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Abstract 
Simulating the detailed movement of a rising bubble can be challenging, espe-
cially when it comes to bubble path instabilities. A solution based on the Euler 
Lagrange (EL) approach is presented, where the bubbles show oscillating 
shape and/or instable paths while computational cost are at a far lower level 
than in DNS. The model calculates direction, shape and rotation of the bub-
bles. A lateral force based on rotation and direction is modeled to finally 
create typical instable path lines. This is embedded in an EL simulation, which 
can resolve bubble size distribution, mass transfer and chemical reactions. A 
parameter study was used to choose appropriate model constants for a mean 
bubble size of 3 mm. To ensure realistic solution, validation against experi-
mental data of single rising bubbles and bubble swarms are presented. Refer-
ences with 2D and also 3D analysis are taken into account to compare simula-
tive data in terms of typical geometrical parameters and average field values. 
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1. Introduction 

Understanding bubbles path instabilities during rise in bubble columns is a ma-
jor challenge since the 1960s. Early measurements were performed by [1], where 
a single bubble was rising in a fluid showing different path lines, like zigzag and 
spiraling. Nowadays, a 3D camera setup enables a more detailed view [2] and 
sophisticated simulations [3] could help to explain the complex rising behavior. 
The origin of this behavior is in the turbulent eddies induced behind the bubble 
during its rise. Instabilities in these eddies lead to an eccentric force on the bub-
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ble, which then leads to a deviation from a straight rise resulting into a spiraling 
or zigzagging path. The development of the turbulent eddy behind a bubble is 
connected also to its shape and size. Different types of bubble paths can be expe-
rienced, based on the bubble size or, in terms of turbulence intensity, on the 
bubble Reynolds number.  

Simulating bubble hydrodynamics is an issue since many years ago. The most 
common approach to do this is the simplified Euler Euler (EE) method, where 
single bubbles are no longer resolved but a bubble number density is taken into 
account instead. Bubbles located in a computational cell are supposed to have 
identical velocity and bubble sizes are often reduced to characteristic mean val-
ues (d32, d10) for the calculation. Interaction of bubbles is no longer a problem, 
since simple source terms can be used to simulate changes in the bubble size dis-
tribution. This also leads to a much simpler way to calculate for an instable bub-
ble path, namely a diffusion term is used. This gives a high loss of detail on the 
bubble scale while the overall spatial distribution of bubbles can be forecast with 
adequate precision.  

The other extreme is a high detail direct numerical simulation (DNS) of a sin-
gle bubble or rather a small bubble swarm. Bubbles are resolved in full detail in-
cluding the interfacial area deformations and the hydrodynamics inside. Turbu-
lence in- and outside the bubbles are also calculated in high detail, trailing eddies 
in the bubble wake flow are resolved. In doing so, path instabilities can be simu-
lated consequently on the lowest level of scale but at a high computational load. 
The DNS is unsuitable for simulation of a whole bubble column reactor because 
of its sheer bubble number. Despite the detailed flow simulation of the single 
bubble, the DNS is not capable of simulating a reliable behavior when bubbles 
coalesce or breakage happens. Those processes take place on an even lower spa-
tial scale at the bubble surface layer and need special modeling, e.g. sub-grid 
models [4]. 

Free rising ellipsoidal bubbles not only move in straight lines but can describe 
sinusoidal, zigzag or spiraling paths. The common Euler Euler (EE) simulation 
techniques can no longer resolve the actual movement patterns and Direct Nu-
merical Simulations (DNS) tend to be very costly when simulating a larger num-
ber of bubbles. This work presents a solution to calculate the orientation and 
shape of bubbles using the Euler Lagrange (EL) approach. Advantages lie within 
the fast computation and the high level of detail. In comparison to DNS, the in-
sides of the bubbles are not calculated in full detail but macroscopic models are 
employed. Every bubble is calculated individually, having its own size, direction 
and shape. The surrounding fluid will influence not only the bubble’s movement 
but also the rotation and shape. The actual calculation of the turbulent eddies 
behind the bubble will not be carried out, but an oscillation orientation model is 
used and model parameters are calibrated from experimental data. This enables 
the simulation of instable bubble paths, while the bubble number can easily ex-
ceed those of a DNS simulation. The EL approach is also capable of evaluating 
the bubble size distribution due to coalescence and break-up by stochastic mod-
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eling. The individual simulation of each bubble allows more detailed simulation 
of bubble dynamics, e.g. mass transfer or residence time characteristics, than it is 
possible in the EE approach. With the implemented shape factor estimation, 
physical models could be expanded to account for the deformed bubble surface 
area.  

2. EL Modeling 

The general EL model describes bubbles as a point volume acting under Newto-
nian dynamics. Forces created by the surrounding fluid and neighboring bubbles 
accelerate these Lagrangian points through the domain. The continuous phase 
itself is calculated using Navier-Stokes equations and can be coupled to the inte-
raction forces by a source term. All forces are calculated for each bubble indivi-
dually, which produces an individual path for each bubble. Therein lies one of 
the advantage of the EL approach in comparison to the EE methods. Bubbles can 
coalesce and break, which gives a bubble size distribution, with even more detail 
than common method of moments approaches. Downside of the EL approach is 
the higher computational load, which is strongly dependent on the number of 
bubbles simulated. Nevertheless, the EL approach has been used frequently in 
several different simulations of bubbly flow [5]. 

