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Abstract 
The attainability problem with “asymptotic constraints” is considered. Con-
crete variants of this problem arise in control theory. Namely, we can consider 
the problem about construction and investigation of attainability domain un-
der perturbation of traditional constraints (boundary and immediate condi-
tions; phase constraints). The natural asymptotic analog of the usual attaina-
bility domain is attraction set, for representation of which, the Warga genera-
lized controls can be applied. More exactly, for this, attainability domain in 
the class of generalized controls is constructed. This approach is similar to 
methods for optimal control theory (we keep in mind approximate and gene-
ralized controls of J. Warga). But, in the case of attainability problem, essen-
tial difficulties arise. Namely, here it should be constructed whole set of limits 
corresponding to different variants of all more precise realization of usual so-
lutions in the sense of constraints validity. Moreover, typically, the above- 
mentioned control problems are infinite-dimensional. Real possibility for in-
vestigation of the arising limit sets is connected with extension of control 
space. For control problems with geometric constraints on the choice of pro-
grammed controls, procedure of this extensions was realized (for extremal 
problems) by J. Warga. More complicated situation arises in theory of impulse 
control. It is useful to note that, for investigation of the problem about con-
straints validity, it is natural to apply asymptotic approach realized in part of 
perturbation of standard constraints. And what is more, we can essentially 
generalize self notion of constraints: namely, we can consider arbitrary sys-
tems of conditions defined in terms of nonempty families of sets in the space 
of usual controls. Thus, constraints of asymptotic character arise. 
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1. Informative Discussion of Problem  

We consider general attainability problem in a topological space (TS). For this, 
we fix a nonempty set E elements of which play the role of usual solutions 
(sometimes, it is logical to consider elements of E as controls). Moreover, we fix 
a TS ( ),H t  and a mapping : E →h H  called the goal operator. If e E∈ , then 
( )e ∈h H  is the concrete result of the choice of e. If a subset 0E  of E is given, 

then image ( ) ( ){ }1
0 0:E e e E= ∈h h  of 0E  can be considered as attainable set 

or analog of attainability domain in control theory (see [1] [2]). The closure 
( ) ( )( )1 1

0 0cl ,E E=h h t  of ( )1
0Eh  is a natural generalization: we assume 

realization of points of H  “in a limit” under precise validity of constraints 
connected with the set 0E . In investigation of J. Warga, for optimization 
problems, the approach using weakening of 0E -constraints was proposed (see 
ch. III,IV of monograph [2]). Of course, this approach assumes the natural 
spreading on attainability problems. Namely, we replace 0E  by a nonempty 
family   of subsets of E with the property  

0E
Σ∈

= Σ




                           (1.1) 

(usually, the family   is directed in the following traditional sense  

1 2 3 3 1 2:∀Σ ∈ ∀Σ ∈ ∃Σ ∈ Σ ⊂ Σ Σ                (1.2) 

but, now we not discuss this supposition). It is logical to suppose that sets of the 
family   are “near” to 0E  (we keep in mind Warga approach). For every set 
Σ∈ , we consider the set-image ( )1 Σh  and its closure ( )1 Σh  in TS ( ),H t . 
Later, we can consider the intersection of all sets ( )1 ,Σ Σ∈h  instead of 

( )1
0Eh ; in this representation, the validity of (1.2) is essential. The given 

intersection is interpreted as attraction set (AS). This construction can be 
considered as natural analog of the Warga approach for extremal problems (see 
ch. III, IV in [2]). But, for abstract attainability problem, the above-mentioned 
construction with employment of AS can be extended very essentially. 

Indeed, we can investigate the setting for which the family   is primarily (it 
is supposed that the set 0E  is not given). This family consists of subsets of E; 
usually it is sufficient to suppose that   is directed (see (1.2)). But, now we not 
require validity of this condition. 

So, let   be a nonempty family of subsets of E. At first, we consider 
questions connected with the choice of mappings with values in E. In particular, 
we can consider the choice of sequences in E. But, sometimes, our possibilities 
are extended in the case when the choice of nets is admissible. Therefore, now 
we discuss the choice of nets ( xα ) in the set E. We consider such nets as 
asymptotic regimes. Respectively, in H , nets ( )( )xαh  are realized. If, for a net 
( xα ) in E, under every Σ∈ , the condition xα ∈Σ  is fulfilled starting from a 
certain index, then we consider ( xα ) as admissible asymptotic regime. The 
following question arises: for which y∈H , an admissible asymptotic regime 
( xα ) with the property of convergence of ( )( )( )x αh  to y can be chosen. Such 
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points y are interpreted as attainable elements of H . We consider the problem 
about construction of the set of all attainable elements. We call his AS. In 
addition, under condition (1.2) our new definition of AS is equivalent to 
previously mentioned definition (see formula (3.3.10) in [3]). If (1.2) is not 
fufilled, then we can to replace   on the family f  of all finite intersections 
of sets of  . Then AS defined by the convergence of nets (that is, by asymptotic 
regimes) coincides with intersection of all sets ( )1 ,Σ Σ∈fh . We note that 
filters can be used instead of nets (see [4]). 

2. General Notions and Definitions 

We exploit standard set-theoretical symbolics (quantors, propositional connec- 
tives; ∅  is empty set). In the following,   is equality by definition; !∃  
replaces phrase “exists and uniquely”. We take axiom of choice. For every object 
x, by { }x  we denote singleton containing x (so, { }x x∈ ). The set is called a 
family in the case when every element of this set is a set also. 

If H is a set, then by ( )H  and ( )H′  we denote the families of all and 
all nonempty subsets of H respectively; so, ( ) ( ) { }\H H′ = ∅  . By ( )Fin H  
we denote the family of all finite sets of ( )H′ ; so, ( )Fin H  is the family of all 
nonempty finite subsets of H. If ( )( )H′∈   , then   is a nonempty 
subfamily of ( )H . Then, for a fixed set   and a family ( )( )′∈    , we 
introduce the family  

[ ] { } ( )( )\ :H H ′∈ ∈     C  

dual with respect to   (of course, a topology of   can be used as  ; in this 
case, the family of closed subsets of   is realized as [ ] C ). It is obviously 
that  

[ ] ( )( )′  = ∀ ∈   A A A  C C  

Now, we consider other operations with families. So, for every nonempty 
family   and a set Y,  

{ } ( )( ):Y X Y X Y′∈ ∈      

is trace of   on the set Y. If   is a nonempty family, then we suppose that  

{ }( ) ( ) { } ( ) ( ): & : Fin
H H

H H
∈ ∈

      
∈ ∈            

   

 

H

H


     f
 (2.1) 

in addition, { }( )⊂    and { } ( )⊂  f . Of course, in (2.1), we obtain 
two nonempty families of subsets of union of all sets of  . 

For every sets A and B, by AB  we denote the set of all mappings from A into 
B; of course, under Af B∈  and a A∈ , ( )f a B∈  is the f-image of the point a. 
For every sets U and V, a mapping Ug V∈ , and a set ( )W U∈ , by ( )g W  
we denote the contraction of g on the set W ( ( ) Wg W V∈  and  
( )( ) ( )g W w g w w W∀ ∈

) and ( ) ( ){ } ( )1 :g W g x x W V∈ ∈   (the image of 
W under operation by g). 
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Special families. In the following, we consider families of subsets of that or 
different fixed set. Therefore, in this item, we fix a nonempty set I and consider 
the family ( )( )I′   of all nonempty subfamilies of ( )I . Among all such 
subfamilies, we select π-systems (see p. 14 in monograph [5]) with “zero” and 
“unit”; then,  

[ ] ( )( ) ( ) ( ) ( ){ }& &I I I A B A Bπ ′∈ ∅∈ ∈ ∈ ∀ ∈ ∀ ∈          (2.2) 

is the family of all such π-systems. Of course, every algebra of subsets of I and 
every topology on I are π-systems of the family (2.2); therefore, we introduce  

( )[ ] [ ]{ }
( )[ ] [ ] ( )

alg \ ,

top
G

I I I L L

I I G

π

τ π τ τ
∈

∈ ∈ ∀ ∈

 
′∈ ∈ ∀ ∈ 

 









  

 
 

Every semialgebra of subsets of I (semiring with “unit”) is a π-system of (2.2) 
also. In the form of  

[ ] [ ] ( ) ( ){ }0 \ : &I I L x I L x Lπ π∈ ∀ ∈ ∀ ∈ ∃Λ∈ ∈Λ Λ =∅
      (2.3) 

we obtain the family of all separable π-systems of (2.2). Particular case of π- 
system of the family (2.3) is realized for π-systems with singletons:  

[ ] [ ] { }{ } [ ]( )0
0 I I x x I Iπ π π′ ′∈ ∈ ∀ ∈ ∈ 

               (2.4) 

