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Abstract 
Accuracy is one of the most important key indices to evaluate multi-axis sys-
tems’ (MAS’s) characteristics and performances. The accuracy of MAS’s such 
as machine tools, measuring machines and robots is adversely affected by 
various error sources, including geometric imperfections, thermal deforma-
tions, load effects, and dynamic disturbances. The increasing demand for 
higher dimensional accuracy in various industrial applications has created the 
need to develop cost-effective methods for enhancing the overall performance 
of these mechanisms. Improving the accuracy of a MAS by upgrading the 
physical structure would lead to an exponential increase in manufacturing 
costs without totally eliminating geometrical deviations and thermal deforma-
tions of MAS components. Hence, the idea of reducing MAS’s error by a 
software-based alternative approach to provide real-time prediction and cor-
rection of geometric and thermally induced errors is considered a strategic 
step toward achieving the full potential of the MAS. This paper presents a 
structured approach designed to improve the accuracy of Cartesian MAS’s 
through software error compensation. Four steps are required to develop and 
implement this approach: (i) measurement of error components using a mul-
tidimensional laser interferometer system, (ii) tridimensional volumetric error 
mapping using rigid body kinematics, (iii) volumetric error prediction via an 
artificial neural network model, and finally (iv) implementation of the on-line 
error compensation. An illustrative example using a bridge type coordinate 
measuring machine is presented. 
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1. Introduction 

Current trends in precision engineering demand continually higher accuracy for 
various industrial applications. The multi-axis systems (MAS) are the basis of 
most production infrastructure ranging from machine tools to robotic applica-
tions, as well as for measurement equipment. The MAS performance in terms of 
accuracy is characterized by the moving accuracy of an open kinetic chain. The 
positioning accuracy is defined by the deviation between the programmed posi-
tion and the actual tool position in the MAS workspace (cutting tools, probe or 
other end effectors). Errors in any relative motion on machine slides will result 
in a positioning error at the programmed position. Major contributors to inac-
curacies in MAS’s are quasi-static error sources, which are responsible for a very 
large proportion of the observed total deviation. They account for 70% of the 
volumetric error [1]. Quasi-static errors vary slowly with time and are related to 
stationary geometric errors resulting from manufacturing defects, misalign-
ments due to assembly and installations, kinematic errors related to position 
control, and thermal errors associated with thermal distortion of the MAS com-
ponents due to external heat sources. Other errors include dynamic errors re-
sulting from control, software and deflections induced by vibrations and varia-
tions of internal forces. Obviously, these errors also have an important influence 
on the MAS accuracy. Moreover, whereas some error sources affect machine 
accuracy directly, others are interrelated with each other and their combined ef-
fects cause significant positioning errors. By considering all these diverse and 
variable error sources, one can understand the difficulties involved in improving 
MAS accuracy.  

The traditional procedure for a relatively error-free MAS is to improve the de-
sign and manufacture of structural components. This approach is usually un-
economical since it leads to an exponential increase in manufacturing costs. An 
alternative approach using the concept of reducing error by compensation has 
proven to be more effective in upgrading MAS accuracy. Several studies have 
focused on enhancing the accuracy through on-line monitoring and computer 
error prediction and correction [2] [3] [4] [5] [6]. Various approaches based on 
quasi-static error analysis, modelling and compensation have been proposed 
over the last three decades. Some address the modelling problems of the final 
observed volumetric error in the MAS workspace by using empirical or analyti-
cal models [7]. Earlier studies have applied analytic geometry [1] and matrix er-
ror representation [8]. More recent reports describe the use of rigid body kine-
matics with homogeneous transformation matrices to model geometrical errors 
[9] [10] [11]. Unfortunately, the extensive experimental and analytical efforts 
required to build an accurate compensation procedure based on these models 
still hinder their commercial implementation. The approach proposed in this 
paper is based on an accuracy-monitoring scheme designed to improve the ac-
curacy of multi-axis machines by compensating for geometric, thermal, load- 
induced and inertial errors. The essential feature of this monitoring system con-
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sists of measuring and modelling the individual errors through an artificial 
neural network (ANN), combined with an improved multi-sensor fusion tech-
nique and a simplified kinematic synthesis model for time-variant and spatial- 
variant position error. 

