

Symmetric Digraphs from Powers Modulo n

Guixin Deng^{1*}, Pingzhi Yuan²

¹School of Mathematics, Guangxi Teachers Education University, Nanning, China ²School of Mathematics, South China Normal University, Guangzhou, China E-mail: *oldlao@163.com, mcsypz@mail.sysu.edu.cn Received June 21, 2011; revised July 25, 2011; accepted August 5, 2011

Abstract

For each pair of positive integers *n* and *k*, let G(n,k) denote the digraph whose set of vertices is $H = \{0,1,2,\dots, n-1\}$ and there is a directed edge from $a \in H$ to $b \in H$ if $a^k \equiv b \pmod{n}$. The digraph G(n,k) is symmetric if its connected components can be partitioned into isomorphic pairs. In this paper we obtain all symmetric G(n,k).

Keywords: Congruence, Digraph, Component, Height, Cycle

1. Introduction

In [12], L. Szalay showed that G(n,2) is symmetric if $n \equiv 2 \pmod{4}$ or $n \equiv 4 \pmod{8}$. In [1], the authors proved that if *p* is a Fermat prime, then $G(2^r p, 2)$ is not symmetric when r = 3 or r = 5, but it is symmetric when k = 4. And the following theorem is part of Theorem 5.1 in [13].

Theorem 1.1 ([13] Theorem 5.1) Let $n = n_1n_2$, where $n_1 > 1$, $n_2 > 1$ and $gcd(n_1n_2) = 1$. Suppose that $n_1 = 2^m$, where $m \ge 1$. Then G(n,k) is symmetric if one of the following conditions holds:

- i) $m \le 2, k \ge 2$, and $2^{m-1} | k ;$
- ii) $m \ge 3, k > 2$, and $2^{m-2} | k$;
- iii) m = 4 and k = 2

In this paper we prove that if G(n,k) is symmetric, where $k \ge 2$ and $2^m || n$, then m = 5, k = 4 or m, ksatisfy one of the conditions of the above theorem.

The outline of this paper is as follows. In Section 3 we obtain all symmetric $G(2^m, k)$ by direct computation. In Section 4 we prove some properties about digraph products which will be useful in the proof of our main theorem. In Section 5 we state and prove the main theorem of the present paper.

2. The Carmichael Lambda-Function

Before proceeding further, we need to review some properties of the Carmichael lambda-function $\lambda(n)$.

Definition 2.1 Let n be a positive integer. Then the Carmichael-lambda-function $\lambda(n)$ is defined as follows:

$$\lambda(1) = 1,$$

$$\lambda(2) = 1,$$

$$\lambda(4) = 2,$$

$$\lambda(2^{k}) = 2^{k-2} \text{ if } k \ge 3,$$

$$\lambda(p^{k}) = (p-1) p^{k-1} \text{ if } p \text{ is } an \text{ odd prime,}$$

$$\lambda(\prod_{i=1}^{r} p_{i}^{e_{i}}) = \operatorname{lcm} \left[\lambda(p_{1}^{e_{1}}), \lambda(p_{2}^{e_{2}}), \dots, \lambda(p_{r}^{e_{r}})\right]$$

where p_i are distinc primes.

The following theorem generalizes the well-known Euler's theorem which says that $a^{\phi(n)} \equiv 1 \pmod{n}$ if and only if gcd(a,n) = 1.

Theorem 2.1 (*Camichael*). Let $a, n \in \mathbb{N}$. Then $a^{\lambda(n)} \equiv 1 \pmod{n}$ if and only if gcd(a, n) = 1. Moreover, there exists an integer g such that $ord_ng = \lambda(n)$, where ord_ng denotes the multiplicative order of g modulo n. For the proof see [5, p, 21].

For the proof see [5, p. 21]

3. The Case $n = 2^m$

Let *G* be a digraph and *a* be a vertex in *G*. The indegree of *a*, denoted by ind(a) is the number of directed edges coming to *a*, and the outdegree of *a* is the number of edges leaving *a*. Particularly, let $ind_n^k(a)$ denote the indegree of a vertex *a* contained in G(n,k).

There are two particular subdigraphs of G(n,k). Let $G_1(n,k)$ be the induced subdigraph of G(n,k) on the set of vertices which are coprime to *n* and $G_2(n,k)$ be the induced subdigraph of G(n,k) on the set of vertices which are not coprime with *n*. We observe that $G_1(n,k)$

and $G_2(n,k)$ are disjoint and that $G(n,k) = G_1(n,k) \bigcup G_2(n,k)$, that is, no edges goes between $G_2(n,k)$ and $G_2(n,k)$.