(in (2.4), we exploit the obvious property ( ) [ ]0I Iπ ′∈ ). In the form of  

( ) [ ] [ ]{ }0LAT I I A B A Bπ∈ ∈ ∀ ∈ ∀ ∈      

we obtain the family of all lattices with “zero” and “unit”. Of course,  
( )[ ] ( ) [ ]0alg LATI I⊂  and ( )[ ] ( ) [ ]0top LATI I⊂ . We suppose that  

[ ] ( )( ){ }1 2 3 3 1 2:I I B B B B B Bβ ′∈ ∀ ∈ ∀ ∈ ∃ ∈ ⊂        

(the family of all nonempty directed subfamilies of ( )I ); then, elements of 
the family  

[ ] [ ]{ }
( )( ){ }

0

1 2 3 3 1 2:

I I

I B B B B B B

β β∈ ∅∉

′ ′= ∈ ∀ ∈ ∀ ∈ ∃ ∈ ⊂





 

     
 

are filter bases of the set I and only they. Moreover,  

[ ] ( )( ) ( ){
( ) ( ) ( )( )}&

I I A B A B

F L I F L L

′ ′∈ ∈ ∀ ∈ ∀ ∈

∀ ∈ ∀ ∈ ⊂ ⇒ ∈

 F      

  
        (2.5) 

is the family of all filters of I (see ch.I in monograph [6]); elements of the family  

[ ] [ ] [ ] ( ) ( ){ }I I I∈ ∀ ∈ ⊂ ⇒ =F F F     u         (2.6) 

are ultrafilters of I and only they. If ( )( )I′∈   , then we suppose that  

[ ]{ }0 .I I  ∈ ⊂  F F   u u                   (2.7) 
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In addition, the following known (see ch.I in [6]) construction is used: if 
[ ]0 Iβ∈ , then  

( )[ ] ( ){ } [ ]:I F I B B F I− ∈ ∃ ∈ ⊂ ∈ F  fi  

is the filter of I generated by the base  . Finally, for x I∈   

( )[ ] ( ){ } [ ]ultI x S I x S I− ∈ ∈ ∈ F u  

so, trivial (fixed) ultrafilters are defined. By ( )[ ] ( )[ ]( )ult ult
x I

I I x
∈

− ⋅ −
 the 

natural rule of immersion of I  into [ ]IFu  is realized. We note that (2.6) is a 
nonempty set. 

Filters and ultrafilters of π-systems. Now, we consider “partial” filters and 
ultrafilters. For this, in the present item, we fix arbitrary π-system [ ]Iπ∈ . So, 
( ),I   is analog of measurable space. In the following, we call ( ),I   a 
meaurable space also; of course, this term is regarded extendedly. We suppose 
that  

( )[ ] ( ) ( )Cen Fin
Z

I Z
∈

 ′∈ ≠ ∅∀ ∈ 
 







                (2.8) 

Families of (2.8) are nonempty centered subfamilies of   and only they. 
Introduce “partial” analogs of filters of (2.5); namely, in  

( ) { }( ) ( ){
( ) ( )( )}

* \

&

A B A B

F L F L L

′∈ ∅ ∈ ∀ ∈ ∀ ∈

∀ ∈ ∀ ∈ ⊂ ⇒ ∈

        

  
       (2.9) 

the set of all  -filters is defined. As a corollary,  

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

( )[ ] ( )[ ] ( ) ( ){ }

* *
0

*

Cen | Cen

L L U U L

∗ ∈ ∀ ∈ ⊂ ⇒ =

= ∈ ∀ ∈ ≠∅∀ ∈ ⇒ ∈

= ∈ ∀ ∈ ⊂ ⇒ =





  



        

    

       

   (2.10) 

is the set of all  -ultrafilters. In connection with (2.10), we note constructions 
of [7] [8]. Suppose that  

( ) ( ){ }
( ){ }

0

0

L L

L U U L

∗

∗

Φ ∈ ∈

= ∈ ≠∅∀ ∈ ∀ ∈









   

   
        (2.11) 

The sets (2.11) play important role in questions of topological equipment of 
( )0

∗  ; these questions is considered later. On the other hand,  

( ) ( ){ } ( ) ( )0 0
L

L I∗ ∗

∈

′∈ ⊂ = Φ ∀ ∈



  


             (2.12) 

in (2.12), we obtain the natural analog of (2.7). Now, we consider analogs of 
(2.11) for which the condition of  -measurability of set defifning (2.11) can be 
omitted. Namely, let  

( ){ } ( )*
0 0A A U U A I∗  ∈ ≠ ∅∀ ∈ ∀ ∈       F      (2.13) 
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Analogously, as some generalization of (2.12), we exploit the following 
families:  

( ) ( ){ }
( )( )

*
0 0

*
0

A

A U A U

A I

∗

∈

∈ ≠ ∅∀ ∈ ∀ ∈

′=   ∀ ∈ 

 







     

   

F

F
       (2.14) 

Of course, ( ) *
0L LΦ =    F  under L∈ ; moreover, ( ) ( )*

0 0
∗ =    F  

under ( )′∈   . So, (2.13) is natural generalization of (2.11) and (2.14) is 
analogous generalization of (2.12). If x I∈ , then  

( )( )[ ] ( )[ ] { } ( )*, ult ultI x I x L x L− − = ∈ ∈ ∈       

is considered as trivial  -filter corresponding to point x. We recall (see Section 
3 in [9]) that  

( ) ( ) ( ) ( )* *
0, 0 0 0,\

U
U∗ ∗

∈

 
∈ =∅ = 

 




   


    f t        (2.15) 

where ( ) ( )( )[ ]{ } ( )( )* *
0, , ult : .I x x I ′− ∈ ∈    t  In addition (see p.214 

in [8]),  

[ ]( ) ( )( )[ ] ( )( )0
0, ultI I x x Iπ ∗∈ ⇔ − ∈ ∀ ∈           (2.16) 

Remark 2.1. We recall that ( ) [ ]I Iπ∈  (and what is more, ( ) ( )[ ]algI I∈ ) 
and consider the particular case ( )I=  . From (2.5) and (2.9), the equality 
[ ] ( )( )*I I= F   follows. As a corollary, by (2.6) and (2.10)  
[ ] ( )( )*

0I I= F u . Using (2.7) and (2.12), we obtain that  
( )( ) ( )( ) ( )( )* *

0 0 .I I I I′  = = ∀ ∈  F        u F  Of course, 
( )[ ] ( )( )( )[ ]ult , ultI x I I x− = −  under x I∈ .  

Example. Let   be real line. In this item, we fix ] [, ,a b a∈ ∈ ∞ , and 
suppose that [ ],I a b= . Let  

( ) ] [( ) [ ]( ){ }: , & ,L I c I d I c d L L c d∈ ∃ ∈ ∃ ∈ ⊂ ⊂I        (2.17) 

The family (2.17) is a semialgebra of subsets of I. In this item, we suppose that 
( )[ ]alg I∈  is algebra of subsets of [ ],I a b=  generated by semialgebra  

: ⊂I I   and ( )[ ]alg I∀ ∈   

( ) ( ).⊂ ⇒ ⊂I     

So, here ( ),I   is a measurable space with algebra of sets. Then, by 
statements of [9]  

( ) [ [ [ [{ } ( ) ] ]*
0,, : , ,t J c a t c t J t a b− ∈ ∃ ∈ ⊂ ∈ ∀ ∈ U  f       (2.18) 

( ) ] ] ] ]{ } ( ) [ [*
0,, : , ,t J c t b t c J t a b+ ∈ ∃ ∈ ⊂ ∈ ∀ ∈ U  f       (2.19) 

We note that (see (2.15) and constructions of Section 6 in [9]) in our case  

( ) ] ]{ } ( ) [ [{ }* ( )
0, : , : ,t tt a b t a b+−= ∈ ∈ U Uf            (2.20) 

since (in our case) [ ]0 Iπ∈  , by (2.16) we obtain that  
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( )( )[ ] ( )0, ult .I x x I∗− ∈ ∀ ∈   Therefore, by (2.15) and (2.20) in our case  

( ) ( ) ] ]{ } ( ) [ [{ } ( )*
0 0,: , : ,t tt a b t a b− +∗ = ∈ ∈  U U t        (2.21) 

In (2.21), we obtain exhausting representation of ( )0
∗   for considered 

variant of ( ),I  . 