The paper presents a structured and comprehensive approach designed to 
improve the accuracy of Cartesian MAS’s through software error compensation. 
Four steps are required to develop and implement this approach: (i) measure-
ment of errors in six degrees of freedom along several profiles in each axis using 
a multidimensional laser interferometer measurement system, (ii) synthesis of 
tridimensional volumetric error mapping using rigid body kinematics, small an-
gle approximations and homogeneous coordinate transformation, (iii) volume-
tric error prediction via an artificial neural network and kinematic models for 
on-line error compensation, and finally (iv) implementation of the on-line error 
compensation software package. The proposed approach is illustrated using a 
bridge-type touch probe coordinate measuring machine to demonstrate the ef-
fectiveness of the error compensation system. This paper also presents the ap-
proach’s limitations and some other research ideas to overcome the difficulties 
that still obstruct this promising technology from being widely applied in vari-
ous manufacturing systems. 

2. Overview of MAS Errors 

The accuracy of multi-axis systems is adversely affected by various error sources. 
Quasi-static errors including geometric, kinematic and thermal errors are ac-
countable for a very large percentage of the observed total deviation. Geometric 
error is caused mainly by the MAS structural elements. It affects the repeatability 
of the MAS and its kinematic accuracy. It is also the direct measured error pro-
duced partially by other sources such as the thermal error. Kinematic error is a 
deviation manifesting in the ability of the MAS to reach the exact specified posi-
tion. Position control of MAS slides, couplers, motors, etc. affect this error. Ki-
nematic and geometric errors are interrelated. Thermal error is associated with 
thermal distortion and deformation of MAS structural components due to in-
ternal and external heat sources. Thermal error represents the largest source of 
MAS non-repeatability. The complex nonlinear nature of the thermal error vari-
ation makes it difficult to perform evaluation and analysis. 

Figure 1 shows a typical structure of a prismatic joint in a Cartesian MAS 
axis. Each axis (X-axis) aggregates six error components associated with the 
prismatic joint’s six degrees of freedom (dof): three translational errors in the x, 
y, and z directions (i.e., linear displacement error δx(x), horizontal straightness 
error δy(x), and vertical straightness error δz(x), and three rotational errors about 
the x, y, and z axes (roll error εx(x), yaw error εy(x), and pitch error εz(x). The 
lowercase term indicates the error direction and the term in parentheses indi-
cates the moving slide. As an example, δy(x) refers to the straightness error in the 
Y direction when moving along the X-axis). Besides the six error components of  
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Figure 1. Schematic representation of error components associated with a prismatic joint 
in a Cartesian MAS. 

 
each joint, there is also a perpendicularity or parallelism error between every two 
joints on MAS, Sxy, Syz and Sxz. In the case of three-axis MAS, 21 errors are as-
sessed and combined in order to synthetize the volumetric error components for 
the error compensation. 

3. Errors Description and Modelling 

The final errors between the actual and the desired MAS tool position can be 
calculated using kinematic modelling techniques. To derive the kinematics of a 
MAS with complex configurations, homogenous coordinate transformation 
techniques can be used. Cartesian MAS’s are typically composed of a sequence of 
structural elements connected by joints that provide translational motion. Using 
Rigid Body Kinematics, each axis motion relative to the other axes and to the 
reference frame can be modelled using a Homogeneous Transformation Matrix 
(HTM). An HTM in tridimensional space is a 4 × 4 matrix. It can be used to 
represent one coordinate system with respect to another or with respect to the 
reference coordinate system (RCS). In this way, the location of the MAS tool 
is established relative to the RCS and the resultant volumetric error is esti-
mated. 

3.1. Geometric Errors Model of Linear Axis 

An HTM describes the pure translation of an ideal axis (Figure 1) for the X-axis 
in the following form: 

1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

R
X ideal

x

T

 
 
   =   
 
 

                    (1) 

where, x denotes the position of the X-axis coordinate system (Ox, Xx, Yx, Zx) 
with respect to the RCS (O, Xr, Yr, Zr). When taking the 6 dof error motion into 
account, the total error motion of the axis is a combination of rotational and 
translational errors. Using HTM and assuming small angular errors, the actual 
translation along a real X-axis is given by: 
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 
 

              (2) 

3.2. Geometric Errors Model of Three-Axis MAS 

The positioning error is defined as the deviation between the actual and the de-
sired MAS tool position. The actual position can be obtained by multiplying all 
of the HTMs with error components successively, going from the RCS to the 
tool coordinate frame. Similarly, the desired tool position can be obtained by 
multiplying all of the HTMs without error components successively, once again 
from the RCS to the tool coordinate frame.  