It is clear that each component of G(n,k) contains a unique cycle, since the component has only a finite number of vertices and each vertex has outdegree 1. The following lemma tells us that every component contained in $G_1(n,k)$ is determined by its cycle length.

Lemma 3.1 ([13] Corollary 6.4) Let $t \ge 1$ be a fixed integer. Then any two components in $G_1(n,k)$ containing t-cycle are isomorphic.

Definition 3.1 We define a height function on the vertices and components of G(n,k). Let c be a vertex of G(n,k), we define h(c) to be the minimal nonnegative integer i such that c^{k^l} is congruent modulo n to a cycle vertex in G(n,k). And if C is a component of G(n,k), we define $h(C) = \sup_{c \in C} h(c)$.

The indegree and the height function play an important role in the structure of G(n,k). We need the following results concerning the indegrees and heights.

Lemma 3.2 ([14]) Let $n = \prod_{i=1}^{r} p_i^{e_i}$ be the prime factorization of n. Let a be a vertex of positive indegree in $G_1(n,k)$. Then

$$\operatorname{ind}_{n}^{k}(a) = \prod_{i=1}^{r} \operatorname{ind}_{p_{i}^{e_{i}}}^{k}(a) = \prod_{i=1}^{r} \delta_{i} \operatorname{gcd}\left(\lambda\left(p_{i}^{e_{i}}\right), k\right),$$

where $\delta_i = 2$ if 2|k and $8|p_i^{e_i}$, and $\delta_i = 1$ otherwise.

Lemma 3.3 ([11] Theorem 3.2) Let *p* be a prime. Let *a* be a vertex of positive indegree in $G_2(p^e,k)$, and assume that $p^l || k$ and $a \neq 0$. Then l = kt for some positive integer *t* and

$$\operatorname{ind}_{p^{e}}^{k}(a) = \delta p^{(k-1)t} \operatorname{gcd}\left(\lambda\left(p^{e-1}\right), k\right)$$

where $\delta = 2$ if p = 2, 2|k and $e - l \ge 3$, and $\delta = 1$ otherwise.

Lemma 3.4 ([13] Lemma 3.2) Let *p* be a prime and *e*, *k* be two positive integers. Then

$$\operatorname{ind}_{p^{e}}^{k}(0) = p^{e - \left|\frac{e}{k}\right|}.$$

Lemma 3.5 Let p be a prime and $e \ge 2$, $k \ge 2$ be two positive integers. Let h be the positive integer such that $k^{h-1} < e \le k^h$. Then $h = h(G_2(p^e, k))$.

Proof. It is clear that $p \in G_2(p^e, k)$ and $h(p) = h(G_2(p^e, k))$. And $p^{k^i} \equiv 0 \pmod{p^e}$ if and only if $k^i \ge e$. This proves the Lemma. \Box

Lemma 3.6 Let p be a prime and $e, k \ge 2$ be two positive integers. Let $\lambda(p^e) = uv$ where u is the maximal divisor of $\lambda(p^e)$ relatively prime to k. If G is the component of $G(p^e, k)$ containing 1, then

$$h(C) = \min\left\{i: v \middle| k^i\right\}$$

Proof. Let $h = \min\{i: v | k^i\}$. Then there exists a divisor d of v such that d is not a divisor of k^{h-1} . By Theorem 2.1 there exists a vertex $g \in G(p^e, k)$ such that $ord_{p^e}g = uv$. Let $a \equiv g^{\frac{uv}{d}} \pmod{p^e}$. Then $ord_{p^e}a = d$ and $a^{k^{h-1}}$ is not congruent modulo p^e to 1, but $a^{k^h} \equiv 1 \pmod{p^e}$. We have $h(C) \ge h(a) = h$ by the definition of height function.

Conversely if $a \in C$, then there exists $j \ge 1$ such that $a^{k^j} \equiv 1 \pmod{p^e}$, then $ord_{p^e}a|k$. But $ord_{p^e}a|uv$, hence $ord_{p^e}a|v$. And $a^{k^h} \equiv 1 \pmod{p^e}$. That is $h(C) \le h$. Lemma 3.6 is proved. \Box

Now we can prove our first result.

