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Abstract 
Nowadays, power quality issues are becoming a significant research topic be-
cause of the increasing inclusion of very sensitive devices and considerable 
renewable energy sources. In general, most of the previous power quality clas-
sification techniques focused on single power quality events and did not in-
clude an optimal feature selection process. This paper presents a classification 
system that employs Wavelet Transform and the RMS profile to extract the 
main features of the measured waveforms containing either single or complex 
disturbances. A data mining process is designed to select the optimal set of 
features that better describes each disturbance present in the waveform. Sup-
port Vector Machine binary classifiers organized in a “One Vs Rest” architec-
ture are individually optimized to classify single and complex disturbances. 
The parameters that rule the performance of each binary classifier are also in-
dividually adjusted using a grid search algorithm that helps them achieve op-
timal performance. This specialized process significantly improves the total 
classification accuracy. Several single and complex disturbances were simu-
lated in order to train and test the algorithm. The results show that the clas-
sifier is capable of identifying >99% of single disturbances and >97% of com-
plex disturbances. 
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1. Introduction 

The significant increase in the inclusion of devices sensitive to current and voltage 

How to cite this paper: De Yong, D., 
Bhowmik, S. and Magnago, F. (2017) Op-
timized Complex Power Quality Classifier 
Using One vs. Rest Support Vector Ma-
chines. Energy and Power Engineering, 9, 
568-587. 
https://doi.org/10.4236/epe.2017.910040 
 
Received: August 1, 2017 
Accepted: September 9, 2017 
Published: September 12, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/epe
https://doi.org/10.4236/epe.2017.910040
http://www.scirp.org
https://doi.org/10.4236/epe.2017.910040
http://creativecommons.org/licenses/by/4.0/


D. De Yong et al. 
 

 

DOI: 10.4236/epe.2017.910040 569 Energy and Power Engineering 
 

fluctuations causes a growing interest in the study of power quality (PQ). A PQ 
event can be defined as a variation in the regular voltage or current waveform. 
Some of them can be classified as sags, swells, harmonics, fluctuations, interrup-
tions, and over voltages. IEEE-1159 [1] specifies the characteristics that a wave-
form must have to be defined as a typical waveform, and classifies different types 
of disturbances.  

The sources of disturbances are very broad, and cause economic losses as well 
as equipment degradation, for both consumers as well as utilities [2]. Therefore, 
it is imperative to employ tools to detect, classify and identify PQ events in order 
to mitigate these effects. Historically, PQ disturbances were analyzed and classi-
fied by visual inspection. Hence, the specialist’s knowledge played a critical role 
in the classification and mitigation process. The development of digital measur-
ing devices allowed one to have samples of the waveforms of voltage and current 
in selected measurement locations, however not all acquired data were useful 
and required large investment of time for proper root cause analysis. Therefore, 
it became important to have a tool to help in the process of continuous and au-
tomatic disturbance detection. Historically several techniques are used for detec-
tion and feature extraction. The more prevalent and effective techniques used 
are Fourier Transform (FT), Fast Fourier Transform (FFT) [2] [3], Gabor 
Wigner Transform (GWT) [4], S-Transform (ST) [5], Wavelet Transform (WT) 
[6], Wavelet Packet Transform (WPT) [7], Sinusoidal Filter method [8] and 
Kalman Filter (KF) [9]. 

In the online version of the tool once a PQ event is detected, a set of features 
are extracted from that waveform in order to reduce the size of the data. This is 
followed by a classification step in which the classification algorithm links a set 
of features with appropriate labels that represent the type of disturbance.  

Learning techniques based on artificial intelligent (AI) methods are ideal for 
this kind of task due to their pattern recognition strength. Several classification 
algorithms that are appropriate for this are Artificial Neural Networks (ANN) 
[10], Markov Models [11], Fuzzy Logic (FL) [9] and Support Vector Machines 
(SVM) [12]. 

Due to the varying causes of power disturbances, it is not uncommon to have 
the two or more types of disturbances within a measured signal window. A dis-
turbance that consists of a combination of two or more individual disturbances 
is usually called a complex power quality disturbance. Historically these complex 
disturbances have not been adequately addressed in previous research. Most of 
the previous work addressed the problem as an addition to single disturbances 
analysis but not as a particular problem [13]. Thus, the efficiency of properly 
classifying these types of disturbances varied widely and required systems that 
do not lend well to practical application. 