2.1. Liquid Phase Hydrodynamics 

The continuous phase is assumed to be incompressible, basis for calculation is a 
modified Navier-Stokes equation: 

( )c
c c cp

t
ρ µ

∂ + ∇ = −∇ + ∆ + ∂ 
⋅

u u u u f                 (1) 

Given is the continuous velocity uc, the pressure p, the density ρ, the viscosity 
μ and the source term f. The source term f depicts the forces of the bubbles and 
will thereby serve as a coupling of the phases. Turbulence is computed using the 
standard RANS k-epsilon model [6] with additional bubble induce turbulence 
(BIT) [7]. Each bubbles’ drag force induces turbulent energy and dissipation in 
the associated computational grid cell. For each cell this sums up and is added to 
the source term in the turbulence model. 

k D c bS = −∑F u u                         (2) 

kC SS ε
ε τ
=                             (3) 

; 1.0d C
k ετ = =                          (4) 

Here, Sk denotes the source term for the turbulent energy k, FD stands for the 
drag force. Sε is the turbulent dissipation with τ, the turbulent time scale. 

2.2. Bubble Hydrodynamics 

Bubbles are modeled as point volumes acting under Newtonian dynamics. Their 
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movement is calculated using a number of different forces.  

d db bm t= ∑u F                          (5) 

The sum of forces ∑F  consists of the buoyancy and weight force FB, the 
drag force FD, the lift force FL, the virtual mass force FVM, the wall lubrication 
force FW and the bubble dispersion force FBD. Here the subscripts b and c stand 
for the bubble and the continuous phase accordingly, the subscript rel identifies 
the relative differences between them. Furthermore, g denotes the gravitational 
acceleration, ρ stands for densities, u for velocity, V for the bubble’s volume, k 
for the turbulent kinetic energy and α for the phase fraction. Appropriate model 
parameters are denoted with Ci. 

1 C
B b

b

m ρ
ρ

 
= − 

 
F g                         (6) 

c
L b L rel c

b

m Cρ
ρ

= ×∇×F u u                      (7) 

3
4

b c
D D rel rel

b b

mC
d
ρ
ρ

=F u u                      (8) 

b b c c
VM VM c b

D DC V
Dt Dt

ρ  = − − 
 

u uF                   (9) 

2
W W b b c rel wallC V α ρ= −F u n                    (10) 

BD BD c c bC kρ α= − ∇F                       (11) 

Di/Dt in Equation (9) denotes the material derivative, meaning that the deriv-
ative is made while following the bubble. Drag and lift force coefficients CD, CL 
are calculated using the models of [8]. The virtual mass coefficient is set to CVM = 
0.5 according to [9], the coefficient for the dispersion force is set to CTD = 0.1 
[10]. This dispersion describes the ambition of bubbles to spread due to colli-
sions with other bubbles. Additionally, a second turbulent dispersion is used to 
model the collision of bubbles and turbulent eddies. The Random Dispersion 
Model [11] is used to calculate eddies according to the surrounding level of tur-
bulence. Assuming an isotropic turbulence, eddies are traveling through the liq-
uid in a uniformly random direction with a specific life time. In the model, the 
turbulent eddy lifetime tE is evaluated, after which a new eddy is calculated.  

0.5 3
43 ; 0.09

2E
kt C Cµ µε

 = = 
 

                   (12) 

Then the movement direction of the eddy is uniformly chosen while its veloc-
ity follows a normal distribution with a variance dependent on the turbulent 
energy k. 

20;
3T N k

 
=   

 
u                        (13) 

This turbulent velocity is added to the underlying continuous phase velocity 
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for each bubble individually, which is then used to calculate the different bubble 
forces. Especially the drag force calculation is a crucial step to produce disper-
sion of the bubbles. In order to achieve the same amount of bubble dispersion 
like in the experiment, the turbulent velocity for drag force calculation had to be 
slightly increased. 

Change in bubble volume due to the pressure drop while rising is calculated 
assuming an ideal gas. Mass transfer and/or chemical reactions are not consi-
dered in this simulation.  

2.3. Ellipsoidal Bubble Model 

According to the state of the art of bubble simulations almost any model as-
sumptions are based on bubbles having a spherical shape. Simplest example is 
the Sauter diameter d32, which maps the mean volume/surface area ratio of a 
bubble population to one spherical bubble size. Collision frequency or rather 
probability, e.g. by [12], is based on the calculation of the overlapping volume of 
spheres. Other examples are mass transfer calculation (spherical transport area), 
coalescence and break-up (interfacial energy of spheres) or simply the distance 
calculation between bubbles or wall and bubble. Only exception is the drag force, 
which is often modeled with respect to the shape of the bubble e.g. by [8] but 
uses no information about orientation or rotation of the bubble. One has to ad-
mit, that the assumption of bubbles being spheres is adequate for many prob-
lems. For example, the deviation of the collision probability is negligible if a spa-
tially uniform random orientation of the bubbles is assumed. Nevertheless, for 
the computation of realistic bubble movement, a better model for the bubble 
shape has to be chosen. 