Theorem 3.1 Let $k \ge 2, m \ge 1$ be two positive integers. Then $G(2^m, k)$ is symmetric if and only if one of the following conditions holds.

i)
$$m = 1;$$

ii) m = 2, 2|k;

iii) m = 4, k = 2;

- iv) m = 5, k = 4;v) $m \ge 3, 2^{m-2} | k, k \ge m.$
- **Proof.** The case m < 3 follows directly by simple computations, so we may assume that $m \ge 3$, thus $\lambda(2) = 2^{m-2}$. We first suppose that $G(2^m, k)$ is symmetric. Let C_0 and C_1 be the components of $G(2^m, k)$ containing the vertex 0 and 1, respectively. Then it is easy to see that C_0 is just $G_2(2^m, k)$. Since the cycle lengths of C_0 and C_1 are 1, by the assumptions and Lemma 3.1 we must have $C_0 \approx C_1$, thus

 $h = h(C_0) = h(C_1).$ If h = 1, then $k \ge m$ and $\in \gcd(2^{m-2}, k) = ind(1)$ $= ind(0) = 2^{m-1}$, where $\in = 1$ if k is odd, and $\in = 2$ if 2|k. We must have $2^{m-2}|k$.

If $2 \nmid k$, then C_1 is a cycle, however C_0 is not a cycle. Hence we may assume that $2^r ||k, r \ge 1$ and $h \ge 2$. We have $h = h(C_1) = \min\{i: 2^{m-2} | k^i \}$ by Lemma 3.6. It implies that

$$r(h-1) < m-2 \le rh. \tag{3.1}$$

Since $h = h(C_0)$, by Lemma 3.5 we have

$$k^{h-1} < m \le k^h. \tag{3.2}$$

Combining (3.1) and (3.2), we obtain

$$2^{r(h-1)} \le k^{h-1} \le m-1 \le rh+1,$$

so $h \le 3$ and $r \le 2$. By an easy computation, we have (m,k,h,r) = (5,4,2,2), (6,4,2,2), (5,2,3,1) or (4,2,2,1).

By computations we know that both G(16,2) and G(32,4) are symmetric. For G(32,2) and G(64,4),

by Lemmas 3.2 and 3.3, we have $\operatorname{ind}_{32}^2(4) = 8$, and for any vertex *a* in C_1 which has positive indegree, $\operatorname{ind}_{32}^2(a) = 4$. Similarly $\operatorname{ind}_{64}^4(16) = 16$, $\operatorname{ind}_{64}^4(a) = 8$. Thus neither of them are symmetric.

Finally, from Theorem 1.1 it is clear that if *m*, *k* satisfy one of *i*) - *v*), then $G(2^m, k)$ is symmetric. Theorem 3.1 is proved. \Box

4. Properties of Digraphs Product

Given two digraphs G_1 and G_2 . Let $G_1 \times G_2$ be the digraph whose vertices are the ordered pairs (a_1, a_2) , where $a_i \in G_i$ and there is a directed edge from (a_1, a_2) to (b_1, b_2) if there is a directed edge from a_i to b_i for i = 1, 2. In [13] L. Somer and M. Krizek proved the following fact: Let $n = n_1 n_2$ where $gcd(n_1, n_2) = 1$, then $G(n, k) \cong G(n_1, k) \times G(n_2, k)$. And the canonical isomorphism is given by $a \mapsto (a_1, a_2)$ where $a \equiv a_i \pmod{n_i}$, i = 1, 2. In general we have

$$G(n,k) \cong G(p_1^{e_1},k) \times G(p_2^{e_2},k) \times \cdots \times G(p_r^{e_r},k)$$

if $n = \prod_{i=1}^{r} p_i^{e_i}$ is the prime factorization of *n*. We need this fact and the following lemma.

Lemma 4.1 ([4] Lemma 3.1) Let $n = n_1 n_2$ where $gcd(n_1, n_2) = 1$. Let C_i be a component of $G(n_i, k)$. And the cycle length of C_i is t_i . Then $C_1 \times C_2$ is a subdigraph of G(n, k) consisting of $gcd(t_1, t_2)$ components, each having cycles of length $lcm(t_1, t_2)$.

Lemma 4.2 Let $n = n_1 n_2$ where $gcd(n_1, n_2) = 1$. If $G(n_1, k)$ is symmetric, then G(n, k) is symmetric.