For instance, the proposed approach is a multiclass SVM classifier arranged to 
operate in a One vs Rest architecture, designed to process information in parallel 
where each classifier defines one class. The main advantages of the proposed 
methods are: 1) Optimal feature selection, 2) independent parameter configuration 
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for each stage and each class present in the training set vector, 3) parallel data 
processing, 4) due the binary classifiers work independently of each other, there 
is no need to incorporate additional stages to classify complex power quality 
events.  

This paper is organized as follows: Section 2 explains the concept of complex 
power quality disturbances and presents some previous works that focused on 
them. In the third Section, a general methodology to design, train and test an 
SVM classifier is presented. Section 4 explains the experimental test and their 
results. Finally, Section 5 presents the most important conclusions from the re-
search. 

2. Complex Power Quality Disturbances 

A complex power quality event is a particular disturbance that comprises of a 
combination of two or more single disturbances. The most common complex 
disturbance is a combination of stationary disturbances such as harmonics or 
fluctuations with a short duration disturbance such as transient surges or sags. 
Figure 1 shows an example of this class of complex disturbance. 

In addition, it is also possible to find a combination of short-duration distur-
bances, for example, transient surges combined with oscillating voltage dips. 
Figure 2 illustrates an example of this kind of power quality event. 

It is also possible to find complex power quality disturbances as a combina-
tion of three or even more single disturbances. 

Complex disturbances increase the difficulty during the identification stage 
due to the co-existences and overlapping of different disturbance characteristics. 
This complication may result in an incorrect characteristic determination. 
 

 
Figure 1. Momentary interruption and flicker. 
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Figure 2. Sag and swell. 
 

Some authors addressed these topics by mean different algorithms. For exam-
ple, authors in [14], presents a comparison between a back-propagation based 
classifier with a multi-class One vs. One Support Vector Machine classifier. In 
this article, the SVM classifier rather than the back-propagation achieves better 
results for the same scenario with complex disturbances. This however depends 
on an accurate measurement algorithm on multiple nodes of the grid that is not 
always feasible due to limitations on the deployment of measuring devices and 
communications infrastructure. 

Another alternative method is presented in [15], which proposes the analysis 
of the signals root mean square (rms) profile to distinguish between different 
types of PQ events. The identification of transient events is done using WT with 
four levels of decomposition and the method uses a dynamic ANN to classify 
harmonics and fluctuations. This method achieves a high percent of correct an-
swers. Although the results are outstanding, the proposed architecture is troub-
lesome. It uses a combination of multiple signal processing techniques and algo-
rithms based on AI. This is typically hard to implement, coordinate and is com-
putationally expensive. Additionally, since the algorithm is based on the WT 
first coefficient (D1), it is highly affected by noise present. 

Biswal, & Dash, [16], propose a methodology to extract the features based on 
the ST and a classification technique based on a decision tree. This approach 
uses seven decision steps to obtain the results and seems to achieve a very high 
accuracy level for a decision tree based classifier. 

Reference [17] uses Tsallis singular entropy, energy entropy, and a modified 
incomplete ST to extract features, and a decision tree rule to classify single and 
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complex disturbances. This method achieves goods results. However, the clas-
sifier is implemented by a rigid programming structure and involves the calcula-
tion of a threshold for each node of the decision tree.  

Contemporary research is increasingly using classifiers based on SVM due to 
their simplicity. L. Gang, & L. Fanguang present a method [18] that uses WT 
coefficients’ energy combined with Principal Component Analysis (PCA) and 
Independent Component Analysis (ICA) in order to extract the main signal fea-
tures. The classification is performed using SVM. This methodology becomes 
complicated mainly at the training stage. The method demonstrates that the 
PCA reduces the matrix dimension, hence, improves the classification stage 
performance.  

Sovan Dalai [19] proposed a method base on Cross Hilbert-Huang Transform 
for parameter calculation, PCA to reduce the parameter set, and then a classifier 
based on a multiclass One vs. Rest SVM. This SVM classifier has a disadvantage 
of being difficult to train. 

