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Abstract 
Many researches discussing reduced energy consumption for environmental 
protection focus on machine efficiency or process redesign. To optimize the 
machine operation time can also save the energy, and these researches have 
received great interests in recent years. This study considers three different 
states of machines, among processing there are two different speeds, to solve 
the problem of minimizing energy costs under time-of-use tariff with no 
tardy jobs in flexible flow shop. This problem is basically NP-hard, we pro-
posed a hybrid genetic algorithm (GA) to solve problems in reasonable 
timeliness. The result shows that to optimize different states of machines 
under time-of use tariff can reduce energy costs significantly in on-time de-
livery. 
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1. Introduction 

Goldratt and Cox [1] posit that goal achievement by a goal-oriented system is 
limited by at least one constraint. The limitation of electricity affects the energy 
in Taiwan. Good energy-saving production systems have become important is-
sue during peak time. In practical production, energy saving is essential for en-
hancing production activity and maximizing the effectiveness of processes on 
machines. The electricity consumption of industries exceeds half of global con-
sumption and affects the operating efficiency in practical situations. 

A flexible flow shop (FFS) scheduling problem provides multiple identical 
parallel machines at each station for increasing capacity and reducing costs. 
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Flow shop processing involves constant sequences of initial, standard, steady, 
and nonpermutable production, such as that of steel, optoelectronics, and 
metal, which are common in real-world situations [2] [3]. To offer widely ap-
plication, Linn and Zhang [4] indicated that FFS scheduling applies to tradi-
tional flow shop situations. The attempted problem is excellently solved. 
However, the energy consumption of machines affects the efficiency and qual-
ity of production; for instance, increased on-peak electricity consumption of 
machines causes an increase in temperature, wearing of parts, and improper 
manual operation. The time-of-use (TOU) tariff is a common used for adjust-
ing peak power consumption worldwide. Generally, the billing period is di-
vided into on-peak hours, mid-peak hours, and off-peak hours. The electricity 
costs during the on-peak period are the highest, whereas those during the 
off-peak period are the lowest. Moreover, machines can be switched to opera-
tion, standby, and shutdown modes for preventing unnecessary energy was-
tage. 

As for trade-off of energy saving method, Ribas et al. [5] demonstrated that 
enterprises added machines to certain stages, thus enhanced production effi-
ciency and customer satisfaction. An energy-efficient mathematical model for 
solving FFS scheduling problems and multiobjective optimization to minimize 
the makespan and total energy consumption [6]. The experimental results 
showed that the relationship between the makespan and energy consumption 
may be conflicting. A proposed energy-saving decision is useful for minimizing 
energy consumption. To minimize trade-off of earliness and tardiness in a prac-
tical production environment, Huang et al. [7] developed a farness particle 
swarm optimization (FPSO) algorithm for solving reentrant two-stage multi-
processor flow shop scheduling problems. 

As for energy-saving issues, because of scarce resources, increasing attention 
has been focused on developing practical production techniques for clean tech-
nologies and protecting the environment [8]. Decreasing emission of CO2 at-
tracts more attentions. Zhang et al. [9] developed a time-indexed integer pro-
gramming formulation for solving manufacturing schedules that minimize elec-
tricity cost and the carbon footprint under TOU tariffs without compromising 
production throughput. The proposed method used a flow shop with eight 
process steps that were operated on a typical summer day for an energy-saving 
test. Results indicated that shifting electricity usage from on-peak hours to 
mid-peak hours or off-peak hours reduces electricity costs; however, it may in-
crease CO2 emissions in regions where the grid base load is met with electricity 
from coal-fired power plants. The tradeoff between minimizing electricity cost 
and reducing CO2 emissions was shown using a Pareto frontier. Setlhaolo [10] 
demonstrated that using residential demand response along with a mixed integer 
nonlinear optimization model under a TOU electricity tariff can solve the sche-
duling problem of typical home appliances as well as minimize electricity costs 
and facilitate earning relevant incentives [11]. An analysis revealed that house-
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holds can alter their electricity consumption in response to varying prices and 
incentives; thus, a consumer may reduce electricity costs by more than 25%. 
Different values of the weighting factor (α) provide varying costs. According to 
the α values and their preferences, consumers can choose their electricity costs. 
FFS scheduling can save energy and lower manufacturing costs by clean tech-
nologies, environmental policy, reducing the completion time and inventory in 
industrial environments. 

