 
number of logic besides arithmetic functions. FPGAs nowadays are used to pro-
totype algorithms and verify the solution before fabricating the final prototype 
into the ASIC chips. Unlike software languages such as C-C++, python, and 
others, FPGAs are based on HDL, such as VHDL and Verilog. Such languages 
have the ability to execute algorithms in parallel as compared to processors when 
executing instructions but sequential.  

FPGAs as a type of reconfigurable hardware, can model huge sizes of mathe-
matical algorithms that usually would be implemented by software, but with a 
higher density and speed, by using their large complex architectural capacity. 
Most FPGA devices contain one or more fabricated hard processor core (s) or 
else one or more soft processor core (s). Although FPGAs do not perform as fast 
as ASICs, the time and cost for their development are lower than for ASICs im-
plementation, which makes them favourable in the eyes of software-hardware 
developers.  

As the use and progression of FPGA technology has grown dramatically, es-
pecially in algorithmic realization, it has become possible for fully embedded 
systems to be implemented in a single FPGA chip. 

3.3. NIOS II and QSys Technology 

The Nios II is a synthesizable VHDL model of a 32-bit embedded-processor ar-
chitecture, specifically intended to work with the Altera family of FPGAs. The 
processor is highly flexible and can be tailored for any design configuration, 
making it well-equipped for System-On-a-Chip (SOC) designs. Nios II came af-
ter its predecessor, the original Nios (Nios I), with enhancements in its architec-
ture that make it more suitable for a range of cost-sensitive or real-time applica-
tions.  

The Nios II is a Reduced Instruction Set Computer (RISC) soft-core type ar-
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chitecture intended to be implemented entirely with programmable logic 
(FPGA) and supplemented with memory blocks originally found in Altera types 
of FPGAs. The Nios II processor with its soft-core architecture facilitates the de-
sign and specifications of a customised CPU core best-suited for the particular 
application requirements. While being designed, it is easy to change the Nios II’s 
basic functions by adding a predefined sort of a Memory Management Unit 
(MMU or MPU), or by customizing certain instructions and peripherals as well. 
The Nios-II core is available in three configurations: the Nios II/f (fast), Nios II/s 
(standard), and Nios II/e (economy). According to Gartner Research1, NIOS-II 
is the most widely used soft processor in the FPGA industry.  

Nios II hardware designers usually use the Qsys, a system integration tool, 
which is now a component of the Quartus-II software development package that 
you can call immediately, for configuring and generating a complete Nios-II 
system. The Quartus 14.1 software includes Qsys, which also can be claimed as 
an advanced system integration tool for Nios-II soft processor system design. 
With Qsys, developers can construct and integrate processors, peripherals, 
memory controller, communication controllers, and custom intellectual proper-
ty (IP) cores, using a user-friendly GUI tools. Subsequently, the Quartus-II is 
directed to perform the synthesis, placement, routing, and generation of the sys-
tem on the selected FPGA, as well as connect the IP components with a gener-
ated system interconnect. 

3.4. Wrapping Circuit Design 

In accordance with the components offered by the Qsys development toolset, a 
custom designed I/O peripheral, specifically a hardware accelerator for the 
XTEA encryption algorithm, is implemented using a Finite State Machine (FSM) 
expressed in VHDL language. The resulting VHDL descriptive circuit funda-
mentally contains multiple input and multiple output ports as well as a few con-
trols and status signals. These ports and signals need to be read from or written 
to using higher, but similar types of VHDL classes that can handle the typical 
MM Avalon interface signals and ports.  

Fortunately, the Nios II processor uses the Avalon interconnect for data 
transfer and control to interface with any custom-made components as men-
tioned earlier. In addition, the Nios II system needs to convert the circuit to an 
IP core (a Qsys component) with adequate Avalon interface signals as well. The 
wrapping circuit, which needs to be designed and created, is instantiated and 
added to the top of the FSM circuit in order to make its IO ports compatible 
with the MM Avalon specifications and complete the job previously mentioned. 
However, this wrapping operation is usually moulded with circuits containing 
interfaces, buffers, output decoding circuits, and input multiplexing circuits, to 
assist in completing its functions. 

HDL code used to wrap the XTEA circuit was successfully developed and 

 

 

1http://www.gartner.com/technology/home.jsp  
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eventually synthesised while inherently instantiating the XTEA encryption en-
gine, containing the logic required to buffer, decode, and multiplex, as shown in 
Figure 1. 