In this work, the deformed bubble will be approximated with an oblate sphe-
roid, an ellipsoid with two different axes a and c, where c > a. For simplicities 
sake, all following figures will contain a simplified 2D version of the spheroid in 
Figure 1. 

The ratio of the axes is chosen to describe the bubble shape via the shape fac-
tor sf. 

1 asf
cχ

= =                            (14) 

 

 
Figure 1. An oblate spheroid. 
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A shape factor of sf = 1 describes a perfect spherical shape, while a lower value 
stands for a more deformed sphere and sf = 0 would describe an infinitely 
thinned spheroid. Some models are based on empirical measurements using di-
mensionless numbers for the calculation, others are physical models derived 
from the interfacial tension and pressure distribution. It turned out that a good 
result for the simulation problem was achieved by [13] with the underlying equ-
ation: 

( ) ( ) ( ) ( ) ( )
23 1 33 2 2 24 24 2 sec 1 1We aχ χ χ χ χ χ χ χ

− − 
= + − − − − 

 
      (15) 

Since the shape factor has to be computed as a function of the Weber number, 
an approximation has been used: 

1

atanh 1
crit

sf
We

We

=
 

+ 
 

                      (16) 

Note that this equation is based on the dimensionless Weber number, which 
can represent changes in the shape induced by fluctuating relative velocities. The 
critical Weber Number Wecrit = 3.745 describes the transition to irregular bubble 
shapes. If the current Weber number is higher than Wecrit a shape factor of sf = 
0.2 is chosen. 

2
reldWe ρ

σ
=

u
                          (17) 

Implementing the new bubble shape into the CFD framework necessitates 
further usage of the diameter definition of a spherical bubble. The volume of the 
sphere should be equal to the oblate spheroid volume, which leads to the fol-
lowing basic equations: 

sphere ellipsoidV V=                         (18) 

3 21 1π π
6 6

d ac=                         (19) 

3
3 233 ;dc a d sf

sf
= =                      (20) 

Differently than with common rotation calculation, using the moment of in-
ertia and torque action [14], an approach originally developed by [15] is used. 
The direction of the bubble is described by a vector p pointing in the direction of 
axis a. The change in direction is given as the vector p , which is deduced from 
the rotation vector ω (s. Figure 2). This notation is beneficial because there is no 
need for a change to spherical coordinates (Θ, Φ), which would lead to higher 
computational load. The only requirement is a sufficiently small change of the 
vector p, which is fulfilled within the computed time step of the simulation. 

= ×p p ω                           (21) 

This rotation notation has been used by [16] to calculate the orientation of  
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Figure 2. Left: orientation in spherical coordinates; right: orienta-
tion with vectors p and p . 

 
rigid ellipsoidal bodies in a Stokes flow. Based on these equations, a modified 
model for ellipsoidal bubbles was developed. In general, the bubble rotation is 
calculated using an explicit Euler algorithm: 

d dt=p p                            (22) 

( )d d dTt R tγ= − +p G p p                      (23) 

Just as the bubble’s position and velocity, the orientation p changes due to the 
orientation change p . The bubble’s rotation relaxes against the outer rotation 
G with the factor γ . Here, γ  denotes a simplified interaction of the bubble’s 
moment of inertia and torque. A low γ  implies a high bubble mass/inertia and 
thus a slower rotation due to outer forces. The additional term Tp  resembles a 
random rotation due to turbulence, where R  is used to scale the effect of tur-
bulent randomness. It is generated similarly to the turbulent dispersion velocity 

Tu . Since the effective moment of inertia of a gas bubble inside a fluid is un-
known, γ  has to be derived from experimental data.  

( )1
1
2 CJ rot= ×G u p  

[ ] [ ]( )( )T
2  C CJ S Sλ+ −u p p u p p                 (24) 

( )3J+ − −g p  

2

2

1 
1

sf
sf

λ −
=

+
                         (25) 

The outer rotation G is a summation of three main mechanics acting on the 
body Equation (24). The first line implies that the rotation of the surrounding 
fluid is transmitted to the bubble itself. The second line describes the rotation 
induced by shear stress in the surrounding fluid, S[uC] is the symmetric part of 
the Jacobian matrix. 

[ ] ( )( )T1  
2C C CS = ∇ ⋅ + ∇ ⋅u u u                  (26) 

The third line is an addition to the original model [16] and describes the am-
bition of the gas bubble to orient itself along the gravitation direction g. Since 
the original equation was deduced for rigid bodies only, all of the above-mentioned 
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mechanics are weighted by the parameters Ji to fit experimental data of (non-rigid) 
bubbles. This also compensates for the fact, that there is no Stokes flow around 
the bubble and its interface is mobile (slip condition). 