Energy-saving models are created for important issues, Mouzon and Yildirim 
[12] developed operational methods for minimizing the energy consumption of 
manufacturing equipment and total completion time. The energy used in 
processes can be saved by turning off nonbottleneck (i.e., underutilized) ma-
chines or equipment when they are idle for a certain period of time. In particu-
lar, an analysis indicated that the proposed dispatching methods are effective in 
reducing the energy consumption of underutilized manufacturing equipment. 
Therefore, a production manager has a set of nondominated solutions (i.e., a set 
of efficient solutions) that he or she can use for determining the most efficient 
production sequence; moreover, they minimize the total energy consumption 
while optimizing the total completion time. Fang et al. [13] developed a new 
mathematical programming model for flow shop scheduling problems to mi-
nimize the peak power load, energy consumption, and associated carbon foot-
print along with the cycle time. In a flow shop with two machines producing 
various parts, the operation speed was considered an independent variable, which 
can be changed to affect the peak load and energy consumption. The results dem-
onstrated that the proposed approach enables determining near-optimal sche-
dules for achieving energy-saving goals. Tibi and Arman [14] developed a ma-
thematical linear programming model to optimize the decision-making for 
managing a cogeneration facility as a potential clean-development mechanism 
project in a hospital in Palestine. The model optimized the cost of energy and 
the cost of installation of a small cogeneration plant under constraints on elec-
tricity-and-heat supply and demand balances. The results proved the efficiency 
of the proposed method. He et al. [15] demonstrated that the environmental 
load resulting from the energy consumption of machine tool systems is broadly 
recognized. Improving scheduling saves energy, facilitates efficient use of ma-
chine tools, and reduces energy consumption by idle equipment. One proposed 
energy-saving optimization method involves machine tool selection and a series 
of machine operations for flexible job shops. The method was designed to reduce 
the energy consumption of machine operations, and the scheduling was aimed at 
reducing the unused power consumption of machine tools. The current study 
investigated how to develop and use clean technologies like non-tardy proce-
dures for scheduling the use of parallel machines to maintain practical produc-
tion for environmental protection. 

To prevent tardiness and ensure effective operation of production equipment, 
companies create effective and efficient production environments that maximize 
corporate benefits from production activities. Bruzzone et al. [16] developed 

https://doi.org/10.4236/jep.2017.810066


R.-H. Huang et al. 
 

 

DOI: 10.4236/jep.2017.810066 1040 Journal of Environmental Protection 
 

energy-aware scheduling of manufacturing processes by using advanced plan-
ning and scheduling, a mathematical model for optimally planning energy sav-
ing for a given schedule. The new approach relies on the MIP model, where the 
reference schedule is modified to account for energy consumption without 
changing the jobs’ assignments and sequencing provided by the reference sche-
dule. The results demonstrated that a commercial MIP solver and an original 
MIP heuristic are applicable in practical production. 

Enumeration and heuristic methods have been applied for energy saving in 
previous studies [10]. Integer programming, branch and bound programming, 
and MIP are the most widely used enumeration methods that can provide ap-
propriate solutions. However, high computational times limit the applicability of 
enumeration methods to small-scale problems [17]. Thus, heuristics such as the 
genetic algorithm, simulated annealing algorithm, and ant colony optimization 
algorithm are commonly used for solving energy-saving problems. Lian [18] ob-
tained the average relative error rates of −28.20% and 60.25% for a combined 
local and global PSO algorithm against PSO and genetic algorithms, respectively. 
Zhang et al. [19] presented an I-ATTPSO algorithm with an average effective-
ness improvement rate of −14% in small-scale problems and 55% in large-scale 
problems. Liu et al. [20] obtained an average relative error rate of 0.65% for the 
PSO-EDA_PI algorithm against other algorithms. Zhao et al. [21] found the av-
erage relative error rate of their proposed logistic dynamic PSO algorithm 
against other algorithms to be approximately 1.19% - 2.39%. 

In many industrialized countries, manufacturing industries pay stratified 
electricity charges depending on the time of the day (i.e., on-peak, mid-peak, 
and off-peak hours) [22]. China saves energy concerning the impact of internal 
industrial configuration in terms of size and ownership structure on aggregate 
energy intensity [23]. Besides, Germany property owners can deduce where they 
should ideally invest in order to optimize the energy efficiency of their building 
stock sustainably [24]. By contrast, the emerging smart grid concept may de-
mand that industries pay real-time hourly electricity costs for the efficient usage 
of energy. To enable decision makers to apply feasible solutions for resolving 
unrelated parallel machine scheduling problems, Moon et al. [25] developed an 
energy-efficient method by using the weighted sum objective of production 
scheduling and electricity usage. Reliability models using a hybrid genetic algo-
rithm along with their blank job insertion algorithm consider the energy cost 
aspect of the problem with the objective function of optimizing the weighted 
sum of two criteria: the minimization of the production makespan and the mi-
nimization of time-dependent electricity costs. The results demonstrated its 
performance in simulation experiments in practical production. 

Energy-saving method relates to fixed costs. Shrouf et al. [26] posited that ris-
ing energy costs associated with increased production costs at manufacturing fa-
cilities encouraged decision makers to tackle this problem in different ways. One 
crucial step in this trend is to reduce the energy consumption costs of produc-
tion systems. Considering variable energy prices in a single day, the authors 
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proposed a mathematical model for minimizing energy consumption costs for 
single machine production scheduling during production processes. The job 
processing time consists of the starting time, idle time, and times when the ma-
chine must be shut down, turned on, and turned off. The proposed mathemati-
cal model enables the operation manager to implement the least expensive pro-
duction scheduling during a production shift. To obtain feasible solutions by 
using a genetic algorithm, this study also determined whether the heuristic solu-
tion provides the minimum cost and optimal schedule for minimizing energy 
costs. In addition, an analytical solution was applied to generate the optimal so-
lution. Moreover, analytical solutions and heuristic solutions were compared, 
and the heuristic solution is considered preferable for larger problems. The re-
sults indicate that significant reductions in energy costs can be achieved by 
avoiding high-energy price periods. The results have a positive environmental 
effect by reducing energy consumption during peak periods, thereby increasing 
the possibility of reducing CO2 emissions from power generator sites. Although 
a genetic algorithm can efficiently solve energy-saving problems and prevent en-
trapment at a local optimum, the current study improves the solving process for 
enhancing performance in practical production and environmental protection. 