Proof. It follows immediately from Lemma 4.1 and the fact $G(n,k) \simeq G(n_1,k) \times G(n_2,k)$. \Box

Lemma 4.3 If G(n,k) is symmetric, then $G(n,k^r)$ is also symmetric for any $r \ge 1$.

Proof. Assume that G(n,k) has 2m components, say, C_1, C_2, \dots, C_{2m} , and for each $i = 1, 2, \dots, m$ there exists an isomorphism φ_i of digraphs:

$$\varphi_i: C_i \to C_{i+m}.$$

If two vertices x, y are in the same component of $G(n, k^r)$, then there exists a vertex z and positive integers u, v and $x^{k^u} \equiv z \pmod{n}$, $y^{k^v} \equiv z \pmod{n}$ which implies that x, y are in the same component of G(n, k). It follows that if D is a component of $G(n, k^r)$, then there exists a $j \in \{1, 2, \dots, 2m\}$ such that $D \subseteq C_i$.

Let $C_1 = \bigcup_{i=1}^{s_1} D_j$ and $C_{m+1} = \bigcup_{i=1}^{s_2} E_j$ where D_j , $j = 1, 2, \dots, s_1$ and E_l , $l = 1, 2, \dots, s_2$ are components of $G(n, k^r)$. If $x, y \in C_1$ and $x^{k^r} \equiv y \pmod{n}$, then there exist $y_1, y_2, \dots, y_r = y$ such that $x^k \equiv y_1 \pmod{n}$, and $y_i^k \equiv y_{i+1} \pmod{n}$. So $\varphi_1(x)^k \equiv \varphi_1(y) \pmod{n}$ and $\varphi_1(y_i)^k$ $\equiv \varphi_1(y_{i+1}) \pmod{n}$, we get $\varphi_1(x)^{k^r} \equiv \varphi_1(y) \pmod{n}$ and φ_1 still preserves arrows if we consider C_1 and C_{m+1} as subdigraphs of $G(n,k^r)$

It follows that $s_1 = s_2$ and φ_1 is still an isomorphism if we consider C_1 and C_{m+1} as subdigraphs of $G(n, k^r)$. Hence $G(n, k^r)$ is also symmetric. Lemma 4.3 is proved. \Box

Let G be a digragh. Let |G| denote the number of vertices in G, and let $M(G) = \max_{c \in G} \{ind(c)\}$.

Lemma 4.4 Let G and H be two digraphs, and $a \in G$, $b \in H$. Then $\operatorname{ind}((a,b)) = \operatorname{ind}(a)\operatorname{ind}(b)$, $M(G \times H) = M(G)M(H)$, and $|G \times H| = |G||H|$.

Proof. It follows immediately from the definitions. \Box

The following lemma is the key lemma for the proof of the main result of this paper.

Lemma 4.5 Let O_m denote the digraph whose set of vertices is $\{a = a_0, a_1, \dots, a_{m-1}\}$ and there is a directed edge from a_i to a_j if and only if $a_j = a_0 = a$. Let G and H be two digraphs such that all vertices in G and H have outdegree 1. Then $O_m \times G = O_m \times H$ if and only if $G \simeq H$.

Proof. Assume that $\varphi: O_m \times G \to O_m \times H$ is an isomorphism of digraphs. Let

$$G_0 = \{x \in G | ind(x) = 0\}, \quad G_1 = \{x \in G | ind(x) > 0\},\$$

 $H_{0} = \{x \in H \mid ind(x) = 0\}, H_{1} = \{x \in H \mid ind(x) > 0\}.$

If $x \in G_1$ and $\operatorname{ind}((a, x)) = \operatorname{ind}(a)\operatorname{ind}(x) > 0$, then $\operatorname{ind}(\varphi(a, x)) > 0$. Let $\varphi((a, x)) = (a_j, x)$, then we have $x \in H_1$ and $a_j = a$. Now we define a map $\varphi_1 : G_1 \to H_1$ by $\varphi_1(x) = x$, $x \in G_1$. Obviously, φ_1 is injective.

If $y \in H_1$, then there exists a vertex (a, y) of positive indegree in $O_m \times G$ such that $\varphi((a, y)) = (a, y)$. Hence $\varphi_1(y) = y$ and φ_1 is also surjective.