3. Elements of Topology 

For every topology ( )[ ]topτ ∈ I , where I  is a nonempty set, we obtain TS 
( ),τI ; by ( )[ ]compτ − I  the family of all subsets of I  compact in TS ( ),τI  
is denoted. Of course, [ ]τ π∈ I . And what is more, ( ) [ ]0LATτ ∈ I . In addition, 
for every point x∈I   

( ) ( )( )[ ] { } ( )0 *, ultN x x G x Gτ τ τ τ− = ∈ ∈ ∈ I  

and, in particular, ( ) [ ]0
0N xτ β∈ I ; therefore,  

( ) ( ) ( ) [ ]0N x N xτ τ − ∈  FI fi I  

is the filter of all neighborhoods (see definition of ch.I in monograph [6]) of x in 
TS ( ),τI . If ( )A E∈ , then  

( ) ( ){ }
( ){ } [ ]

0cl ,A x A G G N x

x A S S N x

τ

τ

τ

τ

∈ ∩ ≠∅∀ ∈

= ∈ ≠∅∀ ∈ ∈



 I

I

I C
 

(the closure of A is introduced); moreover, we sequentially introduce interior 
and frontier of A:  

( )[ ] ( ){ } ( )[ ] ( ) ( )[ ]Int , Fr cl , \ IntA x A N x A A Aττ τ τ τ− ∈ ∈ − − I  

Finally, ( )[ ] ( ) ( ){ }dens cl ,H Hτ τ− ∈ = I I I  and  
( )[ ] { }{ }isol x xτ τ− ∈ ∈I I  are the family of all subsets of I  every dense (in 
( ),τI ) and the set of all isolated points of I  respectively. In correspondence 
with definition of ch.I of [6], we suppose that [ ]0 xβ∀ ∈ ∀ ∈ I I   

( ) ( )[ ]( )def
x N xτ

τ
 ⇒ ⇔ ⊂ − 
 
 I fi                (3.1) 

By (3.1) the convergence of filter bases is defined (we note that [ ] [ ]0β⊂F I I ; 
moreover, ( ) [ ]*

0β⊂  I  under [ ]π∈ I ). We recall that, under ( )J ′∈ I , 
topology { } ( )[ ]: topJ J G G Jτ τ= ∈ ∈  converts J  in subspace ( ), JJ τ  of 
TS ( ),τI . 

We introduce the families ( )[ ] ( )[ ] [ ]{ }can op Int :F Fτ τ τ− − ∈ IC  and 
( )[ ] ( ){ }can clos cl , :G Gτ τ τ− ∈

 of all canonically open and closed sets 
res-pectively. 

If ( )1, ,X Xτ ≠ ∅ , and ( )2, ,Y Yτ ≠ ∅ , are TS, then  

( ) ( ){ }1
1 2 1 2, , , XC X Y f Y f G Gτ τ τ τ−∈ ∈ ∀ ∈  

is the set of all continuous mappings from ( )1,X τ  into ( )2,Y τ ; recall that, for 
( )1 2, , ,g C X Yτ τ∈  and ( )[ ]1 compK Xτ∈ − , the property  
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( ) ( )[ ]1
2 compg K Yτ∈ −  is realized. We note that for every Xf Y∈  and a 

family ( )( )X′∈   , the (nonempty) family  

[ ] ( ){ } ( )( )1 1 :f f A A Y′∈ ∈     

is defined. Moreover, for Xg Y∈  and [ ]0 Xβ∈ , we obtain that 
[ ] [ ]1

0g Yβ∈ . 
Now, we consider some topological properties of ultrafilter space for a fixed 

π-system. So, we fix until end of this section a nonempty set I and a π-system 
[ ]Iπ∈ . Using (2.11), in the form of  

( )[ ] ( ){ }; : ,I L LΦ ∈    

we obtain the base of a topology of ( )0
∗  . This topology is defined by the rule  

[ ] { } ( )[ ]( )
( )( ) ( ){ }

*

0

;

:

I I

U U∗= ∈ ∀ ∈ ∃ ∈ Φ ⊂

  

   







   

T
        (3.2) 

In addition, under J ∈ , the property  

( ) [ ] ( ) [ ]
0

* *J I I∗  Φ ∈  

  
T C T  

is realized (this is the simple corollary of (2.11)). In the form of  

( ) [ ]( )*
0 , I∗  T                         (3.3) 

a zero-dimensional Hausdorff TS is realized. 
Remark 3.1. If ( )[ ]alg I∈ , then (3.3) is a compactum (compact Hausdorff 

TS). In this case, (3.3) is the Stone space. For this case,  

( )[ ] [ ] ( ) [ ]
0

* *;I I I∗  =  


  

 T C T               (3.4) 

So, we obtain (see (3.4)) the important particular case of (3.2), (3.3).        
Until end of this section, we suppose that [ ]0 Iπ∈  . By (2.16) we obtain the 

mapping  

( )( )[ ] ( )*
0, ult :x I x I− →                   (3.5) 

denoted as ( )( )[ ], ultI − ⋅ . In addition, ( ) ( )*
0, 0

∗⊂  t . Now, we recall some 
statements of [10] connected with (3.5). Of course, under ( )S I∈ , in the form 
of  

( )( )[ ] ( ) ( )( )[ ]{ } ( )( )1 *
0,, ult , ult :I S I x x S− ⋅ = − ∈ ∈    t  

we obtain the image of S under operation (3.5). Then (see [10])  

( )( )[ ] ( ) [ ]( ) ( )1* *
0 cl , ult ,A I A I A I  = − ⋅ ∀ ∈    F T         (3.6) 

As a corollary, ( ) ( )( )[ ] ( ) [ ]( )1 *cl , ult , .L I L I LΦ = − ⋅ ∀ ∈  T  Finally,  

( ) ( ) ( ) [ ]( )* *
0 0,cl ,I I∗ = Φ =   t T               (3.7) 

So, ( ) [ ]( ) ( )* *
0, 0dens .I ∗ ∈ −    t T  We recall that ( )[ ] [ ]0alg I Iπ⊂   (see 

(2.3)). Therefore, (3.6) and (3.7) are fulfilled under ( )[ ]alg I∈ . 
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4. Attainability under Constraints of Asymptotic Character 

Returning to Section 1, we preserve the designation E for the space of usual 
solutions. Families ( )( )E′∈    are considered as constraints of asymptotic 
character (see Section 1). Moreover, in this section, we fix a TS ( ), ,Y Yτ ≠ ∅  
and a mapping Ef Y∈ . We discuss construction of AS in ( ),Y τ . These AS can 
be used as basic or as auxiliary. In Section 1, nets in E were used as distinctive 
“asymptotic solurions”. But, now the analogous employment of filters and 
ultrafilters is more appropriate. The equivalence of the representations with 
employment of nets and ultrafilters was noted (in particular) in §3 of [7]. Now, 
we discuss the representation realized in class of ultrafilters. So, by definition of 
§3 of [7]  

( )[ ] [ ]

{ } ( )
( )( ) [ ] ( )( )

0 1

1

; ; ; ; :

cl , Y

E Y f y Y E f y

f E

τ
τ

τ τ
Σ∈

 ∈ ∃ ∈   ⇒   
′= Σ ∈ ∀ ∈







F



   

  
f

uas

C
    (4.1) 

We note that the following particular case is useful:  

( )[ ] ( )( ) [ ]1; ; ; ; cl ,E Y f f Eτ τ β
Σ∈

= Σ ∀ ∈




 as            (4.2) 

In connection with (4.2), we recall discussion in Section 1 (see (1.2)). We 
consider the sets (4.1) and (4.2) as AS corresponding to given nonempty family 
of subsets of E (we recall that, under employment of nets in E, we obtain the 
equivalent representation of AS; in this connection, see constructions of §3 in 
[7]). By (4.1) the following singularity is realized: ultrafilters play the role of 
approximate solutions of J.Warga. 

5. Representations of Attraction Sets 

In this section, we consider some transformations of AS. In addition, we fix a TS 
( ), , ≠ ∅H t H  and E∈h H  (see Section 1). Under ( )( )E′∈   , we consi- 
der  

( )[ ] [ ]; ; ; ;E ∈ Has H t h C t                     (5.1) 

as the basic AS. Namely, in the case when   defines constraints of asymptotic 
character, (5.1) is our goal set. For investigation of the set (5.1) we can exploit 
auxiliary AS. We note the following general property: if ( ), ,Y Yτ ≠ ∅  is a TS, 

Em Y∈  and ( ), , ,g C Y τ∈ H t , then  

( ) ( )[ ]( ) ( )[ ] ( )( )( )1 ; ; ; ; ; ; ; ; .g m g E Y m E Eτ ′= ⇒ ⊂ ∀ ∈     h as as H t h  (5.2) 

This property is established very simply with employment of continuity of the 
mapping g and (4.1). From relations (2.8.1), (2.8.2), and Proposition 3.3.1 of [11], 
under conditions with respect to ( ), , ,Y m gτ  used in (2), we obtain that  

( ) [ ] [ ]( )(
{ }( ) ( )[ ]( ) ( ))
( )[ ]( ) ( )[ ] ( )( )( )

1

1

1

& comp &

; ; ; ; ; ; ; ; ;

Yg F F

g h Y h g m

g E Y m E E

τ

τ

τ

−

∈ ∀ ∈

∈ − ∀ ∈ =

′⇒ = ∀ ∈



    