By applying the nontardy constraint to practical production, the current study 
attempted to minimize makespan costs. A Cmax minimization genetic algorithm 
(CGA) and energy minimization genetic algorithm (EGA) are proposed for use 
in the first stage of solving two-stage multiprocessor flow shop scheduling prob-
lems and minimizing makespan costs. Furthermore, an adjusted Cmax minimi-
zation genetic algorithm (ACGA) and adjusted energy minimization genetic al-
gorithm (AEGA) used in the second stage were compared for obtaining superior 
solutions and aiding enterprises in increasing profits and lowering overhead 
costs. The current study compared the proposed solution with two reported so-
lutions that yielded comparable improvements. 

The remainder of the paper is organized as follows: In Section 2, the FFS is 
formulated. In Section 3, the basic algorithms are introduced briefly. Then, the 
framework of energy-saving genetic algorithm for solving the FFS is proposed in 
Section 4. The influence of parameter setting is investigated based on design of 
experiment testing in Section 4, and computational results and comparisons are 
provided as well. Finally, we end the paper with some conclusions in Section 5. 

2. Problem Definition 

According to notation rule of Pinedo [27], the current study formulates the 
problem as | , | | 0k t jFF EP State EC T = . kFF  represents k-stage flexible flow 
shop scheduling environment. tEP  means different electricity bill in each pe-
riod. State  denotes three conditions of operation: stand-by, or shut-down of 
machines, and re-operation of machines also consumes power. | 0jEC T =  
demonstrates all operations of non-tardy jobs must complete before completion 
dates in order to minimize electricity costs. Figure 1 demonstrates the Gantt  
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Figure 1. State of machine process. 
 
chart of the attempted problem. 

The FFS problem provides multiple identical parallel machines at each station 
for increasing capacity and reducing costs in practical production. One machine 
at every station can be selected for each job and the process begins from the first 
station. After the final job is completed in the second stage, all jobs are com-
pleted. 

The scope and constraints of this study are demonstrated as follows: 
1) Number of jobs, machines and stages are known. 
2) Processing time of each job on each machine is known and constant. 
3) Each machine in each stage can only process one job simultaneously. 
4) The sequence through which jobs pass through machines may differ with 

the sequence of machine receiving job. 
5) Jobs cannot be preempted. 
6) There is no permutation, or machine breakdown. 
7) The job ready time is 0. 
8) Machines can switch into operation, stand-by, and shut-down. 

2.1. Notation 

T  = total period set, all jobs in this study 
M  = total parallel machines at stage i, all machines in this study 
D  = due date set, all jobs completed dates in this study 
J  = job set, all jobs waiting for scheduling in this study 
K  = stage set, all stages in this study 

maxC  = the maximal completion time of all jobs 

jd  = the due date of job jJ  

jkmC  = the completion time of job jJ  processed in the m-th machine at the 
k-th stage 

jkmS  = the starting time of job jJ  processed in the m-th machine at the k-th 
stage 

jkmP  = the processing time of job jJ  processed in the m-th machine at the 
k-th stage 

O
tE  = the turn-on energy consumption of all machines at t-th time 
I
tE  = the stand-by energy consumption of all machines at t-th time 
R
tE  = the working energy consumption of all machines at t-th time 

O
kme  = the working energy consumption in the m-th machine at the k-th stage 
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I
kme  = the stand-by energy consumption in the m-th machine at the k-th stage 
R
jkme  = the working energy consumption of job jJ  processed in the m-th 

machine at the k-th stage 

tEP  = the electricity bill of different time period 

jkmtα  = indicator of whether job jJ  is scheduled at the k-th stage in m-th 
machine at t-th time ( jkmtα  = (0, 1); if jkmtα  = 1, job jJ  is processed at the 
k-th stage in m-th machine at t-th time; otherwise jkmtα  = 0) 

jkmtβ  = indicator of whether job jJ  is assigned at the k-th stage in m-th 
machine at t-th time ( jkmtα  = (0, 1); if jkmtα  = 0, job jJ  is processed at the 
k-th stage in m-th machine at t-th time; otherwise jkmtα  = 1) 

kmtY  = indicator of whether at the k-th stage the m-th machine turned on at 
t-th time ( kmtY  = (0, 1); if kmtY  = 1, the m-th machine was turned on at t-th 
time; otherwise kmtY  = 0) 

kmtδ  = indicator of whether at the k-th stage the m-th machine turned off at 
t-th time ( kmtδ  = (0, 1); if kmtδ  = 0, the m-th machine was turned off at t-th 
time; otherwise kmtδ  = 1) 

2.2. Mathematical Model 

1) Objective function 

( )min  R I O
t t t tt T EP E E E

∈
+ +∑                     (1) 

Equation (1) is the objective formulation and is primarily designed for mini-
mizing energy consumption costs, such as those during operation, standby 
mode, and working. This equation measures the common criterion of the com-
pletion of all jobs and aids enterprises in improving the energy consumption and 
efficiency of production scheduling. 

2) Total energy consumption 

,  I I
t jkmt kmt kmj J k K m ME e t Tβ δ

∈ ∈ ∈
= ∈∑ ∑ ∑               (2) 

,  R R
t jkmt jkmj J k K m ME e t Tα

∈ ∈ ∈
= ∈∑ ∑ ∑                 (3) 

O O
t kmt kmm ME eγ

∈
= ∑                           (4) 

Equation (2) is the standby total energy consumption of all machines at the 
t-th time. Equation (3) is the total energy consumption of all machines in the 
t-th time period. Equation (4) is the turn-on total energy consumption of all 
machines in the t-th time period. 