Especially the third line of Equation (24) leads to an oscillatory system, which 
enables the bubble to describe sinusoidal or helical orientation characteristics. 
While the orientation of the bubble is changing, the vector of orientation change 
p  will eventually point to a direction not perpendicular to p, thus rising in size 

and finally damping and stopping the oscillation. To prevent this, the direction 
change vector will be moved to the plane normal to the orientation vector by 
subtracting the part parallel to it: 

( )( )′ = − ⋅p p p p p                           (27) 

In total, this will lead to a slight damping of the oscillation, which can be 
eliminated by preserving the magnitude of the orientation change vector: 

′
′′ =

′
pp p
p






                           (28) 

To preserve robust behavior a slight damping (δ = 0.2) is executed for the 
orientation change: 

e dtδ−′′′ ′′=p p                             (29) 

Finally, with an interaction force based on the orientation, the bubble expe-
riences a drift perpendicular to the main movement direction. This results in a 
bubble trajectory describing helical and sinusoidal (zigzag) paths. This perpen-
dicular force has the same direction as the change in direction [3], which gives 
(Figure 3): 

~ Sp F                              (30) 

 

 
Figure 3. Direction of forces and direction change on a sinu-
soidal bubble path. 
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This force is modeled as a modified drag force. Also, to imitate real bubble 
behavior, we limit the force to only occur on bubbles within a certain range of 
Reynolds number [1]. This will stop the oscillating motion for very small (d < 
0.8 mm) and large bubbles (d > 3.5 mm) as observed in experiments. 

[ ]if 500,1300

0 else

D
S

Reβ == 



pF p
pF




              (31) 

The additional side force due to bubble rotation is modeled with the magni-
tude of the current drag force FD and the bubble rotation but will point in the 
direction of rotation. It turned out, that a scaling linear to the magnitude of the 
direction change p  will lead to instabilities easily, which can be stabilized by 
using the square root p  instead. The bubble path amplitude is calibrated 
with the parameter β, where a higher value implies a larger amplitude of the re-
sulting oscillating path. 

3. Parameter Estimation 

Parameters γ , R and Ji (Equations (22) and (23)) are derived from a parameter 
study and with analysis of the oscillatory equations. The characteristic bubble 
path amplitudes, frequency and wavelength shown in [2] were taken to set first 
limits to the parameter study. In a more detailed analysis, the parameters are 
correlated to experimental data showing bubble swarms rather than single rising 
bubbles. The resulting simulated bubble paths are then compared to experimen-
tal data from the Bubble Column Reactor Database of the University of Magde-
burg (http://www.uni-magdeburg.de/isut/LSS/spp1740/). Characteristic oscilla-
tory dimensions can be derived from Equation (23) and the third line of Equa-
tion (24). This will lead to a simple harmonic oscillator equation with the fol-
lowing form: 

2
0 0ω+ =p p                          (32) 

with 

3Jγ=p p                           (33) 

Without damping of the oscillation, the frequency f0 can be calculated with 
the parameters J3 and γ . 

30
0 2π 2π

J
f

γω
= =                       (34) 

It turned out, that this is the case for our oscillatory system, but only if the 
random rotation is set to zero. A case without random rotation was set up for 
this reason, the results are shown in Figure 4. Over a wide range, the simulated 
frequency is identical to the analytical solution for the undamped oscillation. 

Most references are made on a basis of a stagnant liquid phase, such that the bub-
ble rise velocity ub can be easily estimated. This makes it easy to calculate an appro-
priate wavelength of the generated/observed bubble path using its characteristic  
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Figure 4. Oscillation parameters vs. bubble path fre-
quency. 

 
frequency. 

0

bu
f

λ =                           (35) 

In case of a non-stagnant liquid, like in a bubble column, the bubble velocity 
has to be identified at first. It is therefore important to mention, that the wave-
length of a bubble path in a dynamic system will differ from most reference ex-
periments, which are made using a well-defined surrounding. Also, in some 
areas of the column a downward flow occurs, lowering the bubble’s rising veloc-
ity. To overcome this problem, the bubble velocity and/or wavelengths are aver-
aged over a large number of bubble paths. 

3.1. Experimental Setup 

For the parameter study, simulation results were compared to experimental 
measurements from the Institut für Strömungstechnik und Thermodynamik, 
University of Magdeburg [17] [18] [19]. The experimental setup consists of a cy-
lindrical air-water bubble column with an inner diameter of 14.22 cm and a fill-
ing height of 73 cm. The air inlets are positioned at the bottom of the column 
and consist of four nozzles in a row. The distance between nozzles is 2.2 cm. The 
measurements were made with a camera system facing the four nozzles side by 
side (front view) and were also done a second time when facing the nozzles be-
hind each other (side view). A high-resolution camera and a backlight system 
produce shadow graphic images of the bubbles, which have been processed to 
gain information about bubble size, shape and velocity. With a frame rate of 100 
Hz the position of a bubble shows only little change in consecutive picture. This 
enables tracking of a bubble by searching for the closest position in the subse-
quent picture (Figure 5). With this method, the bubble positions and velocities 
were captured and the trajectories have been reconstructed. With an air 
throughput of 10 l/h a mean bubble size of d = 3 mm was measured using the 
same camera setup. 