HC t C

H h

as as H t h

   (5.3) 
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of course, we use (4.1). We recall that the continuous mapping g satisfying to 
two first conditions in premise of the implication (5.3) is called almost perfect; 
see Section 3.7 of monograph [12]. In connection with (5.3), we note the 
important particular case of such mapping (see formula (2.8.7) of [11]): if 
( ), ,Y Yτ ≠ ∅  is a compact TS and ( ),H t  is a Hausdorff space, then 

( ), , ,g C Y τ∀ ∈ H t   

( ) [ ] [ ]( ) { }( ) ( )[ ]( )1 1& compYg F F g h Y hτ τ−∈ ∀ ∈ ∈ − ∀ ∈HC t C H    (5.4) 

Therefore, the natural compactified case arises. In this connection, in the 
folowing, we suppose always that  

( ),H t                             (5.5) 

is a Hausdorff TS. The case of such spaces (5.5) is sufficient for majority appli- 
cations. Then (in our case of TS (5.5)) for every compact TS ( ), , , EY Y m Yτ ≠ ∅ ∈  
and ( ), , ,g C Y τ∈ H t , the implication  

( ) ( )[ ] ( )[ ]( ) ( )( )( )1; ; ; ; ; ; ; ;g m E g E Y m Eτ ′= ⇒ = ∀ ∈     h as H t h as  (5.6) 

In connection with the given important property (5.6), we introduce the 
special notion of a compactifier. Namely [4], we call compactifier every four 
( ), , ,Y m gτ  such that ( ),Y τ  is a compact TS, Y ≠ ∅ , Em Y∈ , ( ), , ,g C Y τ∈ H t  
and g m= h . From (5.6), we obtain that for every compactifier ( ), , ,Y m gτ   

( )[ ] ( )[ ]( ) ( )( )1; ; ; ; ; ; ; ; .E g E Y m Eτ ′= ∀ ∈    as H t h as      (5.7) 

So, every compactifier realizes the representation of the basic AS as 
continuous image of auxiliary AS in compact space. In connection with (5.7), we 
note that (closed) set  

( )( ) [ ]1cl ,E ∈

 HH h t C t                      (5.8) 

has the following obvious property (see (4.1)):  

( )[ ] ( )( ); ; ; ; ;E E′⊂ ∀ ∈   as H t h H  

moreover, under ( )EΣ∈ , from (5.8), we obtain that  

( )( ) ( )( )1 1cl , cl ,Σ = Σ h t h t                     (5.9) 

where (here and later) the designation  

( )top  ∈  




 Ht t H                       (5.10) 

is used. So, by (4.1) and (5.9) we obtain that, for Hausdorff TS  

( ), H t                            (5.11) 

(subspace of the initial TS (5.5)), the following equalities  

( )[ ] ( ) ( )( ); ; ; ; ; ; ; ;E E E  ′= ∀ ∈ 

    as H t h as H t h        (5.12) 

are realized; of course, we use the next obvious property: E∈ h H  (see (5.8)). In 
connection with (5.12), we suppose that (by (5.10)) the replacement (5.5) → 
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(5.11) is realized. 
Now, we consider the corresponding reduction of compactifiers defined in 

terms of TS (5.5). 
Proposition 5.1. If ( ), , ,Y m gτ  is a compactifier, then ( )1g Y⊂H . 
Proof. Indeed, we obtain that  

( )( ) ( ) ( )( )
( )( )( ) ( )( ) ( )

11

1 1 1 1

cl , cl ,

cl , cl ,

E g m E

g m E g Y g Y

= =

= ⊂ =



H h t t

t t
 

where (5.4) is used (really, ( )1g Y  is a closed set).                        
Proposition 5.2. If ( ), , ,Y m gτ  is a compactifier, then  

( )( ) ( )( ) ( )( )( )1
1 1

cl ,cl , , , , cl ,m Em E m g m E
τ

τ τ τ  
 

 

is compactifier also. 
The corresponding proof is given in Section 4 of [4]. 
In the following, we call a compactifier ( ), , ,Y m gτ  dense in the case when 

( )( )1cl ,m E Yτ = . By Proposition 5.2 we obtain that (as in Proposition 4.1 of [4]) 
every compactifier assumes transformation to a dense compactifier. Therefore, 
later, we consider only dense compactifiers. It is obvious the following 

Proposition 5.3. If ( ), , ,Y m gτ  is a dense compactifier, then g  is a 
surjection from Y  onto H . 

Proof. Indeed, by (5.4) we obtain that  

( ) ( )( )( ) ( )( )( )
( ) ( )( ) ( )( )

1 1 1 1 1

1 1

cl , cl ,

cl , cl ,

g Y g m E g m E

g m E E

τ= =

= = = 

t

t h t H
         (5.13) 

(in (5.13) we use constructions of [11]; in particular, see relations (2.8.1)- 
(2.8.4) and (2.8.7) of [11]).                                           

Corollary 5.1. If ( ), , ,Y m gτ  is a dense compactifier for which g is an 
injective mapping from Y in H , then g is a homeomorphism from TS ( ),Y τ  
onto TS (5.11). 

Proof. Let all conditions with respect to ( ), , ,Y m gτ  are fulfilled. Then, by 
Proposition 5.3 the mapping g is a bijection from Y onto H . Moreover, let 
∈  t . Using (5.10), we choose ∈ t  for which = 

 H . Then 

( ) ( ){ } ( ){ }
( ){ } ( )

1

1

g y Y g y y Y g y

y Y g y g τ

−

−

= ∈ ∈ = ∈ ∈

= ∈ ∈ = ∈

  

  

 

H
      (5.14) 

(we recall the obvious property: for y Y∈  the inclusion ( )g y ∈ H  is 
realized; see Proposition 5.3). Since the choice of   was arbitrary, from (5.14), 
the property ( ), , ,g C Y τ∈ 

H t  follows. But, ( ),Y τ  is compact and (5.11) is 
Hausdorff TS. Therefore, g is a homeomorphism from ( ),Y τ  onto (5.11) 
(indeed, g is a continuous bijection from compact TS onto Hausdorff TS; now, 
we use Theorem 3.1.13 of monograph [12]). 
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6. Compactifiers and Quotient Topologies 

We recall the known notion: if ( ), ,X Xτ ≠ ∅  is a TS, Y is a nonempty set, and 
Xf Y∈ , then  

( ) ( ){ } ( )[ ]1 topG Y f G Yτ−∈ ∈ ∈                 (6.1) 

is called quotient topology on Y (this topology was introduced by P. S. 
Alexandroff and H. Hopf). In supplement to (6.1), we note the obvious property: 
for every nonempty sets X and Y, a surjection g from X onto Y, and a set 

( )B Y∈ , the equality  

( )( )1 1g g B B− =                         (6.2) 

is fulfilled ((6.2) is known property of surjections). 
Remark 6.1. Let ( ), ,X Xτ ≠ ∅  be TS, Y be a nonempty set, and Xf Y∈ . 

Moreover, we suppose that θ  is topology (6.1). Then,  

[ ] ( ) ( ) [ ]{ }1
Y XF Y f Fθ τ−∈ ∈ C C  

 
For more brief presentation, we introduce some new designations. So, for 

every nonempty sets X and Y, by ( )
XY ∗  we denote the set of all surjections from 

X onto Y. If ( )1, ,X Xτ ≠ ∅  and ( )2, ,Y Yτ ≠ ∅  are two TS, then  

( ) ( ) ( ) [ ] [ ]{ }1
cl 1 2 1 2 2 1, , , , , , Y XC X Y f C X Y f F Fτ τ τ τ τ τ∈ ∈ ∀ ∈ C C  (6.3) 

( ) ( ) ( ){ }1
op 1 2 1 2 2 1, , , , , ,C X Y f C X Y f G Gτ τ τ τ τ τ∈ ∈ ∀ ∈     (6.4) 

In (6.3) and (6.4), closed and open continuous mappings are introduced. In 
connection with (6.3) and (6.4), we note that (see ch.3 of monograph [13]) for 
every TS ( )1, ,X Xτ ≠ ∅  and ( )2, ,Y Yτ ≠ ∅ , the following property takes place: 
if ( )

Xf Y ∗∈ , then  

( )( ) ( )( )( )
( ) ( ){ }( )

cl 1 2 op 1 2

1
2 1

, , , , , ,f C X Y f C X Y

G Y f G

τ τ τ τ

τ τ−

∈ ∨ ∈

⇒ = ∈ ∈
 

As a simple corollary, the following property is realized: if ( )1, ,X Xτ ≠ ∅  is 
a compact TS, ( )2, ,Y Yτ ≠ ∅  is a Hausdorff TS, and ( ) ( )1 2, , , Xf C X Y Yτ τ ∗∈  , 
then  

( ) ( ){ }1
2 1G Y f Gτ τ−= ∈ ∈                   (6.5) 

We note that conditions realizing (6.5) correspond to variant used under 
employment of dense compactifiers (see Proposition 5.3). 