3) Completion time of job 

, , ,  jkm jC d j J k K m M≤ ∈ ∈ ∈                   (5) 

, , ,  ,  jkm jkm jkmC S P j J k K m M t T= + ∈ ∈ ∈ ∈             (6) 

( )1 , , ,  jkm j kmC S j J k K m M+≤ ∈ ∈ ∈                (7) 

( )1 ,  , ,  jkm k mC S j J k K m M+≤ ∈ ∈ ∈                  (8) 

Equation (5) is the time for completing job j before the due date. Equation (6) 
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is the completion time of job j by the m-th machine at the k-th stage and equals 
the starting time plus the processing time. Equation (7) is the completion time of 
job j by the m-th machine at the k-th stage and is no longer than the starting 
time of job (j + 1) for the m-th machine at the k-th stage. Equation (8) is the 
completion time of job j by the m-th machine at the k-th stage and is no longer 
than the starting time of job j for the m-th machine at the (k + 1)-th stage. Be-
cause of continuous production, the processing time prolongs the completion 
time and consumes energy. Therefore, minimizing energy consumption can re-
main the primary objective of machines for further production. 

4) The constraints of job processing 

1, ,  ,  jkmtm M j J k K t Tα
∈

= = ∈ ∈∑                  (9) 

1,  ,  ,  kmt kmt k K m M t Tγ δ+ ≤ ∈ ∈ ∈                (10) 

,  ,  ,  ,  jkmt kmt j J k K m M t Tα δ= ∈ ∈ ∈ ∈               (11) 

Equation (9) controls all jobs during each stage and ensures that they are 
processed only once. Furthermore, Equation (10) controls the m-th machine and 
ensures that only one job can be processed by it. Finally, Equation (11) deter-
mines whether the m-th machine is turned off at the t-th time ( kmtδ  = (0, 1); if 

kmtδ  = 0, the m-th machine was turned off at t-th time; otherwise kmtδ  = 1. 

3. Concept of Energy-Saving Genetic Algorithm Solving  
Procedure 

According to | ,  | | 0k t jFF EP State EC T = , this study constructed energy-saving 
genetic algorithm (ESGA) using two-stage solving procedures: a genetic algo-
rithm for maximizing the makespan and another for minimizing energy con-
sumption in the second stage. Figure 2 demonstrates the starting time of solu-
tions applied in the first stage to avoid on-peak hours. 
 

 
Figure 2. Flow chart of solving procedure of ESGA. 
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3.1. The First Stage of ESGA 

This study utilized two genetic algorithms for solving problems: the CGA for 
minimizing the makespan and calculating the electricity cost and EGA for de-
termining low energy consumption scheduling and calculating the electricity 
cost concurrently [6]. The procedures of the proposed method are demonstrated 
as follows: 

3.1.1. Encoding 
According to Dai et al. [6], a job set, stage set, and machine set ( 1,2, ,s k=  ) 
are present at each stage. This study formulated FFS scheduling as a genetic ma-
trix in which the columns are jobs and stages are rows. 

1,1 1,

1,1

,1 ,

 
j

k j

k k j

a a
A a

a a
×

 
 
 
 
 

=



 



                   (12) 

The ( ), 1, 2, , , 1, 2, ,m na m k n j= =   is a real number in the interval (1, 

sM ). ,m na  indicates which machine processes job j, and the decimal indicates 
the processing sequence; the lower the decimal is, the earlier the job is processed. 
A coding matrix represents a chromosome in which k j×  genes are present. 

1,1 1,2 1, 2,1 2,2 ,, , , , , , ,j k ja a a a a a                    (13) 

For example, in FFS scheduling, the coding matrix consists of three stages, in 
which there are two machines and eight jobs to be processed. 

1.301 2.533 1.415 2.76 1.824 2.351 1.113 2.204
1.261 1.997  2.442  1.528  2.609  1.016  2.224  2.185
1.518 1.635 2.254 2.965 2.753 1.378 2.181 2.156

A
 
 
 
  

=  (14) 

Row 1 represents processing conditions of the first stage. The 1,1 1.301a =

means 1J  processed in machine 1, 1,2 2.533a =  means 2J  processed in ma-
chine 2, and 1,3 1.145a =  means 3J  processed in machine 1. The decimal of 

1,1a  is 0.301smaller than 0.415 of 1,3a , which represents 1,1a  is processed earli-
er than 1,3a . 

[

]

1.301, 2.533, 1.415, 2.76, 1.824, 2.351,1.113, 2.204, 1.261,
1.997, 2.442, 1.528, 2.609, 1.016, 2.224, 2.185, 1.518, 1.635,
2.254, 2.965, 2.753, 1.378, 2.181, 2.156

     (15) 

3.1.2. Initial Population 
The initial solution is the first population of a genetic algorithm. Generally, two 
methods can generate initial solutions: one is randomly generated and other re-
quires research. The scale of the initial population affects the efficiency and 
quality of solutions. A random initial solution was used in this study. 