An automated analysis was used to estimate the characteristic path shapes,  
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Figure 5. Schematic experimental setup: 1: 
Camera; 2: Light source; 3: Diffused backlight; 
4: Bubble column. 

 
given by the mean and standard deviation of the wavelength λ  and amplitude 
A of all bubble paths. To ensure a correct analysis, only those trajectories were 
considered, that were of appropriate length (minimum of 30 measured posi-
tions). Unfortunately, a 3D reconstruction was not possible for the bubble paths, 
because the side view measurements were not made simultaneously with the 
front view. 

In addition, the liquid velocity was measured using Particle Image Velocime-
try (PIV). Small tracer particles were added to the fluid and illuminated by a la-
ser light sheet. This laser projection grants insight to the cross-sectional liquid 
velocity inside the column. 

3.2. Computational Setup 

The corresponding computational mesh was created using a rectangular grid of 
28 × 28 × 146 cells with overlapping cells being removed and reshaped to fit the 
cylindrical shape. This results in a mesh with 90,000 cells, shown in Figure 6. 
Mesh resolution was intentionally left at approximately 0.125 cm3 per cell (mean 
cell length of 0.5 cm), because the bubble size must be smaller than the cell size 
in our EL approach. Cells near the walls are not rectangular anymore, but are 
also solemnly populated by bubbles due to wall lubrication force. The main bub-
ble flow therefore happens in the center part, where the cells are in perfect rec-
tangular shape. 

For boundary conditions (s. Table 1), the simplest possible case could be 
adopted. All walls except the top outlet patch are combined and have the same 
properties. Since bubbles are injected using the Lagrangian approach, there is no 
need for an inlet patch. Instead of a free surface at the top, a slip condition has 
been set. This approach enables to use a single phase solver but is surely not  
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Figure 6. Computational mesh of the cylin-
drical bubble column. 

 
Table 1. Boundary conditions. 

Patch 
Flow condition 

liquid velocity pressure k/epsilon 

walls no-slip condition zero gradient zero gradient 

outlet slip condition ambient pressure zero gradient 

internal field, 
starting value 

(0 0 0) ambient pressure 0.001/0.0001 

 
suitable for estimating hydrodynamics near the surface. Since our interest lies 
within the lower part of the column, this error is acceptable.  

On the basis of the experimental measurements, the mean inlet diameter of 
the bubbles was set to d = 3 mm. With a throughput of 10 l/h this leads to a total 
number of 196.4 bubbles per second to inject from the four nozzles. Bubble 
breakup, coalescence and mass transfer was turned off in this case, since only the 
bubble movement is of concern and measurements showed only a minimum of 
bubble size variations during rise. The experimental measurement area is posi-
tioned in the lower 312 mm of the column only, but the whole height of the 
column was simulated to achieve the correct flow pattern. 

Since there are 4 parameters in total to be calibrated, an automated parameter 
study software has been used (Dakota, Sandia National Laboratories) to simulate 
a variety of combinations. The target function was the characteristic bubble flow 
path parameters, which were compared by screenshots at a first sight. After 
choosing the most promising parameter interval, a detailed analysis of bubble 
path frequency and amplitude followed. Therefore, an automated analysis of the 
generated path lines was used to calculate for mean wavelength and amplitude 
(~600 trajectories per simulation). The same method has been used to charac-
terize the experimental measurements. Since the experimental data was collected 
using a 2D visual acquisition, simulation results were also calculated using a 2D 
mapping. Additionally, a 3D analysis was made and compared to other reference 
measurements. 
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4. Results and Discussion 
4.1. Velocity Profiles 

Simulated liquid velocity and its deviation are compared to the experimental 
measurements by the Institut für Strömungstechnik und Thermodynamik, Uni-
versity of Magdeburg in Figure 7. The upper figure shows the mean vertical ve-
locity of experiment (left) and simulation (right) on the middle plane of the  
 

 
Figure 7. Mean vertical velocity. Upper figure: overview (left: experiment, right: simula-
tion), (A)-(D) depicts the detailed line plot positions. (A)-(D): detailed line plots on dif-
ferent heights. 
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column. The white line represents the zero value, making it easier to spot the 
upward and downward flow area. The scale depicted on the left side shows the 
detailed line plot positions (A)-(D) in the lower figures. The liquid velocity pro-
file from the experimental measurements shows a slower flow than the simula-
tion produced. Probable reason for this could lie within the modifications done 
to the drag force calculations in order to acquire the special bubble movement. It 
has not yet been optimized in order to sustain an appropriate liquid velocity. 
Also, the liquid phase resolution is quite low in order to maintain an appropriate 
aspect ratio of bubble length to cell length. Aim of this work lies within the si-
mulation of correct bubble paths rather than optimal liquid phase hydrodynam-
ics. 