Taking the Frame-XYZ type mechanism as an example, the schematic dia-
gram of the structure of three-axis MAS and corresponding coordinate frames is 
illustrated in Figure 2. The HTM that can describe the spatial relationship be-
tween the RCS and the tool coordinate frame can be given as: 

RCS RCS X Y Z
tool X Y Z toolT T T T T= × × ×                  (3) 

The actual tool coordinates Pa (xa, ya, za) in the RCS can be obtained by: 

[ ] [ ]T TRCS1 0 0 1a toolP T L= × −                 (4) 

where L is the tool dimension in Z direction.  
The desired coordinates of the tool in the RCS, Pd (xd, yd, zd), can be obtained 

by setting the error components in Equation (3) to zero. The volumetric error 
vector E (Ex Ey Ez) can be obtained by: 

 

 
Figure 2. Volumetric error vector and coordinate frames of a typical 3 axis mechanism. 
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[ ] [ ]T T0 0X Y ZE E E E=                   (5) 

[ ] [ ] [ ]T TT0 1 1a dE P P= −                    (6) 

The total volumetric error (Ev) illustrated in Figure 2 can be computed by: 
2 2 2

V X Y ZE E E E= + +                       (7) 

4. Errors Measurements 

The choice of the best error measurement method is essential for building an 
accurate and robust predictive model. Several measurement methods are well 
defined by existing standards and have been methodically tested and imple-
mented by industry. These methods can be separated into two classes: indirect 
and direct. Indirect measurement methods involve measuring techniques which 
focus on superposed errors requiring multi-axis simultaneous movement [12]. 
These methods are developed as quick checks for an integral MAS test, giving an 
idea of the range of deviation. Indirect measurement methods use artefacts or 
standard references with known dimensions to measure the errors (calibrated 
artefacts, partially or totally non-calibrated artefacts, magnetic ball bars, double 
ball bars, special test pieces and other contour and displacement line measure-
ments tests). 

Indirect methods also use a few measuring tools from direct methods and ap-
ply them in different positions and orientations. Direct measurements are fur-
ther classified into two classes based on the metrological reference used: material 
based methods using artefacts (i.e., straightedges, scales or step gauges) as refer-
ences, and laser-based methods using laser light propagation and its wavelength 
as a reference. 

Laser-based methods are mainly used to evaluate errors of linear motion using 
a laser interferometer. As mentioned above, normal 6 dof geometric errors of a 
moving stage consist of the positioning error along the moving axis, two 
straightness errors perpendicular to the moving axis, and three angular errors 
along three perpendicular axes. The laser interferometers are commonly used to 
make extremely accurate measurements of linear displacement. The basic theory 
for laser interferometers dates back to the early 1900s with the Michelson Inter-
ferometer [13]. Modern interferometers are highly portable computer-controlled 
devices that are relatively easy to use and offer a wide range of data acquisition 
and analysis capabilities.  

A laser interferometer uses a laser source emitting a focused, monochromatic 
light beam. In its basic configuration, the set-up includes a stationary light 
source, a beam splitter, a stationary reference reflective target, and a mobile ref-
lective target, although there are several variants of laser interferometers. The 
simplest and the most popular ones can perform measurements in only one axis 
to measure linear and angular displacements, flatness, etc. For example, 1D in-
terferometers characterized by a greater linear measurement accuracy of ±0.5 
μm/m are available through many manufacturers. In order to evaluate the volu-
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metric error by means of a 1D laser, it is necessary to rearrange the laser head 
and the optics many times in each axis being measured. In addition, the mea-
suring system must be recalibrated after each reconfiguration and the measure-
ments need to be repeated at least 3 to 5 times. This means that it would take a 
few days to determine the 21 components of the geometric error for a 6 dof 
MAS.  

The 3D version interferometers are designed based on 1D interferometer with 
added optoelectronic circuits enabling the simultaneous measurement of the 
lateral motions of the reflector. Linear errors, horizontal straightness and vertical 
straightness along a given axis are evaluated at the same time. The 6D version 
interferometers are built by adding more optoelectronic circuits. Errors asso-
ciated with the 6 dof along a moving axis are measured simultaneously. With the 
6D interferometers, the measuring time can be substantially reduced (60% - 
75%) [14]. The 6D laser setup needs to be executed only once for each of the 
axes measured. 