3.1.3. The Fitness Function 
The fitness function can identify the quality of chromosomes, enabling inferior 
solutions to be screened out. The fitness function of the CGA is as follows: 
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( )
max

1f x
C

=                        (16) 

The fitness function of EGA is as below: 

( ) ( )
1
T I O

t t t tt T

f x
EP E E E

∈

=
+ +∑

                 (17) 

3.1.4. Selection 
The algorithm selects a favorable parent from chromosomes and proceeds with 
crossover and mutation. Each chromosome has a fitness value, which determines 
the possibility for crossover and mutation. This study adopted roulette wheel se-
lection. 

3.1.5. Crossover 
The proposed algorithm partially exchanges two chromosomes. In this study, the 
exchange rate was set as, which is a rounded-up approximation of the quantity 
of exchanged chromosome multiplied by the exchange rate. If the quantity of 
exchanged chromosome is odd, then one chromosome is added to the total 
chromosomes and the quantity becomes even. The exchange rate was set at 0.9, 
and this study adopted a two-point crossover method to solve the considered 
problem. 

3.1.6. Crossover 
Mutation can generate multiple and various children. A mutation rate of mP  
was set in this study. The proposed method arbitrarily generates a probability 
value. If the value is below the mutation rate, mutation occurs. The mutation 
rate was set at 0.1. The mutation rate is uniformly distributed from 0 to 1. If the 
rate becomes 1, the proposed algorithm regenerates an interval of real numbers 
(1, Ms + 1). 

3.2. The Second Stage of ESGA 

Although the genetic algorithm generates scheduling with lower electricity costs, 
some jobs still generate high electricity costs. The solutions generated from the 
GCA and EGA in the first stage were adjusted using the ACGA, and problems in 
the second stage were solved using the AEGA to avoid high-energy price pe-
riods. 

The adjustment rule begins from the final stage and proceeds in descending 
order. The proposed approach organizes the operations into the final order. The 
method gradually schedules operations in the off-peak period and moves the 
sequence of operation away from the on-peak period until all jobs are scheduled. 
Figure 3 illustrates the flow chart. 

3.3. A Brief Example 

In a job scheduling scheme consisting of three stages, two machines at each 
stage, and eight jobs to be processed, the total working time is 16 hours and the 
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factory working period is from 6 a.m. to 10 p.m. on each day. Table 1 shows the 
operation time: 

Table 2 shows the consumed energy of machines. The starting time of the 
machines is assumed to be short with sudden turn-on energy consumption. 

Table 3 shows the electricity costs of every time period. The parameters of the 
proposed method are as follows: initial population, 30; exchange rate, 0.9; muta-
tion rate, 0.1; and stopping criterion, 300 iterations. 

3.3.1. The First Stage of ESGA 
Figure 4 shows the computational result using CGA, and the electricity bill is 
NT$ 3277.8. 
 

 
Figure 3. Flow chart of solving procedure of ESGA. 

 
Table 1. The operation working time. 

Jobs  
The working time of jobs at different stages 

Stage 1 Stage 2 Stage 3 

1 Hour 3 4 1 

2 Hour 3 2 2 

3 Hour 1 2 3 

4 Hour 4 2 3 

5 Hour 2 2 0.5 

6 Hour 0.5 1 1.5 

7 Hour 2 0.5 1 

8 Hour 1.5 2 1.5 

 
Table 2. The operation working time. 

Conditions of machines Stage 1 Stage 2 Stage 3 

Stand-by (kW) 3 7 6 

Operation (kW) 8 18 17 

Turn-on (kW) 4 10 8 

Remarks: This study assumes the starting time of machine is short with a sudden turn-on energy consump-
tion. 
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Figure 5 shows the computational result using EGA, and the electricity bill is 
NT$ 2900.6. 

3.3.2. The Second Stage of ESGA 
The adjustment rule begins from the final stage and proceeds in descending or-
der. The proposed approach organizes operations into the final order. The me-
thod gradually schedules operations in the off-peak period and moves the se-
quence of operation away from the on-peak period until all jobs are scheduled. 
Figure 6 shows the computational result obtained using the ACGA and the 
electricity cost is NT$ 2929.7. 

Figure 7 the computational result using AEGA, and the electricity bill is 
NT$ 2807.4. 

Table 4 lists four computational results obtained using the CGA as the 
 

 
Figure 4. The Gantt chart of computational result using CGA. 
 

 
Figure 5. The Gantt chart of computational result using EGA. 
 
Table 3. The electricity bill of time periods. 

Factory working period 6:00~20:00 

Time period Summer electricity price (NT$) 

Off-peak 6:00~7:00 1.8 

Mid-peak 
7:00~10:00 3.3 

17:00~20:00 3.3 

On-peak 10:00~17:00 4.8 
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Figure 6. The Gantt chart of computational result using ACGA. 
 

 
Figure 7. The Gantt chart of computational result using AEGA. 
 
Table 4. Comparison of electricity bills. 

 CGA EGA ACGA AEGA 

Electricity bills (NT$) 3277.8 2900.6 2929.7 2807.4 

Comparison costs ratio 1 0.88 0.89 0.86 

 
benchmark for comparison. According to Table 4, applying the CGA generates 
the highest electricity cost, because it neglects the costs of standby, shutdown, 
and different time periods. Furthermore, the EGA considers different conditions 
of machines and can lower the electricity cost; however, jobs are processed in the 
on-peak period. The proposed method using ESGA can efficiently avoid 
processing jobs in the on-peak period. Moreover, ESGA can lower the electricity 
cost by up to 11% and 14%, respectively, compared with the CGA. The results 
demonstrate higher energy saving with the AEGA than with the CGA, EGA, and 
ACGA. 

