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Abstract

For each pair of positive integers n and k, let G(n,k) denote the digraph whose set of vertices is H = {0,1,2,--,
n — 1} and there is a directed edge from a € Hto b € H if a“ = b(mod n). The digraph G(n,k) is symmetric if
its connected components can be partitioned into isomorphic pairs. In this paper we obtain all symmetric G

(n,k).
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1. Introduction

In [12], L. Szalay showed that G(n,2) is symmetric if
n=2(mod4) or n=4(mod8). In [1], the authors
proved that if p is a Fermat prime, then G(Z’ p,2) is
not symmetric when r=3 or r =5, but it Is symmet-
ric when k=4. And the following theorem is part of
Theorem 5.1 in [13].

Theorem 1.1 ([13] Theorem 5.1) Let n=npn, ,
where n, >1, n,>1and gcd (nn,)=1. Suppose that
n =2", where m>1. Then G(n,k) is symmetric if
one of the following conditions holds:

i) m<2 k=2, and 2"*|k;
i) m>3 k>2, and 2"?|k;

iii) m=4 and k=2

In this paper we prove that if G(n,k) is symmetric,
where k>2 and 2™||n , then m=5, k=4 or m, k
satisfy one of the conditions of the above theorem.

The outline of this paper is as follows. In Section 3 we
obtain all symmetric G(Zm,k) by direct computation.
In Section 4 we prove some properties about digraph
products which will be useful in the proof of our main
theorem. In Section 5 we state and prove the main theo-
rem of the present paper.

2. The Carmichael Lambda-Function
Before proceeding further, we need to review some pro-

perties of the Carmichael lambda-function A(n).
Definition 2.1 Let n be a positive integer. Then the

Carmichael-lambda-function (n) is defined as follows:
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A(1)=1,

A(2)=1

A(4)=2,

A(26) =22 if k>3,

A(p*)=(p-1)p** if pis an odd prime,
AT )=tom [4(p2).2(p2 ). 4 o) |

where p; are distinc primes.

The following theorem generalizes the well-known
Euler’s theorem which says that a’" =1(mod n) if and
only if ged(a,n)=1.

Theorem 2.1 (Camichael). Let a,n e N. Then a’ =
1(mod n) if and only if gcd(a,n)=1. Moreover, there
exists an integer g such that ord g=4(n), where
ord,g denotes the multiplicative order of g modulo n.

For the proof see [5, p. 21]

3. TheCasen=2"

Let G be a digraph and a be a vertex in G. The indegree
of a, denoted by ind(a) is the number of directed edges
coming to a, and the outdegree of a is the number of
edges leaving a. Particularly, let indf(a) denote the
indegree of a vertex a contained in G (n,k).

There are two particular subdigraphs of G(n,k). Let
G,(n,k) be the induced subdigraph of G(n,k) on the
set of vertices which are coprime to n and G, (n,k) be
the induced subdigraph of G(n,k)on the set of vertices
which are not coprime with n. We observe that G, (n,k)
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and G,(nk) are disjoint and that G(nk)=
G, (n,k)JG,(n,k), that is, no edges goes between
G, (n,k) andG,(n,k).

It is clear that each component of G(n,k) contains a
unique cycle, since the component has only a finite
number of vertices and each vertex has outdegree 1. The
following lemma tells us that every component contained
in G,(n,k) is determined by its cycle length.

Lemma 3.1 ([13] Corollary 6.4) Let t>1 be a fixed
integer. Then any two components in G,(n,k) con-
taining t-cycle are isomorphic.

Definition 3.1 We define a height function on the ver-
tices and components of G(n,k). Let ¢ be a vertex of
G(n,k), we define h(c) to be the minimal nonnegative
integer i such that ¢ s congruent modulo n to a cycle
vertex in G(n,k). And if C is a component of G(n,k),
we define h(C)=sup,. h(c).