Reference [20] suggests a method based on the Ensemble Empirical Mode 
Decomposition (EEMD) technique to extract the signals features and a multi-label 
classification technique named Rank Wavelet Support Vector Machine. It pre-
serves the correlation between different event types, improving the accuracy. 
However, to cover all characteristic of complex disturbances, the maxim de-
composition level number of EEMD is set to 11, which increases the computa-
tional cost. 

A strategy that is quite common, but not always the most appropriate when 
designing the classification stage, is to treat a complex power quality distur-
bances as a new type of event, assigning in consequence a new class to each type 
of complex disturbance [14] [16] [19]. The main disadvantage of this method is 
that it is necessary to pre-identify all the complex disturbances that may occur 
and then build the training and testing dataset. Any need to incorporate new 
disturbances (single or complex) requires the classifier to be re-designed and 
re-trained. 

In addition, most of the previous proposals, the multiclass classifiers are im-
plemented in a one-process unit. This architecture does not allow optimizing the 
feature extraction based on a particular class. Therefore, they need to use all fea-
tures to describe all the classes. Furthermore, when it is necessary to add a new 
class for each additional complex event that wants to be identified, if the classifi-
er is implemented in a one-process unit, the optimization problem could be-
come even more complex. 

Based on the current needs and an evaluation of the different methodologies 
previously presented it can be inferred that development of new algorithms that 
can handle both single and complex events, easy to implement as well as train, 
that allow a class-based optimization, and requires low computation cost is 
needed [13]. Consequently, the main contribution of this work is the develop-
ment of a system that addresses the aforementioned needs. 
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3. Proposed Method 

The proposed method can be explained in two separate stages:  
• The design and training algorithm. 
• The classification algorithm. 

The summary of the different steps is presented in Figure 3. The next few 
sub-sections briefly explain the objectives of each sub-process that make up the 
two major stages.  

3.1. Design and Training Algorithm 

The design and training algorithm’s main objective is to find the configuration 
that maximizes the classification's accuracy by optimizing the parameters that 
rule the behaviour of a classifier based on SVM algorithms. The algorithm's in-
put corresponds to a training arrange that consists of the entire set of N distur-
bance classes that needs to be classified, for example swell, harmonics, sag, etc. 
The training set is represented by an [m,s] matrix where m is the number of 
waveforms and s the amount of samples that represent each waveform, parame-
ter that depends on the selected sample rate and the configured length of the 
analysis windows.  

The algorithm performs a series of calculations in order to extract the opti-
mum set of features that better describes each class of disturbances and to obtain 
the best configuration of the parameters that govern the accuracy of the learning 
algorithm. 

For more detail, Figure 4 illustrates the Design and Training algorithm’s 
flowchart. 

These calculations are explained next: 

3.1.1. Signal Processing 
The objective of this process is to transform the training set waveform vector 
into equivalent representations in order to simplify the process of detecting the 
presence of a disturbance. Since the proposed method is focused on real, noisy 
signals, it is necessary to apply a de-noising technique to mitigate the effect of 
the noise in the sampled waveforms. Ref [21] demonstrates how a de-noising  

 

 
Figure 3. Design, training and classification process. 
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Figure 4. Design and training algorithm’s flowchart. 

 
scheme improves the classifier ability. This method also narrows the signal dura- 
tion to a fixed numbers of fundamental cycles and additionally establishes the 
best sample rate. 

3.1.2. Feature Extraction 
The information obtained from the sampling process of a representative wave-
form contains a high percentage of redundant, noisy, and inconsistent informa-
tion. In order to reduce the data and yet maintain most of the information 
present in the waveform, feature extraction is typically performed on all the 
waveforms. A feature is a numeric value obtained from a transformation per-
formed on either the waveform samples or the coefficients obtained from the se-
lected signal processing technique. All the parameters are obtained with the ob-
jective of representing some particular characteristic of the original waveform 
[12] [13] [14] [36]. This is done in two stages. 
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The first stage’s objective is to obtain the minimum set of features that cha-
racterizes each particular disturbance. It is important to remark that, at this 
phase of the algorithm, no information about a given class is used to calculate 
the features. They are selected to represent all classes present in the training set. 
The original training set, which dimension is [m, s], is reduced to an [m, n] ar-
rangement, called the feature matrix, where s >> n. Since the features are ob-
tained from diverse types of calculations, their dynamic ranges of the finalized 
parameters are very large. For this reason, the values of every column of the fea-
ture matrix are normalized to the region [−1; 1]. 

