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Abstract 
In the present work, Scale Relativity (SR) is applied to a particle in a simple 
harmonic oscillator (SHO) potential. This is done by utilizing a novel mathe-
matical connection between SR approach to quantum mechanics and the 
well-known Riccati equation. Then, computer programs were written using 
the standard MATLAB 7 code to numerically simulate the behavior of the 
quantum particle utilizing the solutions of the fractal equations of motion ob-
tained from SR method. Comparison of the results with the conventional 
quantum mechanics probability density is shown to be in very precise agree-
ment. This agreement was improved further for some cases by utilizing the 
idea of thermalization of the initial particle state and by optimizing the para-
meters used in the numerical simulations such as the time step and number of 
coordinate divisions. It is concluded from the present work that SR method 
can be used as a basis for description the quantum behavior without reference 
to conventional formulation of quantum mechanics. Hence, it can also be 
concluded that the fractal nature of space-time implied by SR, is at the origin 
of the quantum behavior observed in these problems. The novel mathematical 
connection between SR and the Riccati equation, which was previously used 
in quantum mechanics without reference to SR, needs further investigation in 
future work. 
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1. Introduction 

Scale relativity (SR) developed by Nottale based on the extension of the principle 
relativity as follows “the fundamental laws of nature apply whatever the state of 
scale of the coordinate system” [1] [2] [3] [4] [5]. The observation resolutions 
now characterize the reference system and can be defined only in relative way. 
This major concept of SR leads to giving up hypothesis of differentiability of 
space-time. Quantum mechanics can then be reformulated from this basic prin-
ciple of SR form of covariance and geodesic equations, by considering a particle 
as a geodesics in now fractal space-time. There are at least three major fields of 
application for SR method, microphysics, complex systems and cosmology [6] 
[7] [8] [9] [10].  

As far as quantum mechanics is concerned, Nottale and co-workers were able 
to apply the theory to solve many problems, especially those related to the con-
ceptual and interpretation aspects. The derivation of the postulates of quantum 
mechanics from basic principle of SR [11], is basis of the present work. It shows 
that quantum mechanical behavior appears without any use of the Schrodinger 
equation, but as a consequence of the fractality of space-time. The extension of 
the SR theory to the derivation of the main equations of relativistic quantum 
mechanics [12] and the relationship between the classical and quantum regimes 
[13] have been also discussed on the basis of the SR among other important 
consequences and implications. With all these far reaching aspects of the theory, 
direct investigations which would shed light on the basic workings of the SR 
method as formulated by Nottale seem to be warranted.  

The fractional equations of motion which are obtained from application of SR, 
were applied directly by Hermann [14], in terms of a large number of explicit nu-
merically simulated trajectories for a free particle in an infinite one-dimensional 
box [15] [16] [17]. Similarly, Al-Rashid [18] [19] [20], applied SR to the finite 
one-dimensional square well potential and special case in a double oscillator 
problems. 

The validity of SR not restricted to the cases by Hermann [14] and Alrashid 
[18] [19] [20]. Besides, such applications are expected to reveal some novel con-
cepts, such as the connection between SR and the Riccati equation [21] [22] [23] 
as revealed in the present work. 

In this paper, the problem of a particle moving in one dimensional SHO will 
be treated by applying the principle of SR along the lines of Hermann. To the 
best of our knowledge, this problem has not been treated by using Hermann line 
elsewhere [14] [24]. 

2. Equation of Motion 

One may start with the complex Newton Equation [14] [18]: 
ð
d

u m
t

∇ = V                          (1) 

where u is a scalar potential and V is a complex velocity, then separate this equa-
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tion into real and imaginary parts: 

( ) ( )

( ) ( )and 0

m V D U V V U U u
t

m V D V V U U V
t

∂ − ∆ + ⋅∇ − ⋅∇ = −∇ ∂ 
∂ + ∆ + ⋅∇ + ⋅∇ = ∂ 

           (2) 

Here, the average classical velocity V is expected to be zero because the simple 
harmonic oscillator is a symmetric system. Then, the equations of motion can be 
reduced as [14] [18]: 

( ) ( )21 0
2

DU x U x
x x
∂ ∂ + = ∂ ∂ 

                  (3) 

and 

( ) 0U x
t
∂

=
∂

                          (4) 

where U is the imaginary part of complex velocity and D is the diffusion coeffi-
cient. Equation (4) shows that U is a function of x alone. The potential of the  

one-dimensional SHO can be written as 2 21
2

m xω , where ω is the angular fre-

quency. Then, Equation (3) becomes: 