The indegree and the height function play an impor-
tant role in the structure of G(n,k). We need the fol-
lowing results concerning the indegrees and heights.

Lemma 3.2 ([14]) Let n=]]  p{ be the prime

factorization of n. Let a be a vertex of positive indegree
in G;(n,k). Then

ind, (a) = [ ind", (a) =T, gcd(2(ps ). k),

where & =2 if 2|k and 8
wise.

Lemma 3.3 ([11] Theorem 3.2) Let p be a prime. Let
a be a vertex of positive indegree in G, (p°.k), and
assume that p'||k and a=0. Then I=kt for some
positive integer t and

ind", (a) = sp* gcd(ﬂ( '), k)

where 5=2 if p=22k and e-1>3, and &§=1
otherwise.

Lemma 3.4 ([13] Lemma 3.2) Let p be a prime and e,
k be two positive integers. Then

p , and & =1 other-

|nd':JE (0)=p m

Lemma 3.5 Let p be a prime and e>2, k>2 be
two positive integers. Let h be the positive integer such
that k"' <e<k". Then h=h(G, (p"k)).

Proof. It is clear that peG,(p°,k) and h(p)=
h(GZ(pe,k)). And p~ 50<mod pe) if and only if
k' >e. This proves the Lemma. ]

Lemma 3.6 Let p be a prime and e,k >2 be two
positive integers. Let A(p°)=uv where u is the maxi-

mal divisor of A(p°) relatively prime to k. If G is the
component of G(p°,k) containing 1, then
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h(C):min{i:v|k‘}

Proof. Let h= min{i :v|k‘}. Then there exists a di-
visor d of v such that d is not a divisor of k"*. By
Theorem 2.1 there exists a vertex g eG(p®,k) such

uv

that ordpeg =uv. Let a= gF(mod pe). Then ordpea

=d and a""" is not congruent modulo p° to 1, but
a*' =1(mod p°) . We have h(C)=h(a)=h by the
definition of height function.

Conversely if aeC, then there exists j>1 such
that a*’ zl(mod pe), then ordpea k. But ordpea uv, hence
ord .alv. And a“ =1(mod p°). That is h(C)<h.
Lemma 3.6 is proved. []

Now we can prove our first result.

Theorem 3.1 Let k>2,m>1 be two positive inte-

gers. Then G(2",k)is symmetric if and only if one of
the following conditions holds.

i) m=1

i) m=22[k;
i) m=4,k=2;
iv) m=5k =4,

V) m>3,2"?|k,k>m.

Proof. The case m<3 follows directly by simple
computations, so we may assume that m>3, thus
A(2)=2"". We first suppose that G(2",k) is sym-
metric. Let C, and C, be the components of
G(2",k) containing the vertex O and 1, respectively.
Then it is easy to see that C, is just G,(2",k). Since
the cycle lengths of C, and C, are 1, by the assump-
tions and Lemma 3.1 we must have C,=C,, thus
h=h(Cy)=h(C,).

If h=1, then k>m and egcd(2"? k)=ind(1)
=ind (0)=2"", where e=1 ifkisodd, and e=2 if
2|k . We must have 2"?|k.

If 2tk, then C, is a cycle, however C; is not a
cycle. Hence we may assume that 2"||k ,r >1 and
h>2. We have h=h(C,)=min{i:2"?[c'} by
Lemma 3.6. It implies that

r(h-1)<m-2<rh. (3.1)
Since h=h(C,), by Lemma 3.5 we have
kK" <m<Kk", (3.2)
Combining (3.1) and (3.2), we obtain
2" <"t <m_1<rh+,

so h<3 and r<2. By an easy computation, we have

(mk,h,r)=(54,22),(6,4,22),(5231) or (4,2,2,1).
By computations we know that both G(16,2) and

G(32,4) are symmetric. For G(32,2) and G(64,4),
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by Lemmas 3.2 and 3.3, we have ind3, (4)=8, and for
any vertex a in C, which has positive indegree,
indZ, (a)=4. Similarly ind, (16)=16, ind;,(a)=8.
Thus neither of them are symmetric.