4. Computational Experiments 

All tests were conducted on a PC with an Intel® Core™ i5-4300U 1.9-GHz CPU 
with 8 GB of RAM. The operation system used was Windows® 8.1. The FFS 
scheduling problem is | , | | 0k t jFF EP State EC T = . The parameters of the pro-
posed method are the number of jobs, type of stage, number of machines, energy 
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consumption of machines, processing time of jobs, and due dates. For the con-
sidered problems, the number of jobs was 30, 60, or 90; the type of stage was 3 or 
5; and the number of machines in the two stages = 6, 9. Table 2 and Table 5 
show the energy consumption of machines. Moreover, the processing time of 
jobs was limited within U [2] [9]; the unit time was 30 minutes; the factory 
working period was from 6 a.m. to 10 p.m. on each day; and the electricity costs 
of various time periods are shown in Table 3. The formula of the due date 
( ) ( )( )11 1 1 0.25k

iiTF P k
=

− + + ∗∑ , among which the iP  represents the average 
processing time of machines, and TF is the tardy factor; Type I was 0.3 and Type 
II was 0.5. The working duration per day was assumed to be 16 hours. Therefore, 
when the formula of the due date provided a duration of 20 hours, the due date 
was estimated to be 2 days. Finally, the parameters of the genetic algorithms 
were set on the basis of a pretest to improve the results; specifically, the initial 
population was 30; the exchange rate was 0.9; the mutation rate was 0.1; and the 
stopping criterion was 500 iterations. 

4.1. Analysis of Effectiveness 

To assess the effectiveness of the proposed algorithm in solving the considered 
problems, 12 conditions were applied to randomly test 30 generated problem 
sets; specifically, the number of jobs was 30, 60, or 90; the type of stage was 3 or 
5; and the number of machines in the two stages was 6 or 9. Table 6 provided a 
comparison of the average solutions and average solving times of the CGA, 
EGA, ACGA, and AEGA for efficacy analysis under Type I of slacker due dates. 

Table 7 provided a comparison of the average solutions and average solving 
times of the CGA, EGA, ACGA, and AEGA for efficacy analysis under Type II of 
non-slacker due dates. 

Table 6 and Table 7 illustrate that for different due dates, the cost of energy 
consumption is lower for the ACGA and AEGA than for the CGA. Type I has 
slacker due dates than those of Type II, indicating that the EGA and AEGA pro-
vide superior solutions. A data set of 30/6/5 has the same due date as that of 
Type I and Type II; therefore, the improvement is not remarkable. The CGA 
calculates the electricity cost for the minimal makespan; therefore, the CGA and 
ACGA might not provide superior solutions in the Type I condition. Table 8 
show comparison cost ratios for electricity costs obtained using all methods un-
der Type I of slacker due dates. 

Table 8 and Table 9 show comparison cost ratios for electricity costs obtained 
using all methods under Type I of non-slacker due dates. 

 
Table 5. The energy consumption during three time periods of 5-stage machines. 

Conditions of machines Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Stand-by (kW) 3 7 6 6 5 

Operation (kW) 8 18 17 15 14 

Turn-on (kW) 4 10 8 7 7 
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Table 6. The effectiveness of time window Type I. 

 CGA  EGA  ACGA  AEGA  

j/m/k Avg. 
CPU 

time(s) 
Avg. 

CPU 
time(s) 

Avg. 
CPU 

time(s) 
Avg. 

CPU 
time(s) 

30/6/3 12673 5.8 8558 7.1 12471 6.6 8314 7.5 

30/6/5 22519 9.9 15957 12.1 20681 11.3 15438 12.6 

30/9/3 13173 6.4 8721 7.6 12405 7.2 8616 8.2 

30/9/5 23098 11.4 16516 13.8 20893 12.2 15706 14.4 

60/6/3 26545 15.3 19420 17.6 24187 16.5 18242 18.2 

60/6/5 44668 27.4 37244 32.4 42057 30.3 34822 33.2 

60/9/3 25903 16 18763 19 24779 18.2 18412 19.7 

60/9/5 44647 27 36474 31.7 42664 29.9 34236 32.1 

90/6/3 39398 25.7 31909 29.4 37783 28.5 29634 30.8 

90/6/5 65787 48.5 57154 53.9 62155 51.3 53657 55 

90/9/3 40014 26.7 31456 30.5 37869 29.7 30431 31.1 

90/9/5 66557 31.5 57340 37.4 64741 33.6 53933 38 

Remarks: The unit cost is NT$. 
 
Table 7. The effectiveness of time window Type II. 

 CGA  EGA  ACGA  AEGA  

j/m/k Avg. 
CPU 

time(s) 
Avg. 

CPU 
time(s) 

Avg. 
CPU 

time(s) 
Avg. 