Proposition 6.1. If ( ), , ,Y m gτ  is a dense compactifier, then  

( ) ( ){ }1G g G τ−= ∈ ∈
 t H                  (6.6) 

Proof. From Proposition 5.3 and constructions similar to (5.14), we obtain 
that  
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( ) ( ), , , Yg C Y τ ∗∈  


H t H  

where ( ),Y τ  is a compact and ( ), H t  is a Hausdorff TS. So, (6) follows from 
(6.5).                                                             

We obtain that the closed subspace of ( ),τH  corresponding to (5.8) is TS 
with quotient topology with respect to every dense compactifier. We note two 
obvious (but useful) general statements. 

Remark 6.2. Let ( )1, ,X Xτ ≠ ∅  and ( )2, ,Y Yτ ≠ ∅  are TS. Moreover, let  

( ) ( )cl 1 2, , , Xf C X Y Yτ τ ∗∈                     (6.7) 

Then, the equality [ ] [ ]1
1 2X Yf τ τ  = C C  is realized. We consider the brief 

scheme of the proof. 
The inclusion [ ] [ ]1

1 2X Yf τ τ  ⊂ C C  follows from (6.3) and (6.7). Let 
[ ]2Y τΦ∈C . By (6.2) and (6.7) ( )( )1 1f f −Φ = Φ , where ( ) [ ]1

1Xf τ− Φ ∈C . So, 
[ ]1

1Xf τ Φ∈  C . Since the choice of Φ  was arbitrary, we obtain the inclusion 
[ ] [ ]1

2 1Y Xfτ τ ⊂  C C .  
Remark 6.3. Let ( )1,X τ  and ( )2,Y τ  correspond to Remark 6.2. Moreover, 

let  

( ) ( )op 1 2, , , Xf C X Y Yτ τ ∗∈                     (6.8) 

Then, [ ]1
1 2f τ τ= . Indeed, by (6.4) and (6.8) [ ]1

1 2f τ τ⊂ . Let 2τ∈ . Then, 
by (6.2) and (6.8)  

( )( )1 1f f −=   

where ( )1
1f τ− ∈ . Therefore, [ ]1

1f τ∈ . The inclusion [ ]1
2 1fτ τ⊂  is esta- 

blished.                                                           
Proposition 6.2. If ( ), , ,Y m gτ  is a dense compactifier, then  

[ ]1
Yg τ    =   



HC C t                      (6.9) 

Proof. By Proposition 5.3 ( )
Yg ∗∈ H . In addition, similarly to (5.14), we obtain 

that ( ), , ,g C Y τ∈ 
H t . Since ( ),Y τ  is compact and ( ), H t  is a Hausdorff TS, 

( )cl , , ,g C Y τ∈ 
H t ; see (2.8.2) and (2.8.7) in monograph [11]. From Remark 6.2, 

the equality (6.9) follows.  
Proposiotion 6.3. If ( ), , ,Y m gτ  is a dense compactifier, then  

( )[ ] ( )1 comp compg Yτ   − = −   


t H               (6.10) 

Proof. We recall that ( ), , ,g C Y τ∈ 
H t  (see discussion in connection with 

(5.14)). Then, ( ) ( ) ( )[ ]1 comp compg K K Yτ ∈ − ∀ ∈ − 


t H . Therefore,  

( )[ ] ( )1 comp compg Yτ   − ⊂ −   


t H               (6.11) 

Let ( )comp  ∈ −  
 

K t H . Then,  ∈  




HK C t  (indeed, (5.11) is a Hausdorff 
TS). By Proposition 6.2 [ ]1

Yg τ ∈  
K C , where [ ] ( )[ ]compY Yτ τ⊂ −C  since 

( ),Y τ  is a compact TS. Then, ( )[ ]1 compg Yτ ∈ − 
K . So, the inclusion  

( ) ( )[ ]1comp compg Yτ   − ⊂ −  


t H  
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is realized. Using (6.11), we obtain (6.10).                               
Remark 6.4. We note some properties connected with Proposition 6.1. Let 

( ), , ,Y m gτ  be a fixed dense compactifier. Then  

[ ]1g τ⊂t                            (6.12) 

Indeed, let G∈ t . Since ( )
Yg ∗∈ H  by Proposition 5.3, we obtain that 

( )( )1 1G g g G−=  , where ( )1g G τ− ∈  by continuity of g (see (5.14)). As a result 
[ ]1G g τ∈ . Since the choice of G  was arbitrary, the required inclusion (6.12) is 

realized. The analogous construction realizes the inclusion  

[ ]1
Yg τ τ   ⊂   

 

 Ht C t C                    (6.13) 

where (6.2) and continuity of g are used. Indeed, for  Γ∈  

 

 Ht C t , we obtain 
that ( ) [ ]1

Yg τ τ− Γ ∈ C  (continuity of g is used) and ( )( )1 1g g −Γ ⊂ Γ  by 
(6.2). So, [ ]1

Yg τ τ Γ∈  C . The inclusion (6.13) is established.            

7. Some Transformations of Compactifiers 

In this section, we fix a dense compactifier ( ), , ,Y m gτ . Then  

( ) ( ), , , Yg C Y τ ∗∈  


H t H                      (7.1) 

(we use reasons similar to (5.14)). Now, we consider the natural transforma- 
tion of ( ), , ,Y m gτ  in injective compactifier (see Proposition 5.3). In addition, 
constructions of [4] are used. The family  

{ }( ){ } ( ){ }( ){ } ( )( )1 1: :g z z g g y y Y Y− − ′ ′∈ = ∈ ∈

  H       (7.2) 

is a partition of Y; of course,   (7.2) generates the following equivalence 
relation ≡ on Y by the rule: 1 2y Y y Y∀ ∈ ∀ ∈   

( ) ( ) ( )( )def

1 2 1 2y y g y g y≡ ⇔ =                    (7.3) 

In addition, { } ( ){ }( ) ( )1y Y y y g g y Y y Y− ′∈ ≡ = ∈ ∀ ∈   . We note that 

( )! :h g y h y∀ ∈ ∃ ∈ = ∀ ∈  H . Therefore, we introduce the mapping σ ∈  H  
by the next rule:  

( ) ( )g y yσ ∀ ∈ ∀ ∈                      (7.4) 

From (7.1) and (7.4), we obtain that ( )σ ∗∈  H . And what is more, σ  is a 
bijection from   onto H . 

Now, we obtain that ( ){ }( )( ) ( )
1 Y

y Y
g g y−

∗∈
∈ p . So, the canonical projection 

from Y onto the corresponding factor-space is defined. In addition,  

g σ= p                             (7.5) 

(the canonical expansion of g). Indeed, let *y Y∈  and ( ){ }( )1
* *D g g y−
 . 

In addition, ( ) ( ){ }( )1
* * *y g g y D−= = ∈p ;  

( )( ) ( )( ) ( )* * *y y Dσ σ σ= =p p                  (7.6) 

https://doi.org/10.4236/iim.2017.95011


A. G. Chentsov 
 

 

DOI: 10.4236/iim.2017.95011 220 Intelligent Information Management 

 

Since * *y D∈ , by (7.4) we obtain that ( ) ( )* *D g yσ = . So, by (7.6)  
( )( ) ( )* *y g yσ =p . Since the choice of *y  was arbitrary, the property  

( )( ) ( )y g y y Yσ = ∀ ∈p  

is realized. As a result, we obtain (7.5). 
Following constructions of Section 2.4 of monograph [12], we equip (see [4]) 

the set   with quotient topology. Namely,  

( ) ( ){ } ( )[ ]1 topτ−∈ ∈ ∈     p                (7.7) 

So, we obtain TS ( ),   for which  

( ), , ,C Y τ∈  p                          (7.8) 

Since ( )1 Y = p , the following property is realized: ( ),   is a compact TS 
(we apply the continuity of p  realized in (7.8) and compactness of ( ),Y τ ). 

Now, we note that (by the choice of ( ), , ,Y m gτ ) Em∈ p  and  

( ) ( )m m m g mσ σ σ= = = =      p p p h              (7.9) 

Finally, ( ), , ,Cσ ∈ 
  H t . Indeed, let ∈  t . By (7.1) we obtain that  

( )1g τ− ∈ . By (7.5)  

( ) ( ) ( ) ( )( )11 1 1g σ σ−− − −= =  p p  

where ( ) ( )1σ − ∈   . Since ( )( )1 1σ τ− − ∈p , by (7.7) ( )1σ − ∈  . Since 
the choice of   was arbitrary also, the required continuity property is 
established. As a result,  

( ) ( ), , ,Cσ ∗∈  




  H t H                     (7.10) 

In particular, ( ), , ,m σ  p  is a compactifier (indeed, by (7.10) the obvious 
property ( ), , ,Cσ ∈   H t  follows). And what is more, σ  is a continuous 
bijection from   onto H . Since ( ),   is a compact space and ( ), H t  is a 
Hausdorff space, the mapping σ  is a homeomorphism from ( ),   onto 

( ), H t . Then, ( ), , ,m σ  p  is an injective compactifier. We note the density 
property of this compactifier. 