4. Implementation 
4.1. System Architecture 

The system implementation is introduced on the basis of using diverse compu-
ting platforms concept proofing, which falls into three categories: the XTEA 
hardware accelerator implemented by VHDL first, the Full-Software implemen-
tation second, and the Co-Design implementation in conjunction with the Nios 
II the soft processor of the Altera Qsys EDA software third. Specifically and in-
tentionally, the Full-Software implementation was used on the basis of offering 
benchmarking needed for a results comparison. 

4.2. Full-Software Implementation (Nios II) 

The Nios II processor is in fact a highly flexible processing tool suitable for any 
design configuration, even though it is mainly intended for SOC designs. Addi-
tionally, the NIOS II IDE has a GNU compiler with a C/C++ license, used to as-
sist in the programming. The Qsys system designed to carry out the full-software 
tests consists of the following components as shown in Figure 2. 

1) Clk and Reset: feeds the clock output and a clean reset input to all other 
modules. 

2) Nios2 Soft-core Processor: soft processor module with a Nios II soft core 
processor of type E (Economy). No instruction or data caches are added. No 
hardware support for division and multiplication (DSP blocks) are added. 

3) Memory module: interface comprised of a 12-bit address bus, 1 bit for each 
of enable, chip select, and write controls, in addition to 32-bit lines for read data 
and write data buses. Byte enable takes 4-bits to control the exchange of the 4  
 

 
Figure 1. System design using Nios II processor. 
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Figure 2. System generated in SOPCQSys builder. 
 

bytes of the 32-bit data bus lines. The Altera Avalon on-chip RAM memory 
module has a size of 8 KB. 

4) XTEA Hardware Block: hardware accelerators designed to increase the 
performance of the XTEA cryptographic algorithm code running on the NIOS II 
processor. The hardware accelerators are implemented as custom components 
for the Nios II processor. 

5) JTAG UART: type of Altera IP that provides a means to communicate with 
a host PC using serial character streams between the host and the Qsys system. It 
is basically used for debugging purposes once needed in the Qsys system. 

6) Sys ID Peripheral: Altera-based peripheral which uniquely assigns the Qsys 
system an ID with timestamps. The NIOS II IDE verifies the system ID before 
downloading new software to the system. This was introduced to ensure that the 
software runs on a Qsys System for which it is written and compiled. 

7) Performance Counters: block of counters that can measure the execution 
time of selected code (cryptographic routine) by registering all times and occur-
rences of that section of code. This helps measure the performance of the XTEA 
system. 

The QSys Builder automatically generates the interconnect logic to integrate 
the components in the hardware system. Figure 2 shows the selection of com-
ponents required and the system generation for a Full-Software implementation 
via the Nios II EDS. 
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First, the integration of the QSys Builder with the Quartus software takes 
place. Second, the pin assignment is implemented by importing the pin assign-
ment of the Cyclone V “5CSXFC6D6F31C6N” FPGA. Third, the system is gen-
erated within the hardware, where the Cyclone II FPGA is connected to the host 
computer via USB-Blaster cable. 

The “C” code accurately realizes the generic algorithm for the XTEA encryp-
tion and decryption taken from the source [5], by importing the code with slight 
modifications to handle the reading and writing to data arrays. Finally, the code 
is compiled with default optimization and used for Full-Software tests. 

After generating the system using Quartus II software, the produced output 
file is next opened by the Eclipse IDE where a C/C++ Developing GNU compiler 
assists in compilation and generation of executable code. A new project is 
created within the NIOS II IDE, and is added to the ‘C’ code from the XTEA al-
gorithm in a “.C” file format. The project is then built using the “Build Project” 
command. After the project is built, the code is implemented on the Cyclone V 
“5CSXFC6D6F31C6N” FPGA using the command “Run as NIOS II Hardware”. 

Finally, the results for the encryption using the NIOS II IDE with a 128-bit 
key and 64-bit plaintext/ciphertext as the input parameters are obtained, with 
the output easily displayed in the NIOS II Console Window. As an example, 
Figure 3 shows the output displayed on the console windows of the Eclipse 
showing clock cycles and time required for execution of the encryption algo-
rithm. 

Upon compilation, the generated executable code reached a size of 4132 bytes 
including both the code and initialization data, whereas the free memory re-
served for the heap stack was 3820 bytes. It is worth mentioning that the on-chip  

 

 
Figure 3. Console screen showing the output of the encryption program running in Nios II processor. 
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memory size was 8 KB starting from the address 0 × 2000 to the address 0 × 
3FFF from the Nios II memory map. 

This specific implementation was chosen as a reference benchmark to show 
how Full-Software implementation for the cryptographic algorithm compares to 
the Full-Hardware accelerator and to the software-hardware Co-Design. 