3.1.3. Data Mining 
The feature extraction reduction procedure, presented in Section 3.1.2, is a 
process that generates an [m, n] matrix obtained from a set of signal waveforms, 
where n represents every extracted feature from each one of the m waveforms 
and is not dependent on or attuned to any particular class of disturbances. 

The data mining process is the second stage used to reduce to the dimension 
of the training set [22]. In this step, the evaluation criteria used to reduce the 
feature selection, are closely related with every one of the N class included at the 
original feature set. A subset of j (j < n) features from the original n-dimensional 
set is obtained for each one of the N classes. This is explained in more detail in 
Section 4.3.3. 

Two different techniques are sequentially applied to the training set in order 
to select an optimal feature subset: The heuristic filtering and the exhaustive 
search algorithm. 

The exhaustive search algorithm involves the training of the classifier em-
ploying different feature set combination. The exhaustive search computational 
cost increases as the amount of features to be processed grows. To reduce the 
processing load of the exhaustive search algorithm a heuristic filtering stage is 
previously applied with the objective to separate the most relevant feature set 
from the original training set. The results of the filtering process serve as input 
to the exhaustive search algorithm. Next, both stages are briefly explained: 
• Heuristic Filtering: The proposed filtering stage uses a label vector that maps 

each class to each row of the original feature matrix in order to calculate a 
feature ranking for each type of disturbance. The implemented methodology 
is based on Chi-square attributes feature selection [23], Relief-F attributes 
feature selection [24] and Symmetrical Uncertainty feature selection [25]. 

• These three heuristic techniques build a sorted list that ranks (from the high-
est to the lowest) which parameter describes a particular class the best. The 
algorithm combines the results and generates a unique ranking. Then, ac-
cording to the user criteria, the j most relevant features are selected for each 
class. Because of this process, N different feature matrices (whose dimensions 
are [m, j] are generated from the [m, n] original feature matrix. 

• Exhaustive Search Algorithm: In order to find the optimal combination of 
the features, an exhaustive search strategy is implemented. It consists of testing 
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the performance of the classifier for all 2j possible feature combinations. The j 
features explored by the algorithm are the ones generated at the heuristic fil-
tering stage. This method is known as a wrapper algorithm [26] because it 
uses the classification algorithm as part of the feature selection process. The 
algorithm chooses a combination of the j features and invokes the grid search 
algorithm (described in the next section). The grid search algorithm returns 
the best classification accuracy obtained for this feature set and the combina-
tion of the classifier parameters that produce the best performance. Then, the 
exhaustive search algorithm selects a new feature combination and repeats 
the calculations. The process is repeated until all combinations are tested. 
The final output of this stage is a table that contains the accuracy and the 
classifier parameters for each one of all 2j possible feature combinations. 

3.1.4. Grid Search Algorithm 
A grid search algorithm [27] is a well-known technique that employs a 
cross-validation methodology to find the best combination of the parameters 
that govern the classifier. For example, the SVM classifier’s behavior is ruled by a 
combination of two (rarely more) parameters: the box constraint parameter C, 
and some parameter related with the selected kernel.  

3.1.5. Training 
Finally, the classifier is configured with the results of the grid search algorithm 
and trained using the features selected by the data mining process.  

A trained and optimized classifier model is the outcome of the of the design 
and training algorithm.  

In the next section of this paper, we explain how the classification algorithm 
to identify a disturbance in a measured waveform will use this conceptual model. 

3.2. Classification Algorithm 

The objective of the classification algorithm is to process a waveform, detect the 
presence of a disturbance, indicate when the disturbance starts (only for short 
time disturbances) and classify them into a predefined group. 

Figure 5 shows the Classification algorithm’s flowchart that consists of a se-
ries of processes that are explained below. 