Calculation of the simulated fluctuating velocity is made using the k-epsilon 
turbulence model. Values described here (s. Figure 8) are solution of the turbu-
lent energy k with assumed isotropic turbulence velocities: 

2
3

k′ =u                            (36) 

The upper figure shows the fluctuating velocity deviation of the experiment by 
the Institut für Strömungstechnik und Thermodynamik, University of Magde-
burg (left) and simulation (right) on the middle plane of the column. Again, the 
scale on the left side shows the line plot positions A-D. In the lower sections, the 
fluctuation velocity is similar to the measured values from the experiments. In 
higher sections, the simulation underestimates the level of turbulence, leading to 
low fluctuating velocities in comparison to experimental data. Here again, a 
standard parameter set was used for the BIT model [20]. It was not optimized on 
this particular case as investigations on bubble induced turbulence was also not 
in the focus. However, as a consequence the impact of turbulence on bubble ro-
tation is adjusted via the parameter study. 

4.2. Bubble Path Characteristics 

According to literature [14], the bubble path oscillations of a single air bubble (d = 
3 mm) rising in tap water is approximately f0 = 5 s−1. With its mean free rising 
velocity of ub = 35 cm/s the bubble path wavelength is λ = 7 cm. According to 
Equation (34) this would recommend setting the parameter 3 1000Jγ ≈ . 

Anyhow, analysis of the experimental data from the University of Magdeburg 
yielded a mean bubble path wavelength of λ = 4.14 cm and an amplitude of A = 
1.87 mm. Mean bubble rise velocity is ub = 29 cm/s in this case which gives a 
frequency of f0 = 7 s−1 and a product of parameters of 3 2000Jγ ≈ . This was on-
ly a first estimation, since the random rotation has not been set to zero in the fi-
nal simulation. 

Experimental data from 4 different measurements on the same properties 
were used to reconstruct and analyze bubble trajectories (s. Table 2). The trail-
ing numbers in the Case name stand for the frame rate and the number of 
frames used in the analysis. A given frame rate of 0.1 kHz and 100, 250 or 500  
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Figure 8. Standard deviation of velocity fluctuations. Upper figure: overview (left: expe-
riment, right: simulation), (A)-(D) depicts the detailed line plot positions. (A)-(D): de-
tailed line plots on different heights. 
 
frames implies a measuring time of 1, 2.5 or 5 seconds accordingly. In order to 
estimate characteristic trajectory wavelengths and amplitudes, the points of in-
flexion of each trajectory were determined. Since main movement direction is 
upwards, the inflexion point distance in vertical direction was used to identify 
the wavelength while the horizontal distance was used for the amplitude. Aver-
aging over all trajectories yields the characteristic wavelength and amplitude 
with their deviations. This method was used for both, the experimental and the  
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Table 2. Characteristic path lengths (all values in mm). 

Case name 
Mean 

wavelength λ 
Std. dev. 

wavelength 
Mean 

amplitude A 
Std. dev. 

amplitude 

Air V = 10 l/h 0.1 khz 
1-100 

40.6024 12.5520 1.8762 1.2405 

Air V = 10 l/h 0.1 khz 
1-250 

41.2272 13.1363 1.8810 1.2360 

Air V = 10 l/h 0.1 khz 
1-500 

41.7505 13.2859 1.8777 1.1981 

Air V = 10 l/h 0.1 khz 
251-500 

42.0848 13.4051 1.8642 1.1510 

Experiments mean value 41.4162 13.0948 1.8747 1.2064 

Simulation 1 41.3764 14.6372 1.8069 1.1588 

Simulation 2 41.0091 14.6410 1.7593 1.1135 

Simulation 3 41.0273 14.6988 1.7472 1.1651 

 
simulative data. Deviation of wavelength and especially of amplitude is quite 
high, which is partly owed to the 2D analysis of the bubble paths. Since a flat 
zigzag path can only be seen correctly from one perspective, the calculated 2D 
amplitude will hardly correspond to the true 3D amplitude, it will generally un-
derestimate the true value. This is why the standard deviation of the analyzed 
amplitude show rather high values in all experimental and simulation cases.  

With the appropriate set of parameters, the simulated bubble path characte-
ristics properly match the experimental values (Table 3). Final simulations show 
that the assumed parameter 3 1000Jγ ≈  to 2000 is a quite good starting value, 
the most promising results were done with parameters in the range of 3 1250Jγ =  
to 1350. It turned out that the values of the parameters for direct influence of 
liquid rotation (γJ1) and shear (γJ2) are very low in contrast to the oscillation 
(γJ3), while the random factor (R) is of the same magnitude. Thus, the impact of 
rotational/shear flow around bubbles plays a minor role on the rotation while it 
is dictated mostly by turbulent eddies hitting the bubbles. 