4.3. Full-Hardware Implementation (FPGA) 

The block diagram of the Full-Hardware for the system architecture is techni-
cally and fully presented in Figure 4. It shows a block diagram of the XTEA ge-
neric encryption engine known also as the encryption accelerator circuit. As 
shown in Figure 4, the two input data signals emerge from ports (block_in_0 
and block_in_1) feeding the system with a 32-bit data source. On the other 
hand, the accelerator has another two output data signals ported to (v_0_out and 
v_1_out) offering 32-bit output sinks. In addition to those, one control input in-
itiation signal (start) is introduced as well as one output status signal (done). 

When start is set to 1, the FSM begins by taking new inputs. Consequently, the 
external upper level circuit (Wrapper) should place the dual 32-bit input data in 
the block_in_0 and block_in_1 registers, and enact the start signal for one clock 
cycle at least, to initiate the encryption or decryption operation. Once the en-
cryption of the message is complete, the dual 32-bit output is latched back to 
v_0_out and v_1_out the output port registers, signaling the end of calculations. 
Accordingly and immediately, the done signal is set for one clock cycle and the 
computations stop. 

We took the XTEA architecture as presented in the previous section and con-
versely implemented it as a VHDL model. The XTEA module was written in 
VHDL language as usual, but was compiled in the Quartus II environment used 
in this project. The RTL design generated from the VHDL was modelled initially 
using the Modelsim simulator of Mentor Graphics PE 14.1 targeting develop-
ment, verifications, and functionality checking. In the last phase, the design was 
compiled and synthesised using the Quartus II. 
 

 
Figure 4. XTEA block diagram. 
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Figure 5 shows the VHDL hardware implementation model of the XTEA 
function. Using this configuration, the main hardware XTEA module is synthe-
sised and replicated from 1 to 16 times within a Driver module. The Driver 
module is defined as a higher level VHDL-coded item that facilitates the transfer 
of data to the XTEA module(s) and receives the results from it (or them). In ad-
dition, it facilitates the replications of the main XTEA engine and instantiates 
the signals and buffers with registers related to all the replicated engines. Figure 
6 shows a block diagram for four replication instances from an XTEA engine, 
connected together in parallel. As seen, it is assumed the feeding of the input 
data is committed in parallel using any outside parallel communication source 
giving 256 bits in parallel and resulting in 256 bits as well. 
 

 
Figure 5. Hardware implementation diagram of XTEA encryption algorithm. 

 

 
Figure 6. Full-hardware module with four replications. 
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The Chip Planner for the programmable chip produced from Quartus II is 
shown in Figure 7, displaying the relative area size of the design compared to 
the total area, where the highlighted portion illustrates the synthesised hardware 
XTEA engine with its wrapper. The two adjacent subfigures show the XTEA en-
gine with a single synthesis, and with four synthesis replications. As can be seen, 
the occupied area of the design is quite small in proportion to the total area. 
Furthermore, the register transfer level (RTL) schematic of the XTEA for both a 
single and four replications is shown in the series of Figure 8 and Figure 9. 
 

 
Figure 7. Chip planner diagram for one (left) and four (right) replication models. 

 

 
Figure 8. RTL viewer for basic XTEA encrypt circuit. 
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Figure 9. Partial view for technology map viwer (Encrypt plus wrapper of four replications). 

 
Successful implementation of the Full-Hardware synthesis resulted in the 

highest performance as will be discussed in the results section, since the data 
feeding was controlled by software. The following describes the method under-
taken to estimate the exact performance metrics for this configuration: from the 
maximum frequency given by the Quartus II synthesis, which was 200 MHz, and 
from basic knowledge of the 32 clock cycles needed to encrypt the message using 
the XTEA as well as the input message length of 64-bits, it could be determined 
that the throughput could be as high as 1.56 Gb/s when a maximum of 16 repli-
cations of the same XTEA engine is used.  

A much greater throughput would be expected if we were to increase the 
number of replications (see the results section to view the throughput as a func-
tion of replications). 