3.2.1. Signal Processing 
The signal processing techniques applied to train the classifier must be the same 
as that implemented in the Design and training algorithm (Section 3.1.1). 

3.2.2. Disturbance Detection 
The purpose of this module is to detect the presence of an abnormality in the 
sampled signal and identify the instant when the power quality disturbance 
event begins or ends. If no disturbances are detected the classification algorithm 
discards all samples obtained from the measured waveforms.  

Several methods have been developed to detect a disturbance in a waveform. 
Methods in reference [26] were used in our classifier. 
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Figure 5. Classification algorithm’s flowchart. 

3.2.3. Optimized Feature Extraction 
The objective of this step is similar to the method presented in Section 3.1.2. 
However, this process only extracts the optimum feature set according to the 
Data Mining process results calculated in the Design and training stage. This 
reduced subset of features allows faster computation and thus ideal for real-time 
implementation. 

3.2.4. Classification 
This process uses the trained classifier model obtained from the design and 
training algorithm, to categorize the set of features extracted in the previous 
classification algorithm’s stages. This results in a label that indicates which class 
the measured disturbed waveform belongs to. 

4. Experimental Results 

To test the proposed algorithm with Complex Power Quality disturbances a One 
vs. Rest of five binary SVM classifiers is developed. This section is organized in 
the following way: The first subsection presents the classifier architecture. Then, 
a description of the training set used to train and test the classifier is provided. 
The third subsection presents the techniques employed in the Design and 
Training algorithm and the respectively obtained results. Finally, the fourth 
subsection presents the classification results. 
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4.1. Classifier Architecture 

A kernel-based methodology called Support Vector Machine (SVM) is selected 
to build the classifier. Support Vector Machine mathematical theory can be 
found in [28] and [39]. 

Different machine learning methods were considered for classification stage: 
Support Vector Machine (SVM), Probabilistic Neural Network (PNN) and Ex-
treme Learning Machine (ELM).  

SVM method is selected mainly because: It has a strong founding theory; In 
general, the optimization problem involved in the training reaches the global op-
timum due to convex quadratic programming; It has no issue for choosing a 
proper number of parameters; It is less prone to over fitting; Yields more clear 
results and a geometrical interpretation; Since SVM is trained using dual repre-
sentations and sparse arrays it is very efficient. 

According to [29] [30] [31] SVM performs better than PNN and algorithms 
based on k-nearest neighbor.  

In [32] a comparative study between SVM and ELM is performed. According 
to the author both methods have an outstanding generalization ability but SVM 
performs better when the training set is small. That is an important attribute in 
Power Quality problems where it is not easy to have a big database of measured 
disturbances to configure a training set. 

Another comparative study concludes that ELM and SVM have similar accu-
racy performance for the most classification problems [33]. According to the 
author, running times on small datasets show that SVM is the fastest method. 

In [34] a comparison between ELM and SVM over a particular area of classi-
fication, i.e. text classification, is conducted. The results of benchmarking expe-
riments with SVM show that for many categories SVM still outperform ELM. 

To test the proposed method, five binary Support Vector Machine classifiers 
configured in a One vs. Rest architecture is set up as shown in Figure 6. 
 

 
Figure 6. SVM one vs rest classifier. 
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Due to their unique architecture, the classifier can classify single as well as 
complex disturbances without the need of adding new binary classifiers.  

The selected kernel function for each of the five SVM binary classifiers is the 
Radial Basis Function (RFB) because it proves to be the most appropriate func-
tion for pattern recognition [35]. The parameters that rule the SVM training are 
C, also called box constraint, and Sigma, which governs the kernel function 
mapping behavior. The simultaneous configuration of both parameters rules the 
classifier’s accuracy rate. 

4.2. Training Set Configuration 

To train the classifier, 2600 disturbances were generated using a MATLAB tool 
developed by the authors [36].  

Table 1 and Table 2 summarize the distribution of the training set and the 
labels assigned to each one of the binary classifiers presented in Figure 6. 
 
Table 1. Single disturbances training set. 