CPU 
time(s) 

30/6/3 12700 5.7 8650 7.3 12523 6.7 8473 7.8 

30/6/5 22243 10.2 16467 11.9 21347 10.9 15992 12.5 

30/9/3 13041 6.4 8659 7.5 12597 7 8507 8.1 

30/9/5 22773 11.3 17036 14.2 21965 12.7 16325 14.8 

60/6/3 27427 15.1 20036 17.5 24911 16.8 18868 18.4 

60/6/5 44884 27 37302 32.7 42566 29.6 36043 33.7 

60/9/3 26008 15.6 19167 18.9 25348 17.8 18843 19.5 

60/9/5 44988 27.5 36825 31.5 42497 30.2 35445 32.1 

90/6/3 39286 25.3 33843 28.7 37859 27.6 31830 29.3 

90/6/5 67006 47.1 57504 53 63318 51.9 55136 54.8 

90/9/3 39850 27.2 33224 30.6 37368 29.4 32200 31.3 

90/9/5 67166 32.4 57519 37 65489 34.2 54244 37.9 

Remarks: The unit cost is NT$. 

 
Table 8 and Table 9 illustrate that the EGA, ACGA, and AEGA yielded lower 

electricity costs than did the CGA. Moreover, the AEGA provided solutions su-
perior to those of the ACGA method in terms of effectiveness. 

4.2. Analysis of Robustness 

To assess the robustness of the proposed algorithms in solving the considered 
problems, 12 conditions were applied to test the same solution 30 times;  
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Table 8. The comparison costs ratio of electricity bills of time window Type I. 

j/m/k CGA EGA ACGA AEGA 

30/6/3 1 0.68 0.98 0.66 

30/6/5 1 0.71 0.92 0.69 

30/9/3 1 0.66 0.94 0.65 

30/9/5 1 0.72 0.90 0.68 

60/6/3 1 0.73 0.91 0.69 

60/6/5 1 0.83 0.94 0.78 

60/9/3 1 0.72 0.96 0.71 

60/9/5 1 0.82 0.96 0.77 

90/6/3 1 0.81 0.96 0.75 

90/6/5 1 0.87 0.94 0.82 

90/9/3 1 0.79 0.95 0.76 

90/9/5 1 0.86 0.97 0.81 

Avg. 1 0.77 0.94 0.73 

 
Table 9. The comparison costs ratio of electricity bills of time window Type II. 

j/m/k CGA EGA ACGA AEGA 

30/6/3 1 0.68 0.99 0.67 

30/6/5 1 0.74 0.96 0.72 

30/9/3 1 0.66 0.97 0.65 

30/9/5 1 0.75 0.96 0.72 

60/6/3 1 0.73 0.91 0.69 

60/6/5 1 0.83 0.95 0.80 

60/9/3 1 0.74 0.97 0.72 

60/9/5 1 0.82 0.94 0.79 

90/6/3 1 0.86 0.96 0.81 

90/6/5 1 0.86 0.94 0.82 

90/9/3 1 0.83 0.94 0.81 

90/9/5 1 0.86 0.98 0.81 

Avg. 1 0.78 0.96 0.75 

 
specifically, the number of jobs was 30, 60, or 90; the type of stage = 3, 5; and the 
number of machines in the two stages sM  = 6, 9. Table 10 and Table 11 pro-
vide a comparison of the average solutions, optimal solutions, and poorest solu-
tions calculated using the CGA, EGA, ACGA, and AEGA in the analysis of ro-
bustness. 

The test results in Table 10 and Table 11 for robustness show that the ACGA 
and AEGA are affected by original solutions during adjustment procedures,  
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Table 10. The robustness of time window Type I. 

 CGA  EGA  ACGA  AEGA  

j/m/k 
Best 

Worst 
Avg. 

[Std. dev.] 
Best 

Worst 
Avg. 

[Std. dev.] 
Best 

Worst 
Avg. 

[Std. dev.] 
Best 

Worst 
Avg. 

[Std. dev.] 

30/6/3 
11330 
12687 

12202 
[492.6] 

8136 
9105 

8991 
[356.6] 

11083 
12249 

11693 
[422.5] 

7964 
8832 

8507 
[307] 

30/6/5 
21853 
23085 

22469 
[677.9] 

16430 
18034 

17232 
[537.5] 

21090 
22272 

21836 
[427.3] 

15082 
16512 

16030 
[420.3] 

30/9/3 
11336 
13170 

12253 
[684.2] 

8521 
9118 

8819 
[353.6] 

10534 
12430 

11707 
[686.5] 

8100 
8864 

8381 
[497] 

30/9/5 
20937 
23189 

22169 
[862.1] 

16131 
17282 

16707 
[457.5] 

19170 
22567 

21395 
[1304.3] 

15434 
16172 

15805 
[295.2] 

60/6/3 
24779 
27195 

25987 
[984.5] 

19118 
20513 

19822 
[653.2] 

23062 
25432 

24515 
[936.9] 

18267 
19706 

18945 
[646.8] 

60/6/5 
42020 
44735 

43378 
[999.2] 

35442 
36632 

35805 
[676.3] 

39517 
42368 

41239 
[1065.6] 

34267 
36301 

35256 
[758.8] 

60/9/3 
24565 
27261 

25913 
[1149.6] 

18209 
19711 

18920 
[594.7] 

24124 
25826 

24719 
[646.8] 

17415 
18753 

18288 
[370.2] 

60/9/5 
43167 
46538 

44852 
[1209.4] 

35305 
37244 

36377 
[881.6] 

41856 
43784 

42481 
[865.1] 

33707 
36761 

35112 
[845.2] 

90/6/3 
38541 
40956 

39749 
[907.9] 

32015 
34513 

33263 
[955.7] 