4.4. Co-Design Implementation 

Regarding the implementation, the XTEA module was intended to be synthe-
sised as described in the previous section, with the exception of being interfaced 
to the NIOS-II soft processor. C-based software is used to control the sending of 
blocks of test data to be encrypted or decrypted to the hardware module. The 
software running in the Nios II is responsible for creating from 1 to 8 K 64-bit 
words (64-bit formed as 32-bit v0 and v1, respectively) once, then be redirected 
to the XTEA hardware module. The processor sends the data to the internal reg-
isters of the XTEA hardware accelerator. Once the calculation is complete, the 
results are then sent to the output register and through the JTAG interface to be 
displayed on a prompt screen. The main objective is to have the algorithm be 
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computed using hardware, but the memory Read and Write operations directed 
to and from the hardware module to be handled by software that is offloaded 
from the computation process. The XTEA hardware module acts as a hardware 
accelerator implementing this algorithm 

Figure 3 shows a snapshot of the Eclipse Editor taken while running C-based 
code from within the Nios II soft processor. While Figure 2 presents the Qsys 
screen showing the different embedded components that the Nios II processor 
interfaces with. Figure 10 shows an Avalon MM bus connected to four replica-
tions of the XTEA hardware module linked to the Nios II processor.  

5. Results and Discussion 

Figure 11 shows the hardware utilization obtained from the placement and 
routing report taken from Quartus II which includes: the number of Logic Ele-
ments LE, the number of Registers, and the maximum frequency, for the design 
of the XTEA_Wrapper circuit only. The synthesis of XTEA_Wrapper circuit uti-
lizes from 0.4% to 4.0% of the total FPGA ALM resources and from 0.14% to 
1.6% of the total FPGA Registers resources. Figure 12 provides a synthesis utili-
zation report for the Co-Design with Nios II when synthesized with a number of 
replications of the main XTEA VHDL circuit. It was shown that the Nios II syn-
thesis utilizes 2.4% of the total FPGA ALM resources and 0.82% of the total 
FPGA Registers resources. 
 

 
Figure 10. Avalon MM interconnect showing four replications of XTEA encryption en-
gine. 
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Figure 11. Hardware utilization ALMs, REGs, beside maximum frequency attained when 
synthesizing wrapper circuit in conjunction with Encryption module. 
 

 
Figure 12. Hardware utilization of ALMs, REGs, beside maximum frequency attained 
when synthesizing Nios II soft processor in conjunction with XTEA accelerator compo-
nent. 
 

The low utilization values appear to be useful, since more programmable logic 
resources can be dedicated towards implementing other computationally inten-
sive sections of the original application, or even a towards more replications to 
raise the total efficiency or throughput. Just to prove this theory, if 4% is utilised 
to implement the XTEA_Wrapper module exhibiting only 16 replications, then 
by utilizing full FPGA resources, a total of 400 replications could be exhibited. 

Apart from the synthesis results, a performance experimentation was carried 
out as well. The three configurations were tested by creating arrays of data rang-
ing from 1 block of 64-bit up to 8 K blocks of 64-bit random hexadecimal integer 
numbers in multiple of base-2 increments. 

Namely, in the Full-Software configuration, the NIOS-II soft processor ex-
ecuted the XTEA encryption and decryption routines. The tested data reached 
8K double words (64-bit) processed by this algorithm and the corresponding 
time stamp was recorded. Table 2 shows the results for this configuration, where  
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Table 2. Speed up with throughput of the Nios II only (full software) implementation of the XTEA encryption vs. Nios II 
equipped with XTEA accelerator component. 

Microsoft 

Looping on SW code Looping on HW VHDL 

Speed Up Throughput 1 Throughput 2 Nios II Only 1 Replication × N times 

CLKs with Nios II Only CLKs with Nios II and 1 Replication 

1 7180 
    

2 
     

4 
 

1215 
   

8 58,923 2339 25 990,581 24,954,254 

16 117,649 4587 26 992,240 25,449,313 

32 235,105 9083 26 993,054 25,704,283 

64 470,017 18,075 26 993,462 25,833,693 

128 941,043 36,059 26 992,397 25,898,888 

256 1,879,489 72,027 26 993,768 25,931,609 

512 3,758,785 143,963 26 993,819 25,948,001 

1024 7,517,377 287,835 26 993,845 25,956,204 

2048 15,034,561 575,579 26 993,857 25,960,308 

4096 30,068,929 1,151,067 26 993,864 25,962,360 

8192 60,137,665 2,302,043 26 993,867 25,963,386 

 
the first column shows the number of inputs processed, the second column 
shows the software execution by clock count with regard to the maximum fre-
quency of 114 MHz, and the fifth column shows the throughput (approximately 
1 Mb/s). 