Single Quality  
Event 

Total Class Sag Swell Harmonics Interruption Fluctuations 

Sag 400 1 1 −1 −1 −1 −1 

Swell 400 2 −1 1 −1 −1 −1 

Harmonics 400 3 −1 −1 1 −1 −1 

Interruption 400 4 −1 −1 −1 −1 −1 

Fluctuations 400 5 −1 −1 −1 1 1 

 
Table 2. Complex disturbances training set. 

Complex Power 
Quality Event 

Total Class Sag Swell Harmonics Interruption Fluctuations 

Harmonics  
and Sag 

100 3 + 1 1 −1 1 −1 −1 

Harmonics  
and Swell 

100 3 + 2 −1 1 1 −1 −1 

Harmonics  
and Interruption 

100 3 + 4 −1 −1 1 1 −1 

Fluctuations  
and Sag 

100 5 + 1 1 −1 −1 −1 1 

Fluctuations  
and Swell 

100 5 + 2 −1 1 −1 −1 1 

Fluctuations  
and Interruption 

100 5 + 4 −1 −1 1 −1 1 
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While there is a wide range of disturbances, to simplify the analysis, only a 
subset that contains the most common types of disturbances is considered in this 
paper. 

4.3. Results of the Design and Training Stage 

The following subsections explain the details of the techniques used and the as-
sociated results for each process of the stages shown in Figure 3. 

4.3.1. Signal Processing 
To process the simulated or measured waveforms, the sample rate is configured 
to 10 [Kilo sample/sec]. Snapshots of 400 ms are used to for each waveform’s 
length, which is equivalent to 20 cycles of an undisturbed signal (assuming a 
fundamental frequency of 50 Hz).  

Before the selection of Wavelet Transform (WT) as the signal processing me-
thodology, other alternatives were studied. For example Stockwell Transform 
(ST) and Gabor Transform (GT). Previous work determined that these two sig-
nal processing methods perform very well with signals, which include noise. 
However, WT is better in term of simplicity and computational cost, therefore 
WT was selected for the signal processing stage [2]. 

A nine-level Discrete Wavelet Transform (DWT) using Daubechies number 
four wavelet mother was selected [37]. 

To complete the set of relevant features, the root mean square profile calcula-
tion is also proposed. 

4.3.2. Feature Extraction 
The feature extraction algorithm calculates the signals rms. profile as well as the 
nine DWT coefficients of the 2600 waveform of the training set to obtain the 
parameters presented in Table 3. Subsequent stages are used to reduce the 
number of features that are needed to represent each type of disturbance. 
 
Table 3. Complete set of features. 

Signal Processing Technique Extracted Feature Nomenclature 

RMS Profile 
Minimum RMS Profile Min RMS 

Maximum RMS Profile Max RMS 

Wavelet Transform 

Maximum di module coefficient Max abs di 

Standard Deviation di coefficient Std di 

Normalized Energy di coefficient di Energy 

Maximum a9 module coefficient Max abs a9 

Standard Deviation a9 coefficient Std a9 

Normalized Energy a9 coefficient a9 Energy 

Where i represents the ith calculated wavelet level. 
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As an output of this process, a [2600, 32] matrix is obtained. This matrix con-
tains all features that characterize each type of disturbance. 

4.3.3. Data Mining 
This section presents the reduced selected features using the techniques elabo-
rated in Section 3.1.3. Table 4 illustrates the results obtained for the heuristic 
filtering process. 

From the original [2600, 32] feature matrix, five matrixes were obtained, one 
for each class of disturbances, whose dimension are equal or less than [2600, 7]. 

After the number of features is significantly reduced by the filtering stage, it is 
important to find which combination of them produces the most accurate per-
centage in the training and validation stage. Table 5 shows the results of the ex-
haustive search algorithm presented in Section 3.1.3. 

To train and test the algorithm performance, 60% of the 2600 disturbances are 
used for the supervised training of the classifier, while the remaining 40% are 
employed for the validation process.  

4.3.4. Grid Search Algorithm Results 
The results of the grid search algorithm are presented in Table 6. It shows the 
best parameter combinations that govern each binary SVM stage with the 
achieved validation accuracy. These parameters combinations are obtained for 
the feature combination presented in Table 5. 