( ) ( )2 2 21 1
2 2

DU x U x m x
x x x

ω∂ ∂ ∂ + = ∂ ∂ ∂ 
              (5) 

Integrating and rearranging terms in the resulting equation, one obtains: 

( ) ( )2 2 2
1

d 1 1 1 0
d 2 2

U x U x m x c
x D D D

ω+ − + =             (6) 

where c1 is a constant of integration. Letting 1c E m=  (as in Hermann’s work) 
[14], then Equation (6) becomes: 

( ) ( )
2

2 2 2d 2 0
d

U x m m EU x x
x

ω+ − + =
  

               (7) 

where 
2

D
m

=


. The last equation has the form of a Riccati equation [19] [20]  

[21] [22] [23]. To solve this equation, one may trans-form it into a 2nd order dif-
ferential equation of the form [19] [20] [21] [22] [23]:  

( ) ( ) ( )2 0ry x r q x y x′′ + =                     (8) 

where,  

( ) ( )
( )

1 y x
U x

r y x
′

= −                        (9) 

and ( )y x  is an arbitrary function of x. From this Equation (7), it follow that: 

( ) 2 22 1;
2

mr q x m x Eω = − = − 
  

                (10) 

Then, Equation (7) becomes: 
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( ) ( )2 2
2

2 1 0
2

my x E m x y xω ′′ + − = 
 

               (11) 

Its solution is: 

( ) ( )
2

exp
2n n n
xy x A H x

 
= − 

 
                  (12) 

where An is a constant and Hn is a Hermite polynomial of order n and 
0,1,2,n =  . Then, Un(x) is given by: 

( ) ( ) ( )( )n n nU x xH x H x
m

′= − +


                 (13) 

Using the equality ( ) ( )1n nH x xnH x−′ =  then, Equation (13) becomes: 

( ) ( ) ( )( )( )12n n nU x x n H x H x
m −= − +


              (14) 

As in Hermann work [14], U(x) is treated as a difference of velocities, i.e., it is 
a kind of acceleration. Thus, the equation of position coordinate has the follow-
ing form, which is a stochastic process: 

( ) ( ) ( )( )( ) ( )1d 2 d dn nx t x n H x H x t t
m

ξ− += − + +


         (15) 

where ( )d tξ+  is now Gaussian random variable of standard deviation 
2 dD t . 

3. Numerical Simulations 

Equation (15) represents a stochastic process [14]. Here, in the problem of a 
one-dimensional SHO, it was found that the assumption 2Ddt = 1 is not useful 
for the present simulations since it gives bad results for the present application. 
Then, one starts to adjust the value of dt until one approaches a specific value for  

which meaningful results are obtained. It was found that a value of 3d 10 mt −=


  

is suitable for the present simulations. It seems that this value of dt is related to 
the period of the motion in the SHO potential. It is expected that a suitable value 
which gives meaningful numerical simulation results is that which leads to a suf-
ficient number of time steps during one period so as to give meaningful counts. 
This is a consequence of the statistical nature of these simulations which requires 
better statistics to be meaningful. Then, Equation (15) becomes: 

( ) ( ) ( )( )( ) ( )3 3
1d 10 2 10 0,1n nx t x n H x H x N− −
−= − + +        (16) 

where the choice of units was made such that 1m= = . 
A computer program was written (see Appendix A), following Hermann’s 

procedure [14], to make numerical simulations for the SHO problem. Numerical 
simulations are performed using Equation (16) which represent trajectory equa-
tions of the particle for different different values of the quantum number n (n = 
0, 1, 2, 3, 4 and 5). The output of these simulations gives the probability density 
ƒ(x) of the particle in simple harmonic oscillator potential. To construct it, one 
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may divide the region into 601 pieces (bins), which gives the best results and 
time steps (cc) of 108 and 5 × 108 steps were used, as in Hermann’s work. 