Furthermore, Table 2 summarizes the performance of the Co-Design confi-
guration of the Nios II processor when synthesised with a single replication of 
the XTEA circuit. The third column shows the clock count for this configura-
tion, and the sixth column shows its throughput. The table also shows, in the last 
column, the speed-up between the two configurations. Figure 13 shows a com-
parison between Full-Software and Co-Design throughputs versus different 
block widths. The throughput of the Full-Software Nios II implementation 
reached 0.99 Mb/s, or nearly 1 Mb/s, while that for the Nios II with one replica-
tion model reached 25 - 26 Mb/s. 

For the Co-Design configuration with M-replications, Table 3 represents the 
execution times for different replications ranging from 2, 4, 8, up to 16 replica-
tions. The Co-Design configuration was selected to test the configuration. In this 
experiment, data was sent as a double input (64-bit) to each of the instances of 
all XTEA replications in series, and a run was triggered once but in parallel at 
the end for the all XTEA instances. Finally, the time stamp for each of the activi-
ties was recorded. The first column shows the replication number, while the 
second shows the run clock count, bearing in mind the max frequency that this  
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Table 3. Speed up with Throughput of the. Nios II equipped with XTEA accelerator implementation of the XTEA encryption vs. 
Full-hardware of the XTEA component. 

Replications Nios II + Replications Hardware CLKs TP1 TP2 SpeedUp 

1 
 

128 
 

98,000,000 
 

2 299 128 48,802,676 196,000,000 4 

4 403 128 72,416,873 392,000,000 5 

8 611 128 95,528,642 784,000,000 8 

16 1027 128 113,666,991 1,568,000,000 14 

 

 
Figure 13. Throughput comparison for Full_Software and Co_Design implementations. 
The difference is fixed to 25 times and the throughput is fixed whatever the change of the 
block size operated on was selected. 
 
configuration could operate on was 114 MHz. Figure 14 compares the through- 
put between the configurations of Full-Hardware and Co-Design, highlighting 
the different replications of the XTEA engine versus replications from 1 to 16. 

Figure 15 shows a speed comparison for all of the implementations as follows: 
Full-Software processing arrays of 8 of 64-bit inputs (512 bits), Nios II_Co-De- 
sign with a single replication processing the same array, Nios II_Co-Design po-
wered with eight replications, and finally Full-Hardware powered with eight rep-
lications. 

As can be seen, the Nios II_Co-Design with a single hardware replication pro-
vided a throughput speed-up of 25× the Full-Software speed for the 512-bit data 
blocks processed. Meanwhile, the Nios II_Co-Design with eight replications 
provided a throughput speed-up of ~4× the speed of the Nios II_Co-Design with 
a single replication for the same data block processed. Finally, the Full-Hardware 
solution provided a throughput speed-up of ~7× the speed of the Nios 
II_Co-Design with eight replications. This speed-up was observed because of the 
ability of the FPGAs to compute streaming data via multiple instances of the da-
tapath architecture, which means doing calculations in full concurrency. 
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Figure 14. Hroughput comparison for Full_Hardware and Co_Design implementations 
with replications. As each core performs its operations in fixed 128 Clk cycles performing 
encryption or decryption operated on single block of 64-bit data and by knowing Fmax 
freuency beside the number of bytes processed by all cores. Then all that will lead to the 
definite calculation the throughput for the full-hardware solution. 
 

 
Figure 15. Throughput comparison for all the implementations. 
 

In general, the XTEA circuit exhibited a fixed latency of 128 clock cycles when 
performing encryption or decryption operated on single block of 64-bit data. In 
addition, the placement and routing processes provided an achievable clock pe-
riod of 7 ns. Those two values could be used to facilitate the calculation of 
throughputs as needed, such that the throughput calculations reported in this 
work are based on the following equation: 

( ) ( )Throughput no. of bits processed no. of  clock cycles clock period= ×  (1) 

In summary, the Full-Hardware solution has always proved to yield a maxi-
mum encryption performance; nevertheless, utilizing multiple replications of the 
same encryption engine in VHDL notably raised the performance as this work 
shows. 
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6. Conclusion 

In this article, the performance of the XTEA lightweight cryptography algorithm 
used in a soft processor CPU and FPGA is compared. We presented a metho-
dology for interfacing an advanced XTEA in custom hardware with a system de-
signed around a Nios II soft core processor in addition to a software alone de-
sign. Targeted hardware replications on the XTEA encryption engine were suc-
cessfully used to increase the throughput. We were able to show that replications 
on FPGAs can add to the throughput and increase utilization. This work has 
outlined a co-design approach to synthesizing cryptographic algorithms of the 
XTEA type, but other cryptographic algorithms may be used via the same im-
plementation approach. 

Future Works 

The future works could be summarized in porting other light weight crypto-
graphic algorithms in FPGA. 
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