Once the best set of features that represent each disturbance and the optimum 
parameters C and Sigma that govern each binary SVM classifier is found, the de-
sign stage is concluded. Then, each binary classifier is trained using the LibSVM 
library [38]. 
 

Table 4. Heuristic feature filtering results. 

PQ Event Selected Feature Dimension 

Sag Min RMS, Max RMS, Max abs a9, d7 Energy, Max abs d5, Std d4. 2600 × 6 

Swell Min RMS, Max RMS, Std d9, d7 Energy, Max abs d4, Max abs d3, Max abs d2. 2600 × 7 

Harmonics Min RMS, Max RMS, Std d9, Max abs d9, Std d8, Max abs d5. 2600 × 6 

Interruption Min RMS, Max RMS, Max abs a9, Std d9, Max Abs d4. 2600 × 5 

Fluctuations Min RMS, Max RMS, Max Abs a9, Std d9, Max abs d9, Std d8, Max abs d8. 2600 × 7 

 
Table 5. Exhaustive search algorithm results. 

PQ Event Selected Feature Validation Accuracy Dimension 

Sag Min RMS, Max RMS, Max abs a9, Std d4. 98.8% 2600 × 4 

Swell Min RMS, Max RMS, Std d9, Max abs d2. 99.6% 2600 × 4 

Harmonics Std d8, Max abs d5. 100% 2600 × 2 

Interruption Min RMS. 100% 2600 × 1 

Fluctuations Min RMS, Max RMS, Max Abs a9, Std D8. 99.7% 2600 × 4 
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Table 6. Grid Search Algorithm results. 

SVM Classifier Sigma C Validation Accuracy 

1. Sag 2 4000 98.8% 

2. Swell 2 1000 99.6% 

3. Harmonics 3.5 3000 100% 

4. Interruption 1e−5 50 100% 

5. Fluctuations 4 500 99.7% 

4.4. Results of Classifier Algorithm 

To test the classifier architecture designed and optimized by the process pre-
sented in Section 4.3, two scenarios are used. In the first scenario, the classifier is 
tested using a set of single disturbances. On the other hand, the second scenario 
tests the classifier with a set of complex power quality disturbances.  

4.4.1. Scenario 1: Single Power Quality Events 
Although this paper focuses on complex disturbances analysis, first at all, it is 
necessary testing the algorithm performance with simple disturbances. 

To test the algorithm, 1000 waveforms are generated, 200 for each type of PQ 
events. All parameters that govern the disturbances, like magnitude, inception 
angle, duration, among others, are randomly generated considering the ranges 
established in [1]. 

The confusion matrix represented in Table 7 shows the calculated results. 
Analyzing Table 7, it can be concluded that the designed classifier performs 

significantly well because it can correctly classify more than 99.7% of the pro-
posed single disturbances. 

One dataset from the harmonics and interruption set are partially classified as 
a complex disturbance containing the respective single disturbance. This may be 
inferred as a partially correct classification. 

4.4.2. Scenario 2: Complex Power Quality Events 
To test the algorithm for a complex power quality scenario, a set 1200 wave-
forms are generated with a combination of simulated waveforms with real 
waveforms measured in an oil factory [39]. Similar to scenario 1, the parameters 
that govern the event are randomly selected.  

The results are summarized in the matrix presented in Table 8. 
The values displayed with parenthesis () refer to the event index described in 

Table 7.  
Considering a total of 1200 complex power quality events used to test the al-

gorithm, only 33 were misclassified giving a success rate of 97.25%. 
Analyzing the erroneous classification data set, the classifier was capable of 

identifying one of the two disturbances that was present in the complex event 
and thus was partially classified. In other words, 2334 disturbances, from 2400, 
were correctly classified. Under this consideration the complex power quality 
accuracy rate reach the 98.583%. 
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Table 7. Single power quality classification results. 

 Sag Swell Harmonics Interruption Fluctuations Misclassified Double 

1. Sag 200 0 0 0 0 0 0 

2. Swell 0 200 0 0 0 0 0 

3. Harmonics 0 0 198 0 0 1 1 (2 + 3) 

4. Interruption 0 0 0 199 0 0 1 (4 + 3) 

5. Fluctuations 0 0 0 0 200 0 0 

 
Table 8. Complex power quality classification results. 