Among the multidimensional laser measurement systems available, the XD 
Laser series manufactured by Automated Precision Inc. (API) provides simulta-
neous measurement of all axis errors from a single setup. The 6D system also 
features the ability to evaluate velocity, acceleration, parallelism, squareness, and 
flatness. Figure 3 shows the configuration of a high-precision XD laser model 
consisting of a laser head, an interferometer module, and a sensor head and a la-
ser controller. The XD laser system is a Helium Neon laser operating at a fre-
quency of 473 THz with 0.6329 μm wavelength.  

The laser head emits a highly stabilized and collimated laser beam that is 
aligned with the axis being measured. The laser beam is split into three paths, 
one for the vertical and horizontal straightness measurements, one for the angu-
lar measurements, and one for linear distance measurement. The straightness 
and angular measurements are achieved with precision optics and a lateral effect 
photo-detector [15]. Figure 4(a) highlights the internal structure of the laser re-
ceiver, configured for linear error measurements requiring both the interfero- 

 

 
Figure 3. Volumetric error vector overall view of the 6D XD laser system [15]. 
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Figure 4. Simplified block diagram of the laser system receiver used for: (a) linear measurements and (b) angular measurements 
[15]. 
 

meter and retro reflectors. Figure 4(b) illustrates the laser receiver configuration 
for straightness and angular measurements. In this case, the laser beams are sent 
from the beam splitter to the angle measurement optics, working as a miniature 
autocollimator, and to straightness sensor.  

5. Application in the Case of a Coordinate  
Measuring Machine 

Coordinate Measuring Machines (CMMs) are widely used in industry to inspect 
the dimensional and geometric characteristics of complex and high-precision 
parts. A common but inadequate industrial practice is to assume any part mea-
surement to be nearly error free, or in the worst case to be within CMM volu-
metric error specifications provided by the CMM manufacturer or by calibra-
tion. This oversimplification of CMM precision is often misleading since other 
factors are involved. Indeed, CMM precision strongly depends on inaccuracies 
induced by various error sources. 

Deviations of the mechanical structure resulting from geometric imperfec-
tions, static forces and thermally induced strains are commonly recognized as 
the largest contributors to the total measurement error. The results reported in 
the literature indicate a typical geometric ranging between 5 and 40 μm and a 
thermal effect of 8 to 15 μm/˚C∙m for commonly used CMMs. The errors intro-
duced by the probing system can deteriorate the performance of the CMM by 
about 1 to 10 μm overall.  
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As the necessity to improve the working accuracy of CMMs is well recognized, 
the question then arises as to the best way to achieve it. It is clear from the lite-
rature that the CMM structural error dominates. It is thus natural to begin the 
investigation and development of a compensation system assessing this problem.  

The proposed CMM error compensation system operates using the encoder 
positions X, Y and Z triggered as the probe tip hits the inspected part, and re-
turns the compensation Ex, Ey and Ez that must be added to the encoder position 
in order to improve machine position accuracy. ANNs and kinematic models 
provide the compensation vector as a function of the encoder positions. The 
compensated position is then used as input to the CMM software for geometric 
computation and metrological analysis. This compensation system is built and 
implemented on a moving bridge CMM equipped with a Renishaw head and 
probing system. The CMM workspace is 400 × 400 × 400 mm along, respective-
ly, the X, Y and Z axes. 

The steps required to build the error compensation model comprise: (i) the 
measurement of three error components along several X, Y and Z profiles using 
a multidimensional laser interferometer system, (ii) the building of the neural 
network models that estimate the geometric errors anywhere within the CMM 
workspace, (iii) the construction of the predicted volumetric error components 
using a kinematic model, and finally (iv) the implementation and validation of 
the error compensation software package. As the CMM is a three-axis MAS, a 
total of 21 errors are to be assessed and combined in order to evaluate the volu-
metric error components for error compensation. Table 1 presents an error 
budget providing the potential errors within the CMM workspace. 