Finally, from Theorem 1.1 it is clear that if m, k satisfy
one of i) - v), then G(2",k) is symmetric. Theorem 3.1
is proved. ]

4. Properties of Digraphs Product

Given two digraphs G, and G,. Let G,xG, be the
digraph whose vertices are the ordered pairs (al,az),
where a, € G; and there is a directed edge from (a,,a,)
to (b,,b,) if there is a directed edge from a to b,
for i=12. In[13] L. Somer and M. Krizek proved the
following fact: Let n=nn, where gcd(n,n,)=1
then G(n,k)=G(n,k)xG(n, k). And the canonical
isomorphism is given by at>(a,a,) where a=
a;(modn;), i=12. Ingeneral we have

G(n,k);G(pfl,k)xG(pgz,k)x...xe( & k),

if n= Hirzl piei is the prime factorization of n. We need
this fact and the following lemma.

Lemma 4.1 ([4] Lemma 3.1) Let n=nn, where
ged(n,n,)=1. Let C, be a component of G(n; k).
And the cycle length of C, is t,. Then C, xC, is a
subdigraph of G(n,k) consisting of ged(t,t,) com-
ponents, each having cycles of length lem(t,,t,).

Lemma 4.2 Let n=nn, where gcd(n,n,)=1. If
G(n, k) issymmetric, then G(n,k) issymmetric.

Proof. It follows immediately from Lemma 4.1 and
the fact G(n,k)=G(n,,k)xG(n,,k).O0

Lemma 4.3 If G(n,k) is symmetric, then G(n,kr)
is also symmetric forany r>1.

Proof. Assume that G(n,k) has 2m components, say,
c.C,,---,C,,, and for each i=12,---,m there exists

) 2m?

an isomorphism ¢, of digraphs:
?:C >C .

If two vertices x, y are in the same component of
G(n,kr , then there exists a vertex z and positive inte-
gersu,vand x* =z(mod n), y* =z(mod n) which
implies that x, y are in the same component of G(n,k).
It follows that if D is a component of G(n,k"}, then
there exists a j € {1,2,---,2m} suchthat DcC;.

Let C,={J",D; and C,,=J’E, where D,,
j=12,---;s, and E,, 1=12,---,s, are components of
G(n,kr). If x,yeC,and X = y(mod n), then there
exist Yy, Y,,,y, =y such that x“ =y, (mod n), and

Kk k k
Yi EYi+1(mOd n)' So ¢1(X) = (/’1(y)(TrOd n) and (Pl(yi)
= (Vi,1)(mod n), we get ¢ (x) =g (y)(mod n)
and ¢, still preserves arrows if we consider C, and
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C,., assubdigraphs of G(n,k’)

It follows that s, =s, and ¢ is still an isomor-
phism if we consider C, and C,,; as subdigraphs of
G(n,kr). Hence G(n,kr) is also symmetric. Lemma
4.3 is proved. ]

Let G be a digragh. Let |G| denote the number of
vertices in G, and let M (G) = max, {ind (c)}.

Lemma 4.4 Let G and H be two digraphs, and aeG,
beH.Then ind((a,b))=ind(a)ind(b), M(GxH)=
M(G)M(H), and |GxH|=|G|H]|.

Proof. It follows immediately from the definitions. ]

The following lemma is the key lemma for the proof
of the main result of this paper.

Lemma 4.5 Let O, denote the digraph whose set of
vertices is {a=a,,a,-,a,,} and there is a directed
edge from a to a; ifand only if a;,=a,=a. LetG
and H be two digraphs such that all vertices in G and H
have outdegree 1. Then O, xG =0, xH if and only if
G=H.