The results of the present numerical simulations are compared with the probabil-
ity density of conventional quantum mechanics, that is, ( ) ( ) 22 2 e x

n nP x N H x −=  
where 1 21 2 !πn

nN n=  is the normalization constant [15] [16] [17]. The con-
tinuous curves indicate the results of the present simulations and the dashed 
curves the results of conventional quantum mechanics, with the same normali-
zation as the numerical results. The comparison between the present results and 
the results of conventional quantum mechanics is further facilitated by calculat-
ing the standard deviation σ and correlation coefficient ρ, which are given by 
[14]: 

( ) ( )( )2

1

N

i
P i f i

N
σ =

−
=

∑
                    (17) 

and 

( )( ) ( )( )

( )( ) ( )( )
1

2 2

1 1

N

i
N N

i i

P i P f i f

P i P f i f
ρ =

= =

− −
=

− −

∑

∑ ∑
              (18) 

where N is the number of pieces, ( ) ( )P i P x≡  and ( ) ( )f i f x≡ . 
Figures 1-3 show the results of numerical simulations for n = 0, 1, 2, 3, 4, and 

5 with 108 time steps (cc). These numerical simulations started with arbitrary 
particle at the position 2x = . Also, the output of the simulations was norma-
lized by multiplying it with a constant q whose value depends on the number of 
divisions of the region (here, q = 50). 

Here, it was found, after some numerical tests, that the thermalization process 
[14] is useful to improve the present results. Figure 4 shows the results of such 
numerical tests for n = 2, 3 and 5 which have starting points ss = 100 and 200. 
These starting points are chosen after many attempts and were found to give 
better results from other choices. The improvement is clear from the values of σ  
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Figure 1. Probability density for a particle in a SHO potential (a) n = 0 and (b) n = 1, 
without thermalization process. 

 

 
Figure 2. Probability density for a particle in a SHO potential (a) n = 2 and (b) n = 3, 
without thermalization process. 
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Figure 3. Probability density for a particle in a SHO potential (a) n = 4 and (b) n = 5, 
without thermalization process. 

 
and ρ compared with Figure 2 and Figure 3. The present results can also be im-
proved to increase convergence between them and the results of quantum me-
chanics by using more time steps. Figure 5 shows the results obtained this way, 
for n = 3. It appears that there is a better agreement with the results of conven-
tional quantum mechanics compared with the results from a thermalization 
process for n = 3 (see Figure 4). 

It was also found that, in the present problem, convergence between the re-
sults of numerical simulations and those of conventional quantum mechanics 
can be improved by increasing the number of boxes. This is clear in Figure 6, 
where it appears that there is better agreement between the two results for n = 3 
when the number of boxes was increased to 1201. 

4. Conclusion 

The quantitative prediction of the behavior of a quantum particle in simple 
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harmonic oscillator potential can be correctly obtained without explicitly writing 
the Schrödinger equation nor using any other of the conventional quantum 
axiom. This leads one to conclude from the present work that SR is a well- 
founded approach for deriving quantum mechanics from the concept of fractal 
space-time, consequence of the extension of the relativity principle to resolu- 

 

 
Figure 4. Probability density for a particle in a SHO potential (a) n = 2, (b) n = 3 and (c) 
n = 5, with thermalization process. 
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Figure 5. Probability density for a particle in a SHO potential with n=3 for longer time 
steps (cc = 5 × 108). 

 

 

Figure 6. Probability density for a particle in a SHO potential with n = 3 after increasing 
the number of boxes. 

 
tions. Successful applications were not achievable without, among other things, a 
new adjustment for the time step dt after some deeper understanding of the un-
derlying particle motion in some problems. It is expected that this understand-
ing is necessary when attempts are made to solve other quantum mechanical 
problems. The appearance of the Riccati equation in connection with SR theory 
in the present work, and the use of this equation in conventional quantum me-
chanics in previous works [22] [23] leads one to conclude that this equation is 
deeply rooted in the quantum mechanical behavior. It is also concluded from the 
attempts made in the present work that it is possible to improve the numerical 
simulation results by parameter optimization, and that further improvement is 
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possible, but requires more computer time. SR is not a particularly advantageous 
approach for solving quantum mechanical problems directly. Rather, reveals the 
relationship between the quantum behavior and the fractality of space-time. 
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Appendix A 

 
Chart 1. A schematic illustration of the different part of the. Program to calculate probability density of 
particle in SHO potential. 

https://doi.org/10.4236/jqis.2017.73008


 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jqis@scirp.org                                                                                     

http://papersubmission.scirp.org/
mailto:jqis@scirp.org

	Application of Scale Relativity to the Problem of a Particle in a Simple Harmonic Oscillator Potential
	Abstract
	Keywords
	1. Introduction
	2. Equation of Motion
	3. Numerical Simulations
	4. Conclusion
	Acknowledgements
	References
	Appendix A