Now we assume that $x, y \in G_1$, and there is a directed edge from x to y. Let $\varphi_1(x) = x, \varphi_1(y) = y$, by definition we have $\varphi((a, x)) = (a, x)$ and $\varphi((a, y)) =$ (a, y). We know that there is a directed edge from (a, x) to (a, y), then there is also a directed edge from (a, x) to (a, y) since φ preserves arrows. So there is also a directed edge from x and y. We showed that φ_1 preserves arrows.

For any $y \in G_1$, let

 $E_0(y) = \{x \in G_0 | \text{there is a directed edge from } x \text{ to } y\},\$

 $E_1(y) = \left\{ x \in G_0 | \text{ there is a directed edge from } x \text{ to } y \right\},\$

then

$$G_0 = \bigcup_{y \in G_1} E_0(y)$$

And the above union is a disjoint union since each vertex has outdegree 1. If $\varphi_1(y) = y'$, by Lemma 4.4 we have

indeg
$$((a, y)) = m(|E_0(y)| + |E_1(y)|)$$

= ind $((a, y')) = m(|E_0(y')| + |E_1(y')|)$

Copyright © 2011 SciRes.

and $|E_1(y)| = |E_1(y)|$ since φ_1 maps $E_1(y)$ into $E_1(y)$. Then we also have $|E_0(y)| = |E_0(y)|$. Now we can define a map φ_0 from G_0 to H_0 such that for any $x \in E_0(y)$, $\varphi_0(x) \in E_0(\varphi_1(y))$.

Finally we can define $\phi: G \to H$

$$\phi(a) = \varphi_i(a)$$
 if $a \in G_i$,

for i = 0, 1. It is easy to show that ϕ is bijective.

Now we prove that ϕ preserve arrows. Suppose $x, y \in G$ and there is a directed edge from x to y. We only need to treat the case when $x \in G_0$ and $y \in G_1$. Let $\phi(y) = \varphi_1(y) = y$. By the construction of φ_0 we see that $\phi(x) = \varphi_0(x) \in E_0(y)$, so there is also a arrow from $\phi(x)$ to $\phi(y)$. It is easy to show that the number of directed edges of G is equal to the number of directed edges of H. Thus ϕ is an isomorphism. Lemma 4.5 is proved. \Box

5. The Main Theorem

To begin with, we prove the following lemma.

Lemma 5.1 Let *E* be the component of G(64q, 4) containing the vertex 0 where *q* is odd and *F* be another component of G(64q, 4). Then *E* is not isomorphic to *F*. And the similar result for G(32q, 2) is also valid.

Proof. We only prove the case for G(64q, 4), the proof for G(32q, 2) is similar and we omit the details. Assume that $q = \prod_{i=1}^{r} p_i^{e_i}$ where each p_i is an odd prime, and $e_i \ge 2$ if $i \le s$, $e_i = 1$ if $s < i \le r$. Let $\in = 0$ or 1, and let C_{\in} and C_{\in}^i the components of G(64, 4) and $G(p_i^{e_i}, 4)$, containing the vertex \in and $i = 1, 2, \dots, r$ respectively. Then

$$E \cong C_0 \times C_0^1 \times \cdots \times C_0^r.$$

If the cycle length of F > 1, then *F* is not isomorphic to *E*. Suppose that the cycle length of *F* is 1, by Lemma 4.1

$$F \simeq C_{\epsilon} \times F_1 \times F_2 \times \cdots \times F_r,$$

where F_i is a component of cycle length 1 contained in $G(p_i^{e_i}, 4)$. By Lemma 3.1 we can write

$$F \cong C_{\epsilon_0} \times C^1_{\epsilon_1} \times \cdots \times C^r_{\epsilon_r},$$

where $\epsilon_i = 0$ or 1. By computations we know that $M(C_0) = 16$, $M(C_1) = 8$. By Lemma 3.3 there exists $u_i \ge 1$ such that $M(C_0^i) = p_i^{u_i}$ or $2p_i^{u_i}$, or $4p_i^{u_i}$ if $1 \le i \le s$, $M(C_0^i) = 1$ if $s < i \le r$. And by Lemma 3.2 $M(C_1^i) = \gcd((p_i - 1)p_i^{e_i - 1}, 4) = 2$ or 4. for any $1 \le i \le r$. Thus

