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Abstract 
 
A finite abelian group G is said to have the Hajós-k-property (k>1) if from any decomposition 

of into a direct product of its subsets, it follows that one of these subsets is periodic, 

meaning that there exists a nonidentity element g in G such that gAi = Ai. Using some properties of the 
cyclotomic polynomials, we will show that the cyclic groups of orders pα and groups of type (p2, q2), where p 
and q are primes have this property. We also include a partial result about groups of type (pα, qβ), where p 
and q are distinct primes and α, β are integers ≥1. 
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1. Introduction 
 
Let  be a finite abelian group with identity element 

. If  is a direct product of cyclic groups of orders 

1 2 , we say that  is of type . 
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kA A  A  are subsets of G  such that each ele-

ment g  of G  can be expressed in a unique way as 
=g  k , where i i , we write 

1 2 k  and say that we have a factorization of 
. If in addition each contains the identity element , 

we say that we have a normalized factorization of . 
We will use 
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iA  to denote the number of elements of 

iA . Similarly g  will donate the order of the element 
g  of G . A subset A  of G  is called periodic if there 
is a non-identity element g  in  such that G =gA A . 

The topic of factorizations of abelian groups arose 
when Hajós [2] solved a conjecture by H. Minkowski [3] 
concerning lattice tiling after transforming it into a theo-
rem about finite abelian groups. For reference, we state 
this theorm below: 

If  is a factorization of a finite abe-
lian group , where each of the subsests is of the form 
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 , then at least one of these subsets is a 

subgroup of . 
L. Rédei [4] generalized this to: 
If  is a factorization of a finite abe-

lian group , where each of the subsets has a prime 
number of elements and contains the identity e, then at 
least one of these subsets is a subgroup of . 
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G
A. Sands [5] classified groups with Hajós-2-proprty 

which we list below: 
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where p, q, r and s are primes and 1   is an integer. 
 
2. Preliminaries 
 
Let  be a cyclic group of order n, with generator g. G

Let us write . Similarly, for a subset 
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Where multiplication is carried out in the group ring 
. Thus, when multiplication is carried out we re-

gard 
)(GZ

iA  as polynomials in g provided that addition of *Mathematics Subject Classification: 20K01 
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the indices is carried out module n. i.e. polynomials are 
multiplied .   1nmod g 

)...()( 21 xAxA

 1x 

Now, if we replace g by x and write   

then from the relation , then we get: 
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As  is a factor of , it follows that 
each irreducible divisor of 

1nx  1nx 
 1n x 

 
1x   will divide 

one of the polynomials iA x . These irreducible poly-
nomials are the cyclotomic polynomials whose roots are 
the d-th primitive roots of unity where d n  and . > 1d

At some stage in this work, we shall need the follow-
ing facts about the cyclotomic polynomials. 

1) The n-th cyclotomic polynomial is usually denoted 
by n x  and is given by: 
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2) The x s  have integer coefficients i.e.  n x  
( )Z x and they are irreducible and relatively prime. 

Slightly modifying the notation of De Bruijn [1], we 
also define for a divisor d of n, the polynomial 
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3. Results 
 
Before we embark on showing our results, we must men-
tion that all factorizations can be assumed to be normal-
ized, for if  is a factorization of G , 
then since each 

1 2= , kG A A A
iA  is non-empty, there exists an ele-

ment ai is Ai, 1  Multiplying G by  
we get that G g  which is 
clearly normalized. 
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Theorem 3.1 Let p be a prime. If G is a cyclic group 
of order =n p , then G has the Hajos-k-proprty, for all 
k, 1 < k  . 

Proof Let G be generated by g and consider the fac-
torization 1 2  of G. Our previous discus-
sion leads to the following congruence relation: 

= , kG A A A

         1 2 1n
kG x A x A x A x mod x   . 
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As an illustration, consider a cyclic group =G g  
of order  Let 38 = 2 .  4 5= , , ,A e g g g  and  2= ,B e g

3 1

. 
Then it is easy to verify that AB = G is a factorization of 
G and that A is periodic with period 4 2=g g


. 

We shall use the following theorem by De Bruijn [1] 
in showing our next result. 

If =n p q 

, 1
, where  are distinct primes and ,p q

   ,    F x Z x  and  n x  divides  F x , 
then       ,  n q  ,= n pF x g x x  h x  x  for some po-
lynomials   ,g x     h x Z x . 

Theorem 3.2 If G is of type  , where p and q 
are distinct primes, then G has the Hajos-k-property, for 
all k, 

2 ,p q2
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Proof Consider a factorization 1 2  of 
. The case  is true by Redei's theorem. The 
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elements. Again by our previous discussion, we obtain the 
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 1 2 ( )A x A x . Since 1A  and 2A  contain the same 
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 n x  divides  1A x . Then, by De Bruijn’s result 

above, we get that 
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Corollary 3.1 If G is of type  ,p q  , where p and q 
are distinct primes, and ,   are integers , then G 1
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has the Hajós-k-property, where  = 2k   . 
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