A visual comparison of the three most promising bubble paths in Figure 9 
reveal only few evident differences. The overall shape and distribution of path 
lines is almost identical. Most noticeable differences can be observed directly at 
the bubble inlets at the very bottom of the column. In the simulation, bubbles 
are spread earlier than it is observed in the experiments. In the experiment, bub-
bles describe a straight line directly after being injected to the column, while the 
simulation shows a rotation of the bubbles at the very beginning of the path, 
pushing the bubbles into a turn after the injection. In the first 100 mm, a pattern 
can be seen in the flow paths of the simulation. The flow in the middle of the 
column pushes the bubbles away from the middle line, creating an area where 
almost no bubble cross. Some bubbles tend to take the same path multiple times, 
while in the experiment a slightly more chaotic distribution is present. In the  
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Table 3. Parameter sets for the three most promising simulations. 

Case name 3Jγ  R β  1 2,J Jγ γ  

Simulation 1 1300 1950 0.15 32.50 

Simulation 2 1350 1620 0.15 33.75 

Simulation 3 1250 1875 0.15 31.25 

 

 
Figure 9. Reconstructed bubble trajectories, axes in mm. Left: experimental results; right: 
simulation results. 
 
simulation, a parameter for random rotation is used, but the analysis does not 
concern the overall distribution of bubbles. The spread/diffusion of bubbles in 
the upper area however (height > 150 mm) yields no (qualitatively) visible dif-
ference between experiment and simulation. 

Another point of concern is the behavior of the simulated orientation in 
comparison with the velocity of the bubble. In order to describe this relations, 
different deduced angles are used; the movement angle lies between the vertical 
axis (gravitational direction) and movement direction, the orientation angle is 
between the short axis direction and vertical axis and the drift angle lies between 
orientation and movement vectors. With 2D analysis of the simulation data, the 
orientation angles show a normal distribution with mean value near to zero 
(Figure 10, left), just like the experimental results [21]. A 3D analysis however 
proves the oversimplification when using 2D analysis because the simulated 
mean 3D orientation is 18.3˚. This gets clear when figuring a perfectly spiraling 
path seen from only one side, where there is a constant orientation angle in real-
ity but an alternating angle is seen from a fixed observer. In a worst case scenario, 
a flat sinusoidal path oscillates parallel to the line of sight, thus making it im-
possible to see any oscillations at all. 

Bubble velocity and orientation vectors roughly point to the same direction, 
this has been shown in several references [3] [21] [22], which implies a small 
drift angle. Simulation results also show mostly small drift angles (Figure 10,  
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Figure 10. Characteristic angles between velocity and orientation vectors of simulated bubbles. Left: orientation angle using 2D 
data; middle: orientation angle using 3D data; right: drift angle vs. orientation angle (3D data). 

 
right) with a mean value of 19.2˚. Experimental data shows, that the largest drift 
angles occur at the most outer points of the oscillation, especially when a planar 
zigzag path is fulfilled [3]. This means a high drift occurs when the orientation 
angle is near zero. Simulation data shows other characteristics; a high drift angle 
correlates with a high orientation angle (s. Figure 10, right). In DNS simulation, 
the drift and orientation angles have shown sinusoidal characteristics, while both 
were 90˚ out of phase. In the EL simulation these angles are in phase. Unfortu-
nately, there is no experimental proof for this correlation with 3D measurements 
in a bubble swarm. 

When taking a closer look at single trajectories of one of the bubbles rising in 
the swarm it will reveal characteristic parts of the bubble’s movement. As shown 
in [22], the bubble paths can be described as “flattened helixes” which become 
less flattened while rising. Exactly this behavior can be found in the simulated 
bubble paths depicted in Figure 11. The bubble path shown here is not picked 
randomly, since characteristic movement is not achieved with every bubble. 
Note that this simulation considers bubbles in a large swarm rather than single 
rising bubbles (like in the experimental reference). This leads to a more chaotic 
liquid and bubble movement, which can abruptly change bubble movement di-
rection and orientation. Near the walls, a downward flow occurs in which bub-
bles performed differently, mostly not showing steady oscillations. As most bub-
bles rising in the middle part of the column, oscillation slowly starts within the 
lower 100 mm where it evolves to a sinusoidal and finally to a helical path (at 
approx. 400 mm height). 