$$M(E) = 16 \prod_{i=1}^{r} M(C_{0}^{i}) = 16 \prod_{i=1}^{s} M(C_{0}^{i}),$$

$$M(F) = M(C_{\epsilon}) \cdot \prod_{i=1}^{r} M(C_{\epsilon_{i}}).$$

Now if M(E) = M(F), we have $\epsilon_1 = \epsilon_2 = \dots = \epsilon_s = 0$, and if $\epsilon_0 = 0$ then all $\epsilon_i = 0$, E = F. If $\epsilon_0 = 1$, then s = r - 1 and $gcd(p_r - 1, k) = 2$. But in this case

$$|E| = |C_0| \cdot \prod_{i=1}^{r} C_0^i = 32 \prod_{i=1}^{r-1} p_i^{e_i - 1}$$
$$|F| = |C_1| \cdot |C_1^r| \cdot \left(\prod_{i=1}^{r-1} C_0^i\right).$$

Therefore we have $M(E) \neq M(F)$ or $|E| \neq |F|$, *E* is not isomorphic to *F*. Lemma 5.1 is proved. \Box

Theorem 5.1 (Main Theorem) Let $k \ge 2$ and $n = 2^m q$, where $m \ge 1$ and q is odd. Then G(n,k) is symmetric if and only if $G(2^m,k)$ is symmetric.

Proof. By Lemma 4.2 we only need to prove the necessity. The case m = 1 is trivial, so we may assume that $m \ge 2$. Let C_0 be the component of $G(2^m, k)$ containing the vertex 0, and C_1 be the component of $G(2^m, k)$ containing the vertex 1. Let $h_0 = h(C_0)$ and $h_1 = h(C_1)$. We claim that 2|k and $h_0 = h_1$. Otherwise we assume firstly that k is odd or $h_0 < h_1$. In both

cases we have $G_2(2^m, k^{h_0}) \simeq O_{2^{m-1}}$, and if $x \in G(2^m, k^{h_0})$ and $x \neq 0$, then $\operatorname{ind}_{2^m}^{k^{h_0}}(x) < 2^{m-1}$.

By Lemma 4.3 $G(n, k^{h_0})$ is also symmetric and $G(n, k^{h_0}) \simeq G(2^m, k^{h_0}) \times G(q, k^{h_0})$. Let

$$G(q,k^{h_0}) \simeq \bigcup_{i=1}^{s} m_i H_i,$$

where each H_i is a connect component such that $H_i \simeq H_j$ if and only if i = j, and $M(H_i) \le M(H_j)$ for i < j. We can choose an l such that m_l is odd and $2|m_j$ if j > l, since $G(q, k^{h_0})$ is not symmetric. Then $G(2^m, k^{h_0}) \times (\bigcup_{i=1}^l m_i H_i)$ is also symmetric. Let $E = G_2(2^m, k^{h_0}) \times H_l$, by Lemma 4.1 E is a connected component of $G(2^m, k^{h_0}) \times (\bigcup_{i=1}^l m_i H_i)$ since $G_2(2^m, k^{h_0})$ is a component of cycle length 1. Let F be another component of $G(2^m, k^{h_0}) \times (\bigcup_{i=1}^l m_i H_i)$. Suppose that $E \simeq F$,

by Lemma 4.1 again *F* is a component of $K \times H_i$, where *K* is a component of $G(2^m, k^{h_0})$ and $1 \le i \le l$. But we have

$$M(E) = M(O_{2^{m-1}} \times H_{l})$$
$$= 2^{m-1}M(H_{l})$$
$$\geq M(K)M(H_{i})$$
$$\geq M(F)$$

106

Copyright © 2011 SciRes.

where the equality holds if and only if $M(K) = 2^{m-1}$ and $M(H_i) = M(H_i)$, which implies $K = G_2(2^m, k^{h_0})$. But now we have $F = G_2(2^m, k^{h_0}) \times H_i$ and

$$O_{2^{m-1}} \times H_l \simeq O_{2^{m-1}} \times H_i$$

Hence $H_l \simeq H_i$ by Lemma 4.5, i = l. We show that there are exactly m_l components contained in $G(2^m, k^{h_0}) \times (\bigcup_{i=1}^l m_i H_i)$ which are isomorphic to *E*.

It is contrary to the fact that $G(2^m, k^{h_0}) \times (\bigcup_{i=1}^l m_i H_i)$

is symmetric.