 
Harm.  

and Sag 
Harm.  

and Swell 
Harm.  

and Int. 
Fluct.  

and Sag 
Fluct.  

and Swell 
Fluct.  

and Int. 
Single Triple 

Harmonics and Sag 197 0 0 1 0 0 1 (3) 1 (1 + 3 + 5) 

Harmonics and Swell 0 198 0 0 0 0 1 (3) 0 

Harmonics and Interruptions 0 0 194 0 0 1 4 (3) 1 (3 + 4 + 5) 

Fluctuation and Sag 0 0 0 190 0 0 10 (5) 0 

Fluctuations and Swell 0 0 0 0 189 0 11 (5) 0 

Fluctuations and Interruptions 0 0 0 0 0 199 1 (5) 0 

4.4.3. Comparative Results 
The accuracy to identify complex power quality disturbances of different me-
thodologies is compared in Table 9. 

5. Conclusions 

This paper proposes a simple, efficient, fast and easily trainable method to clas-
sify single and complex power quality disturbances. The methodology is based 
on a combination of the Discrete Wavelet Transform (DWT) and the rms profile 
of each of the measured disturbances for feature extraction: a two-stage method 
to select the optimum set of representative features that reduce the feature set 
considerably maximizing the accuracy of the classification. A One vs. Rest mul-
ticlass SVM classifier was developed as a binary node array, and it was used to 
classify the extracted features. 

The proposed methodology does remarkably well in classifying all single dis-
turbances and outperforms most of the contemporary methodologies. The ac-
curacy achieved exceeds those presented in [15] [16] [19] [20]. In addition, the 
designed method demonstrates that it is possible to identify a significant amount 
of complex power quality disturbances using only five binary decision stages 
(one for each single disturbance). This shows that complex disturbances need 
not be treated as separate classes like the classifiers presented in [14] [16] [19] 
but can be accurately classified with the same class as the single disturbance. 
Each binary classifier can be trained and optimized to distinguish both the single 
as well as the inclusive complex disturbance. This is one of the major contribu-
tions of this paper because it makes the classifier simpler, faster and easier to 
train. 

https://doi.org/10.4236/epe.2017.910040


D. De Yong et al. 
 

 

DOI: 10.4236/epe.2017.910040 584 Energy and Power Engineering 
 

Table 9. Comparative results. 

Liu Z. [20] EEMD Rank-SVM - 95.36 

Biswall [16] FDST DT - 98.19 

Cheng Long Chuang [15] WT DS-ANN ES 98.4875 

Soval Dalai [19] CHT ESVM-PCA - 97.6 

Proposed Method WT OvR SVM ES 98.588 

EEMD = Ensemble Empirical Mode Decomposition; FDST = Fast Discrete Stockwell Transform; WT = 
Wavelet Transform; CHT = Cross Hilbert Transform; DT = Decision Tree; DS ANN = Dynamic Structural 
Neural Network; ICA = Independent Component Analysis; PCA = Principal Component Analysis; OvR 
SVM = One versus Rest Support Vector Machine; ES = Exhaustive Search. 

 
This paper also demonstrates that excellent results can be achieved using a 

small set of features that are appropriately selected. The whole process can be 
parallelized because each node can be processed independently leading to faster 
computation times and thus ideal for online real-time implementation. 

When a new complex power quality event needs to be included, the method 
has to be completely retrained to allow each classifier to consider the new event. 
This fact represents a weakness of the proposed method, which is shared with 
most of the algorithms based on linear learning. However, the classification re-
mains robust even with increasing complexity of disturbances present in the 
signal compared to the ones presented in previous works [14] [16] [17] [19] even 
though for the 400 ms window of measurement it is relatively rare to have a sig-
nificant number of events within the sampled signal. 

Future work will focus on finding an optimum training set size that can be 
present and still provide acceptable results as well as overcoming the need for a 
full retraining in cases of newer exotic disturbances. 

According to [33], SVM and ELM have similar accuracy results, therefore, the 
selection of the most appropriate machine learning algorithm is a problem de-
pendent decision. Future works will focus on comparing the accuracy of both 
classifiers for Power Quality disturbance classification problem. 
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