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Abstract

In the present work, Scale Relativity (SR) is applied to a particle in a simple
harmonic oscillator (SHO) potential. This is done by utilizing a novel mathe-
matical connection between SR approach to quantum mechanics and the
well-known Riccati equation. Then, computer programs were written using
the standard MATLAB 7 code to numerically simulate the behavior of the
quantum particle utilizing the solutions of the fractal equations of motion ob-
tained from SR method. Comparison of the results with the conventional
quantum mechanics probability density is shown to be in very precise agree-
ment. This agreement was improved further for some cases by utilizing the
idea of thermalization of the initial particle state and by optimizing the para-
meters used in the numerical simulations such as the time step and number of
coordinate divisions. It is concluded from the present work that SR method
can be used as a basis for description the quantum behavior without reference
to conventional formulation of quantum mechanics. Hence, it can also be
concluded that the fractal nature of space-time implied by SR, is at the origin
of the quantum behavior observed in these problems. The novel mathematical
connection between SR and the Riccati equation, which was previously used
in quantum mechanics without reference to SR, needs further investigation in
future work.
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1. Introduction

Scale relativity (SR) developed by Nottale based on the extension of the principle
relativity as follows “the fundamental laws of nature apply whatever the state of
scale of the coordinate system” [1] [2] [3] [4] [5]. The observation resolutions
now characterize the reference system and can be defined only in relative way.
This major concept of SR leads to giving up hypothesis of differentiability of
space-time. Quantum mechanics can then be reformulated from this basic prin-
ciple of SR form of covariance and geodesic equations, by considering a particle
as a geodesics in now fractal space-time. There are at least three major fields of
application for SR method, microphysics, complex systems and cosmology [6]
(7] [8] [9] [10].

As far as quantum mechanics is concerned, Nottale and co-workers were able
to apply the theory to solve many problems, especially those related to the con-
ceptual and interpretation aspects. The derivation of the postulates of quantum
mechanics from basic principle of SR [11], is basis of the present work. It shows
that quantum mechanical behavior appears without any use of the Schrodinger
equation, but as a consequence of the fractality of space-time. The extension of
the SR theory to the derivation of the main equations of relativistic quantum
mechanics [12] and the relationship between the classical and quantum regimes
[13] have been also discussed on the basis of the SR among other important
consequences and implications. With all these far reaching aspects of the theory,
direct investigations which would shed light on the basic workings of the SR
method as formulated by Nottale seem to be warranted.

The fractional equations of motion which are obtained from application of SR,
were applied directly by Hermann [14], in terms of a large number of explicit nu-
merically simulated trajectories for a free particle in an infinite one-dimensional
box [15] [16] [17]. Similarly, Al-Rashid [18] [19] [20], applied SR to the finite
one-dimensional square well potential and special case in a double oscillator
problems.

The validity of SR not restricted to the cases by Hermann [14] and Alrashid
[18] [19] [20]. Besides, such applications are expected to reveal some novel con-
cepts, such as the connection between SR and the Riccati equation [21] [22] [23]
as revealed in the present work.

In this paper, the problem of a particle moving in one dimensional SHO will
be treated by applying the principle of SR along the lines of Hermann. To the
best of our knowledge, this problem has not been treated by using Hermann line
elsewhere [14] [24].

2. Equation of Motion

One may start with the complex Newton Equation [14] [18]:
0

Vu=m—V 1
ot (1)

where uis a scalar potential and V is a complex velocity, then separate this equa-
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tion into real and imaginary parts:

m(ﬁv ~DAU +(V -V)V (U ~V)Uj:—Vu
x @
and m[%V +DAV +(V-V)U +(U .v)vj:o

Here, the average classical velocity Vis expected to be zero because the simple
harmonic oscillator is a symmetric system. Then, the equations of motion can be
reduced as [14] [18]:

a(o 1,0
2{Zoum3ur()-0 )
and
%U(x):O (4)

where Uis the imaginary part of complex velocity and D is the diffusion coeffi-

cient. Equation (4) shows that Uis a function of x alone. The potential of the
1
one-dimensional SHO can be written as Ema)zx2 , where w is the angular fre-

quency. Then, Equation (3) becomes:

o(o 1.2 1 20 2
—| —DU =U == — 5
6x[ax (X)+2 (X)j Zma) axx )

Integrating and rearranging terms in the resulting equation, one obtains:

d 1 ., 1 202 1

—U (X)+=—=U"(X)——mao X" +—=¢, =0 6
50 (K)o (K=o 5 G (6)
where ¢ is a constant of integration. Letting ¢, = E/m (as in Hermann’s work)