Now we have 2|k, if $h_0 > h_1$, consider

$$G(2^{m}, k^{h_{1}}) = G_{1}(2^{m}, k^{h_{1}}) \bigcup G_{2}(2^{m}, k^{h_{1}}).$$

We have $G_1(2^m, k^{h_1}) \simeq O_{2^{m-1}}$ and

$$M\left(G_2\left(2^m,k^{h_1}\right)\right) < M\left(G_1\left(2^m,k^{h_1}\right)\right).$$

Using the same arguments we can show that $G(n, k^{h_1})$ is not symmetric. Hence $h_0 = h_1 = h$.

If h = 1, then for any vertex $a \in G(2^m, k)$, we have $a^k \equiv 0 \pmod{2^m}$ if a is even and $a^k \equiv 1 \pmod{2^m}$ if a is odd. It implies that $G(2^m, k) \simeq 2O_{2^{m-1}}$. $G(2^m, k)$ is symmetric in this case.

If h > 1, then $m \ge 3$. Assume that $2^r || k$, then we have (3.1) and (3.2), by the proof of Theorem 3.1 we have (m, k) = (5, 4), (6, 4), (5, 2) or (4, 2). Then the proof is completed by Lemma 5.1 and Theorem $3.1.\square$

Corollary 5.1 Let n, k be two positive integers and $2^m || n, m \ge 1$. Then G(n, k) is symmetric if and only if k = 1 or k, m satisfy one of (i) - (v) in Theorem 3.1.

6. References

 W. Carlip and M. Mincheva, "Symmetry of Iteration Digraphs," *Czechoslovak Mathematic Journal*, Vol. 58, No. 1, 2008, pp. 131-145. doi:10.1007/s10587-008-0009-8

- [2] G. Chartrand and L. Lesnidk, "Graphs and Digraphs (3rd Edition)," Chapman Hall, London, 1996.
- [3] Wun-Seng Chou and Igor E. Shparlinski, "On the Cycle Structure of Repeated Exponentiation Modulo a Prime," *Journal of Number Theory*, Vol.107, No. 2, 2004, pp. 345-356. doi:10.1016/j.jnt.2004.04.005
- [4] Joe Kramer-Miller, "Structural Properties of Power Digraphs Mudulo *n*," Manuscript.
- [5] M. Krizek, F. Lucas and L. Somer, "17 Lectures on the Femat Numbers, from Number Theory to Geometry," Springer, New York, 2001.
- [6] C. Lucheta, E. Miller and C. Reiter, "Digraphs from Powers Modulo p," *Fibonacci Quart*, Vol. 34, 1996, pp. 226-239.
- [7] I. Niven, H. S. Zuckerman and H. L. Montgomery, "An Introduction to the Theory of Numbers," 5th Edition, John Wiley & Sons, New York, 1991.
- [8] T. D. Rogers, "The Graph of the Square Mapping on the Prime Fields," *Discrete Mathematics*, Vol. 148, No. 1-23, 1996, pp. 317-324. <u>doi:10.1016/0012-365X(94)00250-M</u>
- [9] L. Somer and M. Krizek, "On a Connection of Number Theory with Graph Theory," *Czechoslovak Mathematic Journal*, Vol. 54, No. 2, 2004, pp. 465-485. doi:10.1023/B:CMAJ.0000042385.93571.58
- [10] L. Somer and M. Krizek, "Structure of Digrphs Associated with Quadratic Congruences with Composite Moduli," *Discrete Mathematics*, Vol. 306, No. 18, 2006, pp. 2174-2185. <u>doi:10.1016/j.disc.2005.12.026</u>
- [11] L. Somer and M. Krizek, "On Semiregular Digraphs of the Congruence $x^k \equiv y \pmod{n}$," *Commentationes Mathematicae Universitatis Carolinae*, Vol. 48, No. 1, 2007, pp. 41-58.
- [12] L. Szalay, "A Discrete Iteration in Number Theory," BDTF Tud. KÄozl, Vol. 8, 1992, pp. 71-91.
- [13] L. Somer and M. Krizek, "On Symmetric Digrphs of the Congruence x^k ≡ y (mod n)," *Discrete Mathematics*, Vol. 309, No. 8, 2009, pp. 1999-2009. doi:10.1016/j.disc.2008.04.009
- [14] B. Wilson, "Power Digraphs Modulo n," Fibonacci Quart, Vol. 36, 1998, pp. 229-239.