Indeed, by the choice of ( ), , ,Y m gτ  the equality ( )( )1cl ,Y m E τ= . Then, by 
(7.8)  

( ) ( )( )( ) ( )( )( )1 1 1 1 1cl , cl ,Y m E m Eτ= = ⊂ ⊂  p p p  

So, ( ) ( )( )1cl ,m E =  p . We obtain that ( ), , ,m σ  p  is an injective 
dense compactifier. 

In addition, ( ),   is a Hausdorff TS. Of course, this property follows from 
homeomorphism of σ  and separability of ( ), H t . So, ( ),   is compactum. 
Moreover, ( )1σ= H  and, as a corollary, TS ( ), H t  is a compactum also. 

Remark 7.1. We note the last property. Indeed, if (5.5) is a Hausdorff TS for 
which a compactifier exists, then (5.11) is a compactum. Now, we consider the 
scheme of the corresponding proof. 
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So, as previously, we consider Hausdorff space (5.5). Therefore, (5.11) is a 
Hausdorff space also. We consider the case when some compactifier ( ), , ,τ µ ν  
exists. By Proposition 5.2 we obtain that  

( )( ) ( )( ) ( )( )( )1
1 1

cl ,cl , , , , cl ,EE E
µ τ

µ τ τ µ ν µ τ  
 

            (7.11) 

is a dense compactifier. Now, we suppose that  

( )( ) ( )( )

( )( )( ) ( )

1
1

cl ,

1

cl , , , ,

cl ,

E YY E m

g E Y

µ τ
µ τ τ τ τ µ

ν µ τ ν

=

=



  
  




         (7.12) 

By (7.12) we rename compactifier (7.11). So, ( ), , ,Y m gτ  is our dense com- 
pactifier. Later, we apply procedure of the present section; as a result, we obtain 
that ( ), H t  is a compactum. 

8. Extension in Class of Ultrafilters of π-Systems 

Now, we consider a special variant of general construction of Sections 5-7. But, 
at first, we introduce some new notions (see [4] [8] [10] [14] [15] [16] [17] [18]). 
We fix [ ]Eπ∈  and consider the set  

[ ] ( ) [ ]

( ) [ ]

( )

* 1
lim 0

* 1
0

; ; ; :

! :

E

E

E

E f h f h

f h f h

 ∈ ∀ ∈ ∃ ∈ ⇒ 
 
 = ∈ ∀ ∈ ∃ ∈ ⇒ 
 
′∈

 



   

  



t

t

H t H H

H H

H

      (8.1) 

(we apply separability of TS (5.5); all mappings-constants with values in H  
(and defined on E ) are elements of the set (8.1)). From (8.1), the next 
definition follows; namely, if [ ]lim ; ; ;f E∈  H t , then  

[ ] ( )*
lim 0:fϕ →  H                       (8.2) 

is defined by the following condition: under ( )*
0∈  , the point [ ]( )lim fϕ ∈ H  

has the property  

[ ] [ ]( )1
limf fϕ⇒ 

t
                      (8.3) 

This corresponds to similar definition of §5 in [10]. Of course, by (8.3) 

[ ] ( ) [ ]

[ ] ( )( )

1 1
lim

*
lim 0

:

; ; ;

f h f h

f E

ϕ  = ∈ ∃ ∈ ⇒ 
 

∀ ∈ ∀ ∈

 

  

 

  

tH

H t
              (8.4) 

In connection with (4), we note statements in formula (5.4) of [10]; namely, 

[ ] ( )( ) ( )[ ]
[ ] ( )

1 *
lim 0

lim

; ; ; ;

; ; ;

f E f

f E

ϕ ⊂

′∀ ∈ ∀ ∈





  

   

as H t

H t
               (8.5) 

So, in (8.5), we obtain analog of (5.2). We recall that TS ( ),X τ  is called a 
regular space (regular TS) in the case when ( ),X τ  is 1T -space for which 

https://doi.org/10.4236/iim.2017.95011


A. G. Chentsov 
 

 

DOI: 10.4236/iim.2017.95011 222 Intelligent Information Management 

 

closed (in ( ),X τ ) neighborhoods of every point x X∈  realize in totality a 
local base of ( ),X τ  for this point x. In this connection, we recall Formula (5.5) 
of [7]: if ( ),H t  is a regular TS, then  

[ ] ( ) [ ]( ) [ ]* *
lim 0 lim, , , ; ; ;f C E f Eϕ ∈ ∀ ∈  T H t H t         (8.6) 

Until end of this section, we suppose that ( ),H t  is a regular TS and 
[ ]0 Eπ∈  . Moreover, now, we suppose that  

[ ]lim ; ; ;E∈ h H t                         (8.7) 

Then, [ ] ( )*
0

limϕ ∈  h H , and we obtain the natural concrete variant of 

(8.3)-(8.5); in addition, for ( )( )[ ] ( )( )[ ] ( )*
0, ult , ult E

x EE E x
∈

− ⋅ − ∈      

[ ] ( )( )[ ]lim , ultEϕ= − ⋅ h h                    (8.8) 

As an addition to (8.5), we note (see (8.6)) the property noted in Proposition 4 
of [10]: 

[ ] ( )( ) ( )[ ] [ ]1 *
lim 0 ; ; ; ;f E Eϕ β⊂ ∀ ∈   F as H t h           (8.9) 

(we exploit (4.2), (5.2), (8.6), and (8.7)). As a corollary, from (8.9), we obtain 
that  

[ ] { } ( )( )( ) ( )[ ] ( )( )1 *
lim 0 ; ; ; ;f E Eϕ ′⊂ ∀ ∈     fF as H t h      (8.10) 

(we apply (4.1) and (4.2); indeed, under ( )( )E′∈   , the property  
{ } ( ) [ ]Eβ∈ f  follows). It is useful to apply Remark 3 of [10]. 

In connection with (5.2), (8.7), and (8.10), we recall Proposition 3 of [10]:  

( ) ( ) [ ] ( )( )[ ] ( ) [ ]* * *
0 0; ; ; , ult ;E E E Eβ − ⋅ = ∀ ∈  B B B  as T F     (8.11) 

Attraction sets and compactifiers. We recall that the case of regular space 
( ),H t  and [ ]0 Eπ∈   is considered (in this case TS ( ), H t  (5.11) is regular 
also). Moreover, in our case (8.7) is fulfilled. Finally, we suppose until end of this 
section that TS  

( ) [ ]( )* *
0 ; E  T                          (8.12) 

is compact. Then TS (8.12) is a zero-dimensional compactum. Therefore, from 
(3.7), (8.6), and (8.10), we obtain that  

( ) [ ] ( )( )[ ] [ ]( )* *
0 lim, , , ult ,E E ϕ− ⋅  T h               (8.13) 

is a dense compactifier. As a corollary, by (5.7) and (8.11) 

( )[ ] ( ) { } ( )

[ ] { } ( )( )( ) ( )( )1 *
lim 0

; ; ; ; ; ; ; ;E E

Eϕ

 =  

′= ∀ ∈





 

    

f

f

as H t h as H t h

h F
    (8.14) 

In connection with (8.14), we note the following important particular case:  

( )[ ] [ ] ( )( ) [ ]1 *
lim 0; ; ; ;E Eϕ β= ∀ ∈B B Bas H t h h F        (8.15) 

Of course, (8.15) is sufficient for majority of applications. From (8.4), (8.7), 
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and (8.15), we obtain that  

( )[ ] ( ) [ ] [ ]* 1
0; ; ; ; :E z z Eβ = ∈ ∃ ∈ ⇒ ∀ ∈ 

 
B B B  

t
as H t h H F h    (8.16) 

It is useful to note that by (8.15) and (8.16) (in our case) ultrafilters from 

( )*
0 BF , where [ ]Eβ∈B , can be considered as analogs both generalized and 

approximate solutions of J. Warga (see constructions of ch.III of [2]). 
Remark 8.1. The compactness property of TS (8.12) is very important (see 

(8.14)-(8.16)). Now, we note only Remark 3.1 (of course, more general cases are 
known: see §6 in [14]). Another important question is connected with (8.7). 
More exactly, we obtain the serious question about representation of the set (8.1). 
Now, we discuss only two possibilities for h . 