[14], then Equation (6) becomes:

2
dU—(X)+mU2()Q_m_a)2X2+E:0 (7)
dx h h h

h
where D =%. The last equation has the form of a Riccati equation [19] [20]

[21] [22] [23]. To solve this equation, one may trans-form it into a 2" order dif-
ferential equation of the form [19] [20] [21] [22] [23]:

ry”(x)+r?q(x)y(x)=0 (8)
where,
1y'(x
U(x)=-2Y0 (9)
ry(x)
and y(x) is an arbitrary function of x. From this Equation (7), it follow that:
m 2(1 5,
r=——; q(x)=—| —mo°x*-E 10
" a(9-2(3 ) (10)
Then, Equation (7) becomes:
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y”(x)+2—T(E—lmw2x2jy(x):O (11)
fi 2
Its solution is:

yn(x):Ajexp(—X?]Hn(x) (12)

where A, is a constant and A, is a Hermite polynomial of order n and
N=0L2" Thep, U,(x) is given by:
h :
Un(x):a(—an(x)+ H; (X)) (13)

Using the equality H; (X)=xnH,_(X) then, Equation (13) becomes:
h
Un(x):H(—x+2n(Hn71(x)/Hn(x))) (14)

As in Hermann work [14], U(x) is treated as a difference of velocities, ie, it is
a kind of acceleration. Thus, the equation of position coordinate has the follow-
ing form, which is a stochastic process:

dx(t)=%(—x+2n(Hn_l(x)/Hn (x)))dt+ e (1) (15)

where d&, (t) is now Gaussian random variable of standard deviation

~2Ddt .

3. Numerical Simulations

Equation (15) represents a stochastic process [14]. Here, in the problem of a
one-dimensional SHO, it was found that the assumption 2Dd¢ = 1 is not useful
for the present simulations since it gives bad results for the present application.

Then, one starts to adjust the value of dt until one approaches a specific value for

which meaningful results are obtained. It was found that a value of dt = 10_3%

is suitable for the present simulations. It seems that this value of dt is related to
the period of the motion in the SHO potential. It is expected that a suitable value
which gives meaningful numerical simulation results is that which leads to a suf-
ficient number of time steps during one period so as to give meaningful counts.
This is a consequence of the statistical nature of these simulations which requires

better statistics to be meaningful. Then, Equation (15) becomes:
dx(t) =107 (-x+2n(H, ; (x)/H, (x))) +~10°N(0,1) (16)

where the choice of units was made such that #=M=1,

A computer program was written (see Appendix A), following Hermann’s
procedure [14], to make numerical simulations for the SHO problem. Numerical
simulations are performed using Equation (16) which represent trajectory equa-
tions of the particle for different different values of the quantum number n (n =
0, 1, 2, 3, 4 and 5). The output of these simulations gives the probability density

f(x) of the particle in simple harmonic oscillator potential. To construct it, one
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may divide the region into 601 pieces (bins), which gives the best results and
time steps (cc) of 10® and 5 x 10° steps were used, as in Hermann’s work.

The results of the present numerical simulations are compared with the probabil-
ity density of conventional quantum mechanics, that is, P(x)=NZHZ(x)e™
where N, :]/ 2"n17¥?  is the normalization constant [15] [16] [17]. The con-
tinuous curves indicate the results of the present simulations and the dashed
curves the results of conventional quantum mechanics, with the same normali-
zation as the numerical results. The comparison between the present results and
the results of conventional quantum mechanics is further facilitated by calculat-
ing the standard deviation o and correlation coefficient p, which are given by
[14]:

oc={Lt 17)

and

(PO)~(P) (£ ()~ (F))

where Nis the number of pieces, P(i) = P(X) and f (I) = f (X)

Figures 1-3 show the results of numerical simulations for n=0, 1, 2, 3, 4, and

p= N i=1 (18)
=1

5 with 10° time steps (cc). These numerical simulations started with arbitrary
particle at the position X =2. Also, the output of the simulations was norma-
lized by multiplying it with a constant ¢ whose value depends on the number of
divisions of the region (here, g = 50).

Here, it was found, after some numerical tests, that the thermalization process
[14] is useful to improve the present results. Figure 4 shows the results of such
numerical tests for n = 2, 3 and 5 which have starting points ss = 100 and 200.
These starting points are chosen after many attempts and were found to give

better results from other choices. The improvement is clear from the values of o

n=0 a=601 cc=10*° X =2 0=0.0016 p=0.9999

present simulations
0.7F e Std. QM.