Proof. Assume that ¢:0,xG — O, xH
morphism of digraphs. Let

G, ={xeGlind(x)=0}, G, ={xeGlind(x)>0},

Ho ={xeHlind (x)=0}, H,={xeH[ind(x)>0}.

If xeG, and ind((a,x))=ind(a)ind(x)>0, then
ind(¢(a,x))>0. Let (p((a,x))z(aj,x'), then we have
X eH, and a; =a. Now we defineamap ¢:G —>H,
by @ (x)=X, XxeG,.Obviously, ¢ isinjective.

If y eH,, then there exists a vertex (a,y) of posi-
tive indegree in O, xG such that ¢((a,y))=(ay).
Hence ¢, (y)=y and ¢ isalso surjective.

Now we assume that x,y € G,, and there is a directed
edge from x to y. Let ¢ (X)=X,¢ (y)=y by defini-
tion we have o((ax))=(ax) and o((ay))=

a, y'). We know that there is a directed edge from
Ea,x) to (a,y), then there is also a directed edge
from (a, x') to Sa, y') since ¢ preserves arrows. So
there is also a directed edge from x and y . We
showed that ¢, preserves arrows.

Forany yeG,, let

is an iso-

Eo(y)= {x € Go|there is a directed edge from x to y},

E(y)= {x € G0|there is a directed edge from x to y},
then
GO = UyeGl EO (y)

And the above union is a disjoint union since each
vertex has outdegree 1. If ¢, (y)=Yy , by Lemma 4.4 we
have

indeg((a,y)) = m(|E ()] +[E.(v)])

:ind((a, y'))Zm(‘Eo(yl)h‘El(y‘)‘)
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and |E,(y)|=|E,(y) since ¢ maps E,(y) into
El(y) Then we also have |Eo ( |:‘E( ). Now we
can define a map (po from G, to H, such that for
any xeE,(y), @ (x)eEy(a( ))

Finally we can deflne ¢ G —>H
d(a)=p (a)ifacG,

for i=0,1. Itiseasy toshow that ¢ is bijective.

Now we prove that ¢ preserve arrows. Suppose
X,y €G and there is a directed edge from x to y. We
only need to treat the case when xeG, and yeG,.
Let ¢(y)=¢ (y)=y . By the construction of ¢, we
see that ¢(x) =, (X) € E,(y'), so there is also a arrow
from ¢(x) to ¢(y). Itis easy to show that the number
of directed edges of G is equal to the number of directed
edges of H. Thus ¢ is an isomorphism. Lemma 4.5 is
proved. ]

5. The Main Theorem

To begin with, we prove the following lemma.

Lemma 5.1 Let E be the component of G(64q,4)
containing the vertex 0 where q is odd and F be another
component of G(64q,4). Then E is not isomorphic to F.
And the similar result for G(32q,2) is also valid.

Proof. We only prove the case for G(64q,4), the
proof for G(32q,2) is similar and we omit the details.
Assume that qzl_[ir:1 A where each p, is an odd
prime, and ¢ >2 if i<s, e =1 if s<i<r. Let
€=0 or 1, and let C_ and C! the components of
G(64,4) and G(piei ,4|, containing the vertex e and
i=12,---,r respectively. Then

E=C,xCix---xCj].
If the cycle length of F > 1, then F is not isomorphic to

E. Suppose that the cycle length of F is 1, by Lemma 4.1
F=C_xFxF,x--xF,

where F; is a component of cycle length 1 contained in
G ( piei ,4) . By Lemma 3.1 we can write

~ 1 r
F =Ce0 ><CEl ><~~-><C€r,

where =0 or 1. By computations we know that
M (C,)=16, M (C,)=8. By Lemma 3.3 there exists
u, >1 such that M(Cé): Yoo 2pf, or 4pfif 1<

i<s, M(C@?:l if s<i<r. And by Lemma 3.2
(p

M (Cl)=ged((p,~1)pi™,4)=2 or 4. for any 1<i
<r. Thus
M (E)=16] M (cg)zlef[M (Cs),
i=1 i=1
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M(F):M(Ce)]jM (c!).