The schematic diagram of the structure of the CMM and the corresponding 
coordinate frames is illustrated in Figure 5. Based on this configuration, the spa-
tial relationship between the reference coordinate frames and the tool coordinate 
frame is established using a homogeneous transformation matrix. This relation-
ship can be obtained using Equation (3). 

By setting the offsets between the coordinate frames of adjacent axes to zero 
and by neglecting the higher order infinitesimal terms, the volumetric error 
components can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

X x x x z xy y y xz

y y y

E x y z y x S z x y S

L x y z

δ δ δ ε ε ε

ε ε ε

   = + + − + + + −   
 + + + 

 (8a) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Y y y y x x yz x x xE x y z z x y S L x y zδ δ δ ε ε ε ε ε = + + − + + − + +    (8b) 

 
Table 1. Summary of geometrical errors in the CMM. 

Axis Translation component Rotational component Orthogonality 

X δx(x) δy(x) δz(x) εx(x) εy(x) εz(x) Sxy 

Y δx(y) δy(y) δz(y) εx(y) εy(y) εz(y) Syz 

Z δx(z) δy(z) δz(z) εx(z) εy(z) εz(z) Sxz 
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Figure 5. Coordinate frames of the CMM under investigation. 

 

( ) ( ) ( ) ( )Z z z z xE x y z y xδ δ δ ε= + + +                (8c) 

5.1. Errors Measurement Procedure 

To measure the displacement errors over the travel ranges of three CMM slides, 
an API XD laser interferometer system is used. Table 2 presents a simplified 
picture of the laser interferometer system characteristics. The experimental setup 
is presented in Figure 6. Measurements are carried out in a controlled tempera-
ture environment within a tolerance of ±1˚C at displacement intervals Dx, Dy 
and Dz of 400 mm. The measurements are performed using the minimum speed 
in order eliminate dynamic effects and determine the most accurate geometrical 
deviation.  

The results of the geometrical error measurements, illustrated in Figures 7-9, 
show that the linear displacement errors are larger than the specified CMM ac-
curacy of ±2 μm (7 μm, 10 μm and 8 μm respectively for X, Y and Z axis). The 
maximum straightness errors vary on average between 10 μm and 12 μm de-
pending on the measured axis. Finally, pitch, yaw and roll errors measured at the 
same positions are similarly presented. The maximum angular errors average 
between 7 and 10 arcsec. 

After the various individual geometric errors are measured, the positioning 
volumetric error components (MEx, MEy and MEz) are synthesized using the ki-
nematic model presented in Equation (5). Figure 10 illustrates the spa-
tial-variant error components in X-Y, Y-Z and X-Z planes. Maximum errors 
without compensation reach 35, 30 and 25 μm in X, Y and Z directions, respec-
tively. 
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Table 2. 6-D brief review of the laser interferometer characteristics [15]. 

Accuracy 
Options 

Regular Precision High Precision 

Linear (ppm) 0.5 0.2 0.2 

Linear Range (m) 25 25 - 

Straightness (μm) ±(1.0 + 0.2/m) ±(0.5 + 0.1/m) ±(0.2 + 0.05/m) 

Max. range (μm) ± 500 ±300 ±100 

Pitch and Yaw (arcsec) ±(1.0 + 0.1/m) ±(0.5 + 0.5/m) ±(0.2 + 0.05/m) 

Max. Range (arcsec) ±800 ±400 ±50 

Roll (arcsec) ±1.0 ±0.5 ±0.5 

Squareness (arcsec) ±1 ±0.5 ±0.5 

Temperature (˚C) 0.2 0.1 0.1 

Humidity (%) 5 3 3 

Pressure (mmHg) 1 0.3 0.3 

 

 
Figure 6. Measurements setup. 

 

 
Figure 7. Measured geometric errors for X-displacement. 
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Figure 8. Measured geometric errors for Y-displacement. 
 

 
Figure 9. Measured geometric errors for Z-displacement. 
 

 

Figure 10. Measured 3D volumetric error components for the XYZ workspace. 

5.2. Artificial Neural Network Modeling 

In order to evaluate the volumetric error at any location on the CMM work-
space, a set of error components must be predicted using a pre-established em-
pirical model. For the bridge-type CMM, the volumetric error components can 
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be considered as a combination of the 21 geometric errors. The difficulties of 
modeling lie in the fact that the components of the error are highly nonlinear 
and strongly correlated to the 3D coordinates in the CMM workspace. There-
fore, the empirical model must be multiple-input multiple-output nonlinear 
model. Hence, an ANN model is proposed to predict six error components for 
each axis. Because the three orthogonalities are assumed to be constant, they are 
not considered in the prediction models.  