We can observe influence of the flow in terms of a strong drift in the bubble 
paths (s. Figure 11, top row). In order to give a three dimensional description of 
the paths, a polynomial fit (n = 3) is used to smooth out the bubbles drift move-
ment. In Figure 11 (top row) the original bubble paths are shown from three 
sides with the polynomial fit (dotted line). The bubble paths are normalized us-
ing the polynomial fit and the resulting path data (s. Figure 11, bottom row) 
describes a spiral, which is more comparable to experimental work (where the 
drift movement is almost zero). Assuming that our path describes a perfect flat-
tened spiral, its coordinates perpendicular to the rising direction can be taken to  
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Figure 11. Single bubble trajectory. Top row: raw data with fitted polynomials (dotted lines); bottom row: drift-corrected path 
data; right: isometric view of the raw path with fitted polynomials (dotted line). 

 
calculate for a “dynamic radius” of the path. A flattened spiral would look like an 
ellipsoid in the X-Y view (s. Figure 11, bottom left). The maximum of this ra-
dius will give the amplitude of the major oscillation mode, while the minimum 
will give the minor modes amplitude. When the minor amplitude is zero, a 
completely flat spiral, a planar zigzag path, is present. In addition, the wave-
length in rising direction can be extracted from this data by measuring the dis-
tance for one spiral rotation. Due to measurement errors with 2D data, a larger 
amplitude can be expected in 3D analysis. In Simulation case 1 the mean (3D) 
wavelength is λ = 4.79 cm and mean amplitude is A = 4.04 mm. This is a much 
larger amplitude, than it has been calculated for the 2D analysis, but comparison 
with [22] shows a good match. They analyzed a single rising bubble with equiva-
lent diameter d = 2.48 mm and could measure a major mode amplitude of A = 
4.3 mm. Measured path frequency was ω = 39 rad/s, which is ω = 35.4 rad/s in 
our simulation case (mean rise velocity ub = 0.264 m/s). Oldest related work [23] 
contains photographic pictures of a rising bubble and drift correction results 
very similar to Figure 11. A mean orientation angle of 20˚ and a frequency of 
6.25 Hz is stated for the rise of a bubble in helical motion. This is in unison with 
our simulation results, where a mean orientation of 18.3˚ is present and the 
mean frequency is f = 6.44 Hz. It is also stated that angle and frequency are in-
dependent of bubble size, only the path amplitude changes with diameter. This 
would imply that a simple model could cover a wide range of bubble sizes, by 
only fitting the appropriate amplitude. A more general overview on instable 
paths of different bodies is given in [24]. The bubble motion is summarized with 
amplitudes in the range of 3 - 5 deq, maximum inclination angles from 20˚ to 30˚ 
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and characteristic frequencies in the range of 0.09 < St < 0.15 (St = fL/U = L/λ). 
In our case, the simulated amplitudes are far lower (~1.5 deq) but inclination an-
gles and frequency are similar (St = 0.073 in our case). Only severe difference is 
the stated maximum drift angle of only 2˚, which is far higher in our simulation 
case. 

Most deviations to experimental and other simulative work venture from the 
drift angle characteristics. Since the side force Fs (Equation (31)) is responsible 
for the horizontal movement, other models should achieve more suitable drift 
angles. Reference yields only few insights on modeling of this particular force 
[14] and often parameters are unknown. Furthermore, the parameter fit with 2D 
data, as in this work, is certainly not suitable for finding an appropriate side 
force model. Anyway, this simple 2D data fitting technique could still reproduce 
characteristic bubble trajectories by means of frequency, amplitude and shape. 

5. Conclusions 

The presented EL simulation is capable of simulating unstable sinusoid-
al/spiraling bubble paths using macroscopic models. Bubble orientation, rotation 
and shape are calculated to achieve characteristic movement. Due to the as-
sumption of bubbles describing rotational spheroids, the additional parameters 
that have to be calculated reduce to a shape factor, rotation and orientation vec-
tors. A force induced by the bubbles rotation produces the lateral force leading 
to an oscillation movement. 

The macroscopic orientation and rotation model uses a simple vector-based 
approach. The usage of a spherical coordinate system was intentionally rejected 
to keep the model as simple as possible. The model equations are easy to com-
pute and allow simulating of a large number of bubbles at a time. Unfortunately, 
only few comparable models exist [14] and performance comparison was not 
possible. DNS simulations indicate similar results concerning bubble path cha-
racteristics but are not comparable in performance issues.  

A parameter study was used to fit the model constants to experimental data 
for mean bubble size of d = 3 mm. Parameter estimation was made using the 
amplitude and wavelength of the typical spiral movement. It turned out that 
most 2D measurements cannot reflect characteristic path parameters entirely. 
Especially, orientation angles are problematic in 2D analysis, because the pers-
pective view only permits seeing angles perpendicular to the line of sight. In or-
der to still achieve a good fit, the simulation results were mapped to a 2D point 
of view and compared to the experimental data. After parameter fitting, com-
parison to reference bubble path data was made using 2D and 3D analysis and 
could prove correct reproduction of unstable bubble paths. Evaluation of the 3D 
bubble path in a bubble swarm is difficult, since most references only supply 2D 
camera setups or single bubble trajectories in 3D analysis systems. Comparison 
to DNS simulation and single rising bubble path data could also show good 
agreement. Amplitude and wavelength of the simulated bubble path are in un-
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ison with the measurements. Detailed comparison of DNS results of the drift an-
gle reveals slight disagreement. 

For further improvement of the model, a predictive parameter approach 
should be used to also cover different bubble sizes. Interaction of deformed bub-
bles is not considered in the EL model shown here, and this could include colli-
sion, break-up, mass transfer and other shape dependent processes. 
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