Now if M(E)=M(F), wehave g=¢,=---=¢,=0,
and if =0 then all =0, E=F. If =1 then
s=r-1 and ged(p, -1,k)=2. Butin this case

roo r-1
|E|=|c0|~gc(; =32pri*1
[F[=[c.)- 15 1T ch):

Therefore we have M (E)=M (F) or |E|=|F|, E
is not isomorphic to F. Lemma 5.1 is proved. ]

Theorem 5.1 (Main Theorem) Let k>2 and n=
2"q, where m>1 and q is odd. Then G(n,k) is
symmetric if and only if G(2m,k) is symmetric.

Proof. By Lemma 4.2 we only need to prove the ne-
cessity. The case m=1 is trivial, so we may assume
that m>2. Let C, be the component of G(2" k)
containing the vertex 0, and C, be the component of
G(2",k) containing the vertex 1. Let h, =h(C,) and
h =h(C,). We claim that 2|k and h,=h. Other-
wise we assume firstly that k is odd or h, <h,. Inboth

cases we have G, (Zm,k'“‘J ) =0,,,, and if XeG(Zm,kh‘J)
and x=0, then ind';:)(x)<2m‘1.
By Lemma 4.3 G(nk™) is also symmetric and
G(n,kho):G(Z’“,kho)xG(q,kh"). Let
G(q,km)zLSJmiHi,
i=1
where each H,;is a connect component such that
H,=H, if and only if i=j, and M(H,)<M(H,)
for i< j. We can choose an | such that m, is odd and
2|mj if j>I, since G q,k'b) is not symmetric.
Then G(Zm,kho)x(U::lmiHi) is also symmetric. Let
E :GZ(Zm,kh‘))x H,, by Lemma 4.1 E is a connected
component of G(Zm,k“))x(U::lmiHi) since G, (2'”,k'“)
is a component of cycle length 1. Let F be another com-
ponent of G(2m,k%)x(U::lmiHi). Suppose that
E=F,
by Lemma 4.1 again F is a component of KxH,,
where K is a component of G(2",k™) and 1<i<I.
But we have
M (E)=M(0,,.xH,)
=2"M (H,)
> M (K)M (H;)
>M(F)

0JDM



G. X.DENG ET

where the equality holds if and only if M(K)=2""
and M (H,)=M (H,), which implies K =G, (2" k™).
But now we have F =G, (2",k" )xH, and

O,.xH =0, xH;.

mel mel

Hence H, = H, by Lemma 4.5, i =1 We show that there
are exactly m, components contained in G (2" k")
><(U::1mi Hi) which are isomorphic to E.

It is contrary to the fact that G (2" k™ )x(U::lmiHi)

is symmetric.
Now we have 2|k, if hy>h, consider

G(2" k™) =G, (2" k™ )G, (2" k™).
We have Gl(zm,khl):ozm,l and
M (G, (27 k")) <M (Gy(27,k™)).

Using the same arguments we can show that G(n,k“l)
is not symmetric. Hence h, =h, =h.

If h=1,,then for any vertex aeG(2",k), we have
a“ =0(mod2") if ais even and a* =1(mod2") if a
is odd. It implies that G(2m,k):202m,1. G(2" k) is
symmetric in this case.

If h>1 then m>3. Assume that 2'||k , then we
have (3.1) and (3.2), by the proof of Theorem 3.1 we
have (m, k) = (5, 4), (6, 4), (5, 2) or (4, 2). Then the proof
is completed by Lemma 5.1 and Theorem 3.1.[]

Corollary 5.1 Let n, k be two positive integers and
2" |In,m>1. Then G(n,k) is symmetric if and only if
k = 1 or k, m satisfy one of (i) - (v) in Theorem 3.1.
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