While various ANN techniques can be used in this approach, a multilayer 
feed-forward neural network seems to be one of the most appropriate options 
because of its simplicity and flexibility [16] [17]. As shown in Figure 11, a neural 
network consists of N neurons, which are each connected to the neurons of the 
adjacent layers. A threshold value θ,l is associated with each neuron. The output 
of each neuron is determined by the level of the input signal in relation to the 
threshold value. These signals are modified by the connection weights Wi,j,c (also 
called synaptic strengths) between the neurons.  

Let Ij,l be the input to the jth neuron on layer l, then the output of this neuron 
is given by: 

( ),
, ,

1
1 expj l

j l j l

O
I θ

=
+ − +

                    (8) 

where, 
1

, , , , 1
1

ln

j l i j l j l
i

I W O
−

−
=

= ∑                        (9) 

where Oi,l-1 is the output of the ith processing neuron of layer l-1, nl-1 is the num-
ber of neurons on layer l-1, and Wi,j,l is the weight of the connection between 
neuron i on layer l-1 and neuron j on layer l. 

The ANN structure shown in Figure 11 provides a typical and useful example 
to illustrate the mechanism of the supervised learning process. In response to a  

 

 
Figure 11. Simple computational elements of the multiplayer feed-forward neural net-
work. 
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pattern presented to the input layer, the ANN attempts to produce an associated 
pattern by its output layer. The hidden layers are employed to reject noises that 
are present in the input signals, so that the task of feature extraction can be per-
formed effectively. So far as the training of the multilayer feed-forward neural 
network is concerned, the algorithm most widely used is known as error 
back-propagation (also known as the generalized delta rule). In this rule, the 
network parameters are adapted from one iteration to another using the follow-
ing equations: 

( ) ( ) ( ) ( ), , , , , , 1 , , , ,1 1i j l i j l j l i l i j l i j lW n W n O W n W nηδ α−  + = + + − −      (10) 

( ) ( ) ( ) ( ), , , , ,1 1j l j l j l j l j ln n n nθ θ ηδ α θ θ + = + + − −           (11) 

where, 

( ) ( ), , , , ,1 ifj l j l j ll j ll j lldO O O O l llδ = − − =              (12) 

( ), , , , 1 , , 11 ifj l j l j ll k l j k l
k

O O W l llδ δ + += − <∑             (13) 

where, dOj,e is the desired output from the jth output of the network using the eth 
training exemplar. The gain η, and momentum α, can take values between 0 and 
1 providing settings for the learning rate and filters for high-frequency variations 
of the error surface. The exemplar values input in the network are linearly 
mapped between 0 and 1 range. The network outputs will allow values between 0 
and 1 which can be mapped back to full range. 

Three multilayer feed-forward neural network are proposed to fit the experi-
mental measurements. That means all the 18 error components are predicted 
using only three ANN models, which significantly saves time for modelling. Be-
fore training the ANN models, it was important to establish the size of the hid-
den layer and optimize the training performances. It is known that too few hid-
den processing neuron will not train the ANN well. However, too many hidden 
processing neuron will increase the difficulty of training and the ANN will try to 
model everything including the noise. 

In order to optimize the ANN architecture, the idea is to approximate the rela-
tionship between the size of the hidden layer and the complexity of the relation-
ship between dependent and independent modelling variables. For this evaluation, 
4 network architectures were studied: [(i)x(i+1)x(o)], [(i)x(2i + 1)x(o)], [(i)x(i + 
1)x(2i + 1)x(o)] and [(i)x(2i + 1)x(3i + 1)x(o)], where (i) and (o) are the number of 
inputs and outputs respectively. Training mean square error (MSEt), validation 
mean square error (MSEv) and the total mean square error (MSEtot) are used as 
modelling performance criteria for choosing the best ANN architectures. The 
evaluation of the produced models is based on the three validation procedures 
summarized in Table 3. The best results are achieved using the [(i)x(2i + 1)x(o)] 
ANN. Consequently, this network structure is selected. 