37124 
38134 

37712 
[438] 

27963 
31085 

29877 
[1161.7] 

90/6/5 
65226 
67744 

66485 
[929.0] 

55357 
57823 

56175 
[913.8] 

61613 
63426 

62774 
[720.1] 

52056 
54253 

53456 
[889.5] 

90/9/3 
39596 
41817 

40707 
[839.8] 

30663 
31878 

31270 
[436.2] 

35614 
37759 

37211 
[941.5] 

29920 
31085 

30545 
[416.2] 

90/9/5 
65027 
68482 

66754 
[1270.9] 

55440 
57461 

56450 
[682.9] 

62526 
66064 

64235 
[1878.7] 

54006 
55744 

54620 
[674.4] 

Remarks: The unit cost is NT$. 

 
causing the electricity cost to decrease partially. Thus, the robustness of the 
proposed method was fairly identified. 

5. Computational Experiments 

This study investigated the use of limited resources of parallel machines to pro-
mote practical production and environmental protection. Ideal practical produc-
tion for better energy using effective scheduling prevents processes from exces-
sive energy consumption and energy price fluctuations. Recent studies on sus-
tainable manufacturing focused on energy saving to reduce the unit production 
cost and environmental impacts. 

Most importantly, the application of the optimization of the scheduling can 
be respected for costs down and energy-saving simultaneously. Under an op-
erational environment in which electricity costs differ depending on the time 
period, manufacturing activities in machine shops increase electricity con-
sumption costs. In particular, machine conditions and job processing time pe-
riods are crucial factors in making energy-saving decisions during the manu-
facturing process. 
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Table 11. The robustness of time window Type II. 

 CGA  EGA  ACGA  AEGA  

j/m/k 
Best 

Worst 
Avg. 

[Std. dev.] 
Best 

Worst 
Avg. 

[Std. dev.] 
Best 

Worst 
Avg. 

[Std. dev.] 
Best 

Worst 
Avg. 

[Std. dev.] 

30/6/3 
11882 
13695 

12654 
[727.8] 

8357 
8995 

8732 
[285.6] 

11719 
13527 

12501 
[769.7] 

8020 
8990 

8557 
[346.5] 

30/6/5 
20613 
23183 

22795 
[794.7] 

16819 
19539 

18037 
[939.6] 

20512 
22919 

21555 
[791.5] 

15525 
17692 

16015 
[983.6] 

30/9/3 
11685 
13150 

12432 
[551.6] 

8435 
8886 

8641 
[257.9] 

11414 
13058 

12287 
652.9 

8211 
8831 

8490 
[239.5] 

30/9/5 
20870 
22629 

22116 
[764.1] 

16431 
17863 

17273 
[483.5] 

20720 
22232 

21755 
[552.2] 

15632 
16812 

16178 
[444.5] 

60/6/3 
24996 
27493 

26199 
[1040] 

19632 
20944 

20292 
[409.6] 

23821 
25713 

24872 
[741.9] 

18579 
20105 

19216 
[563.4] 

60/6/5 
42195 
45796 

43873 
[1267.5] 

35972 
37976 

36790 
[500.5] 

40297 
44283 

42243 
[1425.9] 

34933 
37009 

35929 
[657.7] 

60/9/3 
25168 
27220 

26187 
[747.1] 

19257 
20980 

20118 
[634.1] 

24323 
26260 

25308 
[760.3] 

17821 
19056 

18603 
[743.8] 

60/9/5 
42133 
46152 

44225 
[1551.5] 

35563 
38106 

37033 
[1311.8] 

40184 
44258 

42705 
[1595.9] 

34534 
36907 

35509 
[1163.7] 

90/6/3 
38663 
41731 

39708 
[1228.7] 

31907 
34748 

33670 
[1059.8] 

37485 
38319 

37807 
[341.1] 

30927 
34023 

32197 
[1393.3] 

90/6/5 
65131 
67830 

66630 
[1007.9] 

56002 
58882 

57442 
[1111.8] 

62199 
65876 

64249 
[1429.4] 

53741 
56412 

54987 
[1180] 

90/9/3 
38270 
40291 

39270 
[720.2] 

32262 
34060 

33093 
[664.9] 

36261 
38974 

37340 
[918.2] 

30489 
32286 

31587 
[649.5] 

90/9/5 
66374 
68401 

67386 
[737.8] 

55781 
58106 

57005 
[896.2] 

63054 
66193 

64489 
[1320.7] 

54669 
56518 

55593 
[779] 

Remarks: The unit cost is NT$. 

 
According to the analysis, the CGA, EGA, ACGA, and AEGA can efficiently 

solve problems. The electricity cost ratio for the CGA, EGA, ACGA, and AEGA 
is 1:0.78:0.95:0.74, demonstrating that the AEGA can efficiently solve the prob-
lem. The robustness test results show that the ACGA and AEGA of ESGA are 
affected by original solutions during adjustment procedures and partially reduce 
electricity costs. Thus, the robustness of the proposed method was appropriately 
identified. As a whole, the proposed method can lower electricity bills to fit 
green energy nowadays. 

Finally, enterprises can adopt the proposed method for enhancing practical 
production in the flexible job shop scheduling environment and generate profits 
by fully exploiting the advantages of the method in the future. In addition, the 
proposed method can mitigate the environmental impact of manufacturing 
processes and protect environment at the same time. 
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