0.8
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0.6

0.5F

0.4

0.3

0.2

0.1

n=1 a=601 cc=10®° x=2 0=0.0034 p=0.9995

present simulations

(b)

Figure 1. Probability density for a particle in a SHO potential (a) n =0 and (b) n=1,

without thermalization process.

n=2 a=601 cc=10® x=2 0=0.0127 p=0.9914

0.6

0.3r

0.2}

0.1

present simulations

X
(a)
n=3 g=601 cc=10° x=2 0=0.0124 p=0.9905

present simulations

Figure 2. Probability density for a particle in a SHO potential (a) n = 2 and (b) n = 3,
without thermalization process.
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n=4 a=601 cc=10® x=2 0=0.0173 p=0.9807

present simulations
o6k e Std. QM.

0.4~

f(x).q

0.3

0.2

0.1F

n=5 g=601 cc=10® x=2 ©=0.0197 p=0.9742

present simulations

0.6

0.5f

0.4

0.3

0.2

0.1

(b)

Figure 3. Probability density for a particle in a SHO potential (a) n = 4 and (b) n = 5,

without thermalization process.

and p compared with Figure 2 and Figure 3. The present results can also be im-
proved to increase convergence between them and the results of quantum me-
chanics by using more time steps. Figure 5 shows the results obtained this way,
for n = 3. It appears that there is a better agreement with the results of conven-
tional quantum mechanics compared with the results from a thermalization
process for n= 3 (see Figure 4).

It was also found that, in the present problem, convergence between the re-
sults of numerical simulations and those of conventional quantum mechanics
can be improved by increasing the number of boxes. This is clear in Figure 6,
where it appears that there is better agreement between the two results for n =3

when the number of boxes was increased to 1201.

4. Conclusion

The quantitative prediction of the behavior of a quantum particle in simple
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harmonic oscillator potential can be correctly obtained without explicitly writing

the Schrodinger equation nor using any other of the conventional quantum

axiom. This leads one to conclude from the present work that SR is a well-

founded approach for deriving quantum mechanics from the concept of fractal

space-time, consequence of the extension of the relativity principle to resolu-

0.6

0.5

0.4

0.3

0.2

n=2 a=601 cc=10®° ss=100 o =0.0089 p=0.9956
present simulations
Std. QM.

n=3 a=601 cc=10°

ss=100 ©0=0.0121 p=0.9907

present simulations
Std. Q.M.

0.6

0.5

0.3

0.2F

Figure 4. Probability density for a particle in a SHO potential (a) n =2, (b) 7= 3 and (c)
n =5, with thermalization process.
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n=3 a=601 cc=5*10° x=2 00 =0.0095 pp=0.9945

present simulations
""""" Std. QM.

0.3

0.2

0.1

Figure 5. Probability density for a particle in a SHO potential with 7=3 for longer time
steps (cc =5 x 10%).

n=3 0=1201 cc=10° x=2 ©=0.0082 p=0.9959

present simulations

0.6r

0.5

0.4r

f(x).q

0.3

0.2r

Figure 6. Probability density for a particle in a SHO potential with n = 3 after increasing
the number of boxes.

tions. Successful applications were not achievable without, among other things, a
new adjustment for the time step dt after some deeper understanding of the un-
derlying particle motion in some problems. It is expected that this understand-
ing is necessary when attempts are made to solve other quantum mechanical
problems. The appearance of the Riccati equation in connection with SR theory
in the present work, and the use of this equation in conventional quantum me-
chanics in previous works [22] [23] leads one to conclude that this equation is
deeply rooted in the quantum mechanical behavior. It is also concluded from the
attempts made in the present work that it is possible to improve the numerical

simulation results by parameter optimization, and that further improvement is
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possible, but requires more computer time. SR is not a particularly advantageous
approach for solving quantum mechanical problems directly. Rather, reveals the

relationship between the quantum behavior and the fractality of space-time.
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Appendix A

/ Input n,cc, X=2, @, zz=107-3,8. =12 /

¥
N,=(27n*n!*nr0.5)1-0.5

A 4

Divide region into d boxes

X

Implement for -e:¢

X
H,=exp(-x"2/2)d*n/d x An(exp(-x*2/2)

v
Implement loop for step of time until cc.

L 2
H.=exp(-X ~2/2)d*n/d X An(exp(- X 72/2)

d X =(-X-2*n[H,../H.] )*zz+random no.*(zz)"0.5

Yes

x>4/2&-a/2>

No

Compute no. of occurrences f(X) in each box.

/ Compute ¢ and p /

\ 4

Plot P(X)and f(X)

END

Chart 1. A schematic illustration of the different part of the. Program to calculate probability density of
particle in SHO potential.
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