1) Let ( ), H t  (5.11) be a compactum (in this connection, we note Remark 
7.1). In addition, by (5.8) E∈ h H . We strive to obtain conditions sufficient for 
(8.7). For this, we apply the construction of §5 in [14]. For any h∈ H , we 
introduce the family  

( ) ( )( ) ( ){ }bas :h N h A N h B B A − ∈ ∀ ∈ ∃ ∈ ⊂   



   t tt  

of all local bases of TS ( ), H t  at the point h. In this item, we suppose that  

( ) ( )1bas :h h H H− ∀ ∈ ∃ ∈ − ∈ ∀ ∈ 
 

  H t h          (8.17) 

So, (8.17) is a condition of the “local measurability” of h . We recall about 
compactness of TS (5.11). Then, by Corollary 5.1 of [14] 

( ) [ ]* 1
0 ! :h h∀ ∈ ∃ ∈ ⇒



  
t

H h                (8.18) 

Let ( )*
0∈U   and h∈ H  be a point such that (see (8.18)) 

[ ]1 h⇒


U
t

h                          (8.19) 

In addition, [ ]1
0β  ∈  
Uh H . By (3.1) and (8.19)  

( ) ( ) [ ]1N h  ⊂ −  


 Ut H fi h                    (8.20) 

We recall that (see Formula (2.3.8) of [11]) by (5.10) 

( ) ( ) ( ){ }:N h N h S S N h= = ∈




  


t tt H
H              (8.21) 

We recall that  

( ) [ ] ( ) [ ]{ }
( ) [ ]{ }

1 1

1

:

:

T B B T

T B B T

 − = ∈ ∃ ∈ ⊂ 

⊂ ∈ ∃ ∈ ⊂

 U U

U





H fi h H h

H h
       (8.22) 

In addition, by the choice of h  we obtain that [ ] [ ]1
0β∈Uh H . So, the filter  

( ) [ ] ( ) [ ]{ } [ ]1 1 :T B B T − = ∈ ∃ ∈ ⊂ ∈ U U FH fi h H h H  

is defined; by (8.22) the inclusion  
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( ) [ ] ( ) [ ]1 1   − ⊂ −   
 U UH fi h H fi h               (8.23) 

follows. By (8.20) and (8.23) the next inclusion  

( ) ( ) [ ]1N h  ⊂ −  

 Ut H fi h                   (8.24) 

is realized. Now , we exploit (2.5) and (8.21). Indeed, let ( )N h∈  t . Then, by 
(8.21) ( )N h∈






 tH . By (8.24) the inclusion ( ) [ ]1 ∈ −  


 UH H fi h  follows, 
where ⊂ H . Since ( )∈  H , by (2.5) ( ) [ ]1 ∈ −   UH fi h . So, we 
obtain that ( ) ( ) [ ]1N h  ⊂ −  

 Ut H fi h . As a corollary,  

[ ]1 h⇒ U
t

h  

where h∈ H . In particular, h∈ H . Since the choice of U  was arbitrary, it is 
established that  

( ) [ ]* 1
0 :h h∀ ∈ ∃ ∈ ⇒  

t
H h  

From (8.1), we obtain that, in our case, (8.7) is fulfilled. So, (8.17) and 
compactness of TS (5.11) are sufficient for (8.7). 

2) Now, we consider the variant connected with application of uniform limits 
of real-valued step-functions (the more general construction is given in [15]). In 
this item, we suppose that Γ= H , where Γ  is a nonempty set. So, elements 
of H  are functionals on Γ  and only they. We apply E∈h H  and suppose 
that  

( )( ) ( )( )( ) E
x E

xγ γ γ
∈

⋅ ∈ ∀ ∈Γ h h             (8.25) 

In (8.25), we obtain real-valued components of h . We recall that E is 
equipped with [ ]Eπ∈ . Now, we suppose that   is a semialgebra of subsets 
of E (of course, the variant of an algebra of subsets of E is possible also). Under 

( )EΣ∈ , by χΣ  we denote indicator of the set ( ): , 0E xχ χΣ ΣΣ ∈   
under \x E∈ Σ , and ( ) 1yχΣ   under y∈Σ . By ( )0 ,B E   we denote the 
linear span of the set { }:L Lχ ∈  (we apply the pointwise linear operations in 

E ) obtaining a subset of the set ( )E  of all bounded real-valued functions 
on E. We equip the linear space ( )E  with traditional sup-norm ⋅  (see 
ch.IV, Section 2, item 13 of [16]). Then, ( ) ( )0 ,B E E⊂  . The closure of  

( )0 ,B E   in ( )E  with topology generated by norm ⋅  is denoted by 
( ),B E   (if ( )[ ]alg E∈ , then ( ),B E   corresponds to ch.IV, Section 5 of 

[16]). In particular, ( ),B E   with norm induced from ( )( ),E ⋅  is a 
Banach space. 

Suppose that ( )( ) ( ),B Eγ γ⋅ ∈ ∀ ∈Γh . Now, we define a variant of topology 
t . Namely, we suppose that ( )τΓ= ⊗ t  is the natural topology of the 
Tychonoff power of   with usual ⋅ -topology τ  for the case when Γ  is 
the indexed set. So, we consider the Tichonoff product of samples ( ),τ  
under indexed set Γ . Using Proposition 6.3 of [15], we obtain that (8.7) is 
fulfilled (in [15], the concrete variant of the mapping [ ]limϕ h  is indicated; also, 
we note Remark 6.2 of [15]). 
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So, under some natural conditions, the property (8.7) is realized. 

9. Some Topological Properties of Attraction Sets in Space  
of Ultrafilters of π-Systems 

In this section, we fix [ ]Eπ∈  and consider the set ( )*
0   (see Section 2). In 

this construction, we follow to [17]. 
Proposition 9.1. If 1L ∈  and 2L ∈ , then  

( ) ( ) ( )( )1 2 1 2L L L L⊂ ⇒ Φ ⊂Φ   

in addition, if [ ]0 Eπ∈  , then 1 2∀Λ ∈ ∀Λ ∈    

( ) ( )( ) ( )1 2 1 2Φ Λ ⊂ Φ Λ ⇒ Λ ⊂ Λ   

The corresponding proof is given in §4 of article [17]. In connection with 
Proposition 9.1, we suppose until end of this section that [ ]0 Eπ∈  . Then, by 
Proposition 9.1 1 2L L∀ ∈ ∀ ∈    

( ) ( ) ( )( )1 2 1 2L L L L⊂ ⇔ Φ ⊂Φ                  (9.1) 

As a corollary, in our case, the mapping  

( ) ( )[ ]: ;L L EΦ →     

is a bijection from   onto ( )[ ];E  . 
We fix ( )′∈    until end of this section (we apply   as the family 

defining constraints of asymptotic character; in particular, ( )( )E′∈   . In 
this and next sections, it is supposed that  

0
Σ∈

Σ Σ∈





                          (9.2) 

(in §6 of [17], the examples of ( ),E   and   with (9.2) are given; we note 
that (9.2) is fulfilled under  

Σ∈

Σ =∅




 

the last case is considered in [18] specially). By (2.11) and (9.2) the set  

( ) ( ){ } ( ){ }
[ ] ( ) [ ]*

0

* *
0 0 0 0 0

* *

U U

E E

Φ Σ = ∈ Σ ∈ = ∈ Σ ≠ ∅∀ ∈

 ∈  







 

 

     

T C T
  (9.3) 

is defined. We recall that ( )*
0    coincides with intersection of all sets 

( ) ,Φ Σ Σ∈  . In Theorem 6.1 of [17], it is established that  

[ ]( ) ( ) ( )* *
0 0IntE  − = Φ Σ   T                 (9.4) 

In particular, from (9.3) and (9.4), the following property follows: the interior 
of ( )*

0    is an open-closed set. 
Remark 9.1. Recall (8.11). Then, under [ ]Eβ∈  (for which ⊂   and 

(9.2) is fulfilled), we obtain that  

( ) ( ) [ ] ( )( )[ ] ( )* * *
0 0; ; ; , ult ;E E E − ⋅ =      as T         (9.5) 

So, in this case, by (9.4) the interior of auxiliary AS is defined (see definitions 
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of Section 2). Since ( ) ( ) [ ]*
0

* *
0 E ∈  
 
  C T , we obtain that  

[ ]( ) ( ) ( ) ( )* * *
0 0 0Fr \E  − = Φ Σ      T            (9.6) 

(the frontier of the set (9.5) is realized). By (9.6) the next inclusion is realized  

( ) ( ) ( ) ( ) [ ]( )* * * *
0 0 0 0\ cl \ , EΦ Σ ⊂        T  

Now, we consider questions connected with approximate realization of 
ultrafilters of ( ) ( )*

0 0\Φ Σ   . So, we consider questions connected with 
approximate realizability of elements of (9.6). Then  

[ ]( ) ( ) ( ) ( )( )[ ] ( ) [ ]( )1* * * *
0 0 0Fr \ cl , ult ,E E E − = − ⋅ Σ       T T   (9.7) 

So, ultrafilters of the frontier of ( )*
0    are not realizable “outwards”. In 

addition, by (3.6) we obtain that  

( )( )[ ] ( ) [ ]( )1 * *
0 0 0cl , ult \ , \E E E E− ⋅ Σ =  Σ   T F          (9.8) 

Moreover, by (9.6) we obtain the following 
Proposition 9.1. The following inclusion takes place:  

[ ]( ) ( )* * *
0 0 0Fr \E E − ⊂  Σ      T F             (9.9) 

Proof. By (3.6), (3.7), and additivity of the closure we obtain that  

( ) ( ) [ ]( ) ( )( )[ ] ( ) [ ]( )
( )( )[ ] ( )( ) [ ]( )
( )( )[ ] ( ) ( )( )[ ] ( ) [ ]( )
( )( )[ ] ( ) [ ]( ) ( )( )[ ] ( ) [ ]( )
( )

1* * * *
0 0,

1 *
0 0

1 1 *
0 0

1 1* *
0 0

*
0 0 0

cl , cl , ult ,

cl , ult \ ,

cl , ult , ult \ ,

cl , ult , cl , ult \ ,

\

E E E E

E E E

E E E E

E E E E E

E

= = − ⋅

= − ⋅ Σ Σ

= − ⋅ Σ − ⋅ Σ

= − ⋅ Σ − ⋅ Σ

= Φ Σ  Σ  









   





 



  



 

 



t T T

T

T

T T

F

 

Since ( ) ( )* *
0 0⊂    , by (9.6) we obtain the required inclusion (9.9).  