Globally, the modelling results present good agreement between measured 
and predicted error components in training and validation phases. The three 
ANN prediction models present excellent performances with an average error of  
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Table 3. Validation procedures. 

Procedures Training Validation 

VP1 100% of data 100% of data 

VP2 50% of data picked randomly Remaining data (50%) 

VP3 Data acquired under specific positions Remaining data 

 

 
Figure 12. Residual errors representing the differences between measured and predicted 3D volumetric error components for the 
XYZ workspace. 
 

less than 5% for the 18 error components.  
As soon as the ANN models are built producing the error components, pre-

dicted positioning volumetric error components (PEx, PEy and PEz) are synthe-
sized using the kinematic model established in Equation (5) and the compensa-
tion values are generated. Simulation tests conducted using various conditions 
demonstrate the effectiveness of the proposed error prediction and compensation 
approach. Figure 12 visualizes the residual errors (Rx, Ry and Rz) representing 
the differences between the measured and the predicted tridimensional spa-
tial-variant errors in the xy, yz and xz planes. The prediction errors are relatively 
small and do not exceed 6 μm out of a total volumetric error of more than 63 
μm. From these results, it is clear that the proposed error compensation ap-
proach can improve the volumetric working tolerance of the CMM by reducing 
more than 90% of the quasi-static errors. 

5.3. Error Compensation 

The error compensation system operates using the encoder positions X, Y and Z 
triggered as the probe tip hits the inspected part, and returns the compensation 
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Ex, Ey and Ez that must be added to the encoder position in order to improve 
machine position accuracy. The ANN model provides the error components as a 
function of the encoder positions. Volumetric error components are synthesized 
using the kinematic model. The compensated position is then used as an input 
to the CMM software for the geometric computations and metrological analysis. 

In order to evaluate the performance of the error identification and compen-
sation approach, a diagonal test is designed. In this test, the CMM is controlled 
to move from the RCS position along the volumetric diagonal. The travel dis-
tance along the diagonal is 692.82 mm. The machine is controlled to move by 
69.282 mm constant steps along the diagonal (40 mm on each axis simulta-
neously at a constant measuring speed). At each position, the current coordi-
nates from the CMM controller are collected and transferred to the computer 
where the errors are synthesized. The actual and predicted distances are then 
compared, and the correction of the diagonal travel distance is applied. The ac-
tual and predicted diagonal distances as well as the residual errors are presented 
in Figure 13. As can be seen in the graph, from volumetric errors exceeding 27 
μm (7, 23 and 12 μm, respectively, in the x, y and z directions), the maximum 
residual error is lower than ±2 μm. Though obtained under conditions mini-
mizing random errors by collecting data under the most stable conditions possi-
ble, these results indicate that the proposed error identification approach can 
produce an efficient active error compensation of the systematic errors, thereby 
leading to significant improvement of the MAS accuracy. When working at the 
micrometer level, other errors like probing system error, metrology software er-
rors, and especially dynamic errors must also be addressed. 

6. Conclusions 

In response to the increasing demand for higher quality, improving the accuracy 
of multi-axis systems through software error compensation is becoming increa-
singly important in modern manufacturing. The success of such methods de- 

 

 
Figure 13. Residual error representing the difference between measured and predicted 
diagonal distances. 
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pends on the degree of consistency in identifying error sources, the precision of 
the measurement techniques, the reliability of the modelling approach, and its 
robustness in evaluating the error components at any location within the MAS 
workspace. Applicable to a MAS of diverse configurations, the proposed laser 
interferometer based measurement and ANN predictive modelling approaches 
are built step-by-step to satisfy these requirements.  

This paper presents a structured and comprehensive method designed to im-
prove the accuracy of a Cartesian MAS through software error compensation. 
The proposed method is based on the measurement of error components using 
an accurate multidimensional laser interferometer system, on the 3D volumetric 
error mapping using rigid body kinematics and a homogeneous transformation 
matrix, and on ANN predictive modelling. Implemented on a bridge-type coor-
dinate measuring machine, the proposed compensation approach improves the 
MAS accuracy by reducing more than 90% of the quasi-static errors, thus drop-
ping the maximum volumetric error from 63 μm to fewer than 6 μm. Nonethe-
less, it is important to mention that all of the tests were performed at very low 
velocities. This suggests that the errors could be much greater if the MAS is op-
erating at high velocities, due to dynamics. 
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