Corollary 9.1. The next inclusion is realized:  

[ ]( ) ( )
( )( )[ ] ( ) [ ]( ) ( )( )[ ] ( ) [ ]( )

* *
0

1 1* *
0 0

Fr

cl , ult \ , \ cl , ult ,

E

E E E E E

 −  

⊂ − ⋅ Σ − ⋅ Σ



 

 

 

T

T T
 

The corresponding proof is reduced to immediate combination of (9.7), (9.8), 
and Proposition 9.1. So, ultrafilters of the frontier of ( )*

0    assume 
approximate realization only by points of the set 0\E Σ . 

We recall that by (9.2) and (9.4)  

[ ]( ) ( ) [ ] ( ) [ ]*
0

* * * *
0IntE E E   − ∈    


  
 T T C T        (9.10) 

Remark 9.2. If [ ]( ) ( )* *
0FrE  − ≠ ∅   T , then  

( ) ( ) [ ] ( ) [ ]*
0

* * *
0 \ can closE E   ∈ −   
  
  C T T  

Indeed, let [ ]( ) ( )* *
0FrE  − ≠ ∅   T . By (9.10)  
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[ ]( ) ( ) [ ]( ) [ ]( ) ( )* * * * *
0 0cl Int , IntE E E   − = −         T T T     (9.11) 

Using (9.4) and (9.6), we obtain (under our condition) that  

( ) [ ]( ) ( ) [ ]* * * *
0 0cl Int ,E E  ≠ −        T T  

So, ( ) ( ) [ ]* *
0 can clos E ∉ −     T .                                 

10. Some Additions 

We follow to constructions of Section 4 of article [8] under consideration of the 
case [ ]0 Eπ ′∈ , where E is a nonempty set. In this case, the open-closed sets 

{ }( ) ,x x EΦ ∈  are defined. In addition, under x E∈   

{ }( ) ( )( )[ ]{ }, ultx E xΦ = −   

As a corollary, we obtain the following equality  

[ ]( ) ( ) ( )* * *
0 0,isolE  − =    tT               (10.1) 

therefore (see Section 3) we obtain that  

[ ]( ) ( ) [ ]( ) ( )* * * *
0 0isol densE E   − ∈ −      T T         (10.2) 

So, in our case, TS of type (3.3) has everywhere dense subset consisting from 
isolated points. These points are trivial ultrafilters. 

From (10.1) and (10.2), we obtain ( under [ ]0 Eπ ′∈ ) that  

( )( )[ ] ( ) ( )( )[ ]{ } [ ] ( )1 *, ult , ult :E A E x x A E A E− ⋅ = − ∈ ∈ ∀ ∈  T  (10.3) 

From (3.6) and (10.3), the following important property (see p. 222 in [8]) is 
realized:  

( ) [ ] ( )* *
0 can closA E A E  ∈ − ∀ ∈    F T           (10.4) 

Until end of this section, we fix a family ( )′∈   . 
Proposition 10.1. Let (9.2) holds and ( ) ( )*

0 0\Φ Σ ≠∅   . Then  

( ) ( )* *
0 0 A A E≠   ∀ ∈     F  

Proof. By (9.6) we have that [ ]( ) ( )* *
0FrE  − ≠ ∅   T . Then, from 

Remark 9.2, we obtain the property  

( ) ( ) [ ]* *
0 can clos E ∉ −     T  

By (10.4) we obtain the required statement.                            
As a corollary, the following property is realized: if the conditions of 

Proposition 10.1 are fulfilled, then by (3.6)  

( ) ( )( )[ ] ( ) [ ]( ) ( )1* *
0 cl , ult ,E A E A E≠ − ⋅ ∀ ∈    T       (10.5) 

Now, we discuss (10.5). The expression on the right-hand side of (10.5) 
corresponds to “standard” realization of generalized elements. Namely, we have 
some set ,A A E⊂  of usual solutions. These solutions are transformed in 
generalized elements (here, in ultrafilters). The obtained set of ultrafilters is 
transformed to a closure (we obtain *

0 A  F ). By (10.5) and Proposition 10.1 
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we no obtain ( )*
0    under every ,A A E⊂  (of course, we keep in mind 

that (9.2) and conditions of Proposition 10.1 are fulfilled and the sets-closures 
on the right-hand side of (10.5) are used). So, auxiliary AS (see (8.11) and 
Section 2) one cannot to obtain by closure of some subset of the initial set E.  

Supported 

This work was supported by Russian Foundation for Basic Research (project 
no.15-01-07909). 

References 
[1] Krasovskii, N.N. (1968) The Theory of the Control of Motion. Nauka, Moscow. (In 

Russian)  

[2] Warga, J. (1977) Optimal Control of Differential and Functional Equations. Aca-
demic Press, New York.  

[3] Chentsov, A.G. (1997) Asymptotic Attainability. Kluwer Academic Publishing, 
Dordrecht. https://doi.org/10.1007/978-94-017-0805-0 

[4] Chentsov, A.G. (2016) Compactifiers in Extension Constructions for Reachability 
Problems with Constraints of Asymptotic Nature. Trudy Instituta Matematiki i 
Mekhaniki UrO RAN, 22, 1. 

[5] Bulinskii, A.V. and Shiryaev, A.N. (2005) Theory of Stochastic Processes. Classical 
University Textbook, Fizmatlit, Moscow. (In Russian) 

[6] Bourbaki, N. (1995) General Topology. Springer-Verlag, Berlin Heidelberg. 

[7] Chentsov, A.G. (2011) Filters and Ultrafilters in the Constructions of Attraction 
Sets. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, No. 1. 

[8] Chentsov, A.G. (2015) To Question about Realization of Attraction Elements in 
Abstract Attainability Problems. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 
25, 2. 

[9] Chentsov, A.G. (2011) On One Example of Representing the Ultrafilter Space for an 
Algebra of Sets. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 17, 4. 

[10] Chentsov, A.G. (2014) Some Ultrafilter Properties Connected with Extension Con-
structions. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, No. 1. 

[11] Chentsov, A.G. and Morina, S.I. (2002) Extensions and Relaxations. Kluwer Acad. 
Publ., Dordrecht, Boston, London. https://doi.org/10.1007/978-94-017-1527-0 

[12] Engelking, R. (1977) General Topology. PWN, Warsaw. 

[13] Kelley, J.L. (1975) General Topology. Springer, New York. 

[14] Chentsov, A.G. (2012) The Transformation of Ultrafilters and Their Application in 
Constructions of Attraction Sets. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nau-
ki, No. 3. 

[15] Chentsov, A.G. (2012) Tier Mappings and Ultrafilter-Based Transformations. Tru-
dy Instituta Matematiki i Mekhaniki UrO RAN, 18, 4. 

[16] Dunford, N. and Schwartz, J.T. (1988) Linear Operators, Part 1: General Theory. 

[17] Chentsov, A.G. (2014) To the Validity of Constraints in the Class of Generalized 
Elements. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, No. 3. 

[18] Chentsov, A.G. (2015) An Abstract Reachability Problem: Purely Asymptotic? Ver-
sion, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 21, 2. 

https://doi.org/10.4236/iim.2017.95011
https://doi.org/10.1007/978-94-017-0805-0
https://doi.org/10.1007/978-94-017-1527-0


 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact iim@scirp.org 

http://papersubmission.scirp.org/
mailto:iim@scirp.org

	Constraints of Asymptotic Character and Attainability Problems 
	Abstract
	Keywords
	1. Informative Discussion of Problem 
	2. General Notions and Definitions
	3. Elements of Topology
	4. Attainability under Constraints of Asymptotic Character
	5. Representations of Attraction Sets
	6. Compactifiers and Quotient Topologies
	7. Some Transformations of Compactifiers
	8. Extension in Class of Ultrafilters of π-Systems
	9. Some Topological Properties of Attraction Sets in Space of Ultrafilters of π-Systems
	10. Some Additions
	Supported
	References

