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Abstract 
 
For each pair of positive integers n and k, let G(n,k) denote the digraph whose set of vertices is H = {0,1,2,···, 
n – 1} and there is a directed edge from a  H to b  H if ak  b(mod n). The digraph G(n,k) is symmetric if 
its connected components can be partitioned into isomorphic pairs. In this paper we obtain all symmetric G 
(n,k). 
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1. Introduction 
 
In [12], L. Szalay showed that  is symmetric if 

 or . In [1], the authors 
proved that if p is a Fermat prime, then  is 
not symmetric when  or , but it is symmet-
ric when . And the following theorem is part of 
Theorem 5.1 in [13]. 

 , 2G n
8

5r 


 2 mod 4n 

k 

4 modn 

3r 
 2 , 2rG p

4

Theorem 1.1 ([13] Theorem 5.1) Let 1 2n n n , 
where 1 2 and . Suppose that 

1 , where . Then  is symmetric if 
one of the following conditions holds: 

1, 1n n 
m m 

1 2gcd ( ) 1n n 
 ,G n k2n  1

i)  and 2, 2,m k  12 ;m k  

ii)  and 3, 2,m k  22 ;m k  

iii)  and  4m  2k 
In this paper we prove that if  is symmetric, 

where  and 
 ,G n k 

2k  m2 n , then  or m, k 
satisfy one of the conditions of the above theorem. 

5,m  4k 

The outline of this paper is as follows. In Section 3 we 
obtain all symmetric  by direct computation. 
In Section 4 we prove some properties about digraph 
products which will be useful in the proof of our main 
theorem. In Section 5 we state and prove the main theo-
rem of the present paper. 

2 ,mG k 

 
2. The Carmichael Lambda-Function 
 
Before proceeding further, we need to review some pro- 
perties of the Carmichael lambda-function .  n

Definition 2.1 Let n be a positive integer. Then the 
Carmichael-lambda-function  n  is defined as follows: 

 
 
 
 
   

       1 2

2

1

1 21

1 1,

2 1,

4 2,

2 2   if  3,

1   if   is  odd prime,

lcm , , ,i r

k k

k k

r e e e e
i ri

k

p p p p an

p p p











  













 

 

p    

 

where pi are distinc primes. 
The following theorem generalizes the well-known 

Euler’s theorem which says that  if and 
only if 

  1 mod  na n  
 gcd , 1a n  . 

Theorem 2.1 (Camichael). Let  Then , .a n a  n   
 1 mod  n

ord g

 if and only if . Moreover, there 
exists an integer g such that  where 

 denotes the multiplicative order of g modulo n. 

  1a n 
nord g 

gcd ,
  ,n

n

For the proof see [5, p. 21] 
 
3. The Case n = 2m 
 
Let G be a digraph and a be a vertex in G. The indegree 
of a, denoted by ind(a) is the number of directed edges 
coming to a, and the outdegree of a is the number of 
edges leaving a. Particularly, let  denote the 
indegree of a vertex a contained in 

 indk
n a

 ,G n k . 
There are two particular subdigraphs of  ,G n k . Let 
 1 ,G n k  be the induced subdigraph of  on the 

set of vertices which are coprime to n and 
 ,G n k

 2 ,G n k  be 
the induced subdigraph of on the set of vertices 
which are not coprime with n. We observe that 

 ,G n k 
 k1G n,  
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and  are disjoint and that 2 ,G n k  ,G n k   

2 , that is, no edges goes between 
 and . 

 1 , k G
 ,k

 1 ,G n k

k

G n n k
G n 2 ,G n

 ,G n

. A

,



2

It is clear that each component of  contains a 
unique cycle, since the component has only a finite 
number of vertices and each vertex has outdegree 1. The 
following lemma tells us that every component contained 
in  is determined by its cycle length. 

 k

nd 

 ,G n k

1t 



 ,G n k
Lemma 3.1 ([13] Corollary 6.4) Let  be a fixed 

integer. Then any two components in  con-
taining t-cycle are isomorphic. 

1

Definition 3.1 We define a height function on the ver-
tices and components of . Let c be a vertex of 

, we define h c to be the minimal nonnegative 
integer i such that 

ikc  i ongruent modulo n to a cycle 
vertex in  ,G n k if C is a component of 

 ,G n k
 
 c

 
s

 ,G n k , 
e   suh C we de

in ind

fin

 1 ,G n k

 d

2i

 .h c  p

ei
i

k k
n p

c C

The indegree and the height function play an impor-
tant role in the structure of . We need the fol-
lowing results concerning the indegrees and heights. 

 ,G n k 

p

i

Lemma 3.2 ([14]) Let  be the prime  
1

i
r

i

e
in




factorization of n. Let a be a vertex of positive indegree 
in . Then 

 1 1
gcd

r r

i i
 

 
     , ,ie

ia pa k  

where    if 2 k  and 8 ie
ip , and 1i 

 ,e k

 other-
wise. 

Lemma 3.3 ([11] Theorem 3.2) Let p be a prime. Let 
a be a vertex of positive indegree in , and 
assume that 

2G p
lp

ind ep

2

k  and . Then  for some 
positive integer t and 

0a  l  kt

l k      1 gcd ,k tk ea p p    

where    if 2, 2p  k  and  and 3,e l  1   
otherwise. 

Lemma 3.4 ([13] Lemma 3.2) Let p be a prime and e, 
k be two positive integers. Then 

 ind 0 .e

e
e

k k

p
p

     

Lemma 3.5 Let p be a prime and  be 
two positive integers. Let h be the positive integer such  

2,e 2k 

that . Then 1k e  h hk   2 ,eh h G p k

 ,ep G p k
. 

Proof. It is clear that  and 2  h p   

 And   , .ep k2h G  0 modkp p
i e

v

 if and only if 

 This proves the Lemma.□  .eik 
Lemma 3.6 Let p be a prime and  be two 

positive integers. Let 
,e k  2

 ep u   where u is the maxi-
mal divisor of  relatively prime to k. If G is the 
component of  containing 1, then 

 ep
 ,eG p


k

   min : ih C i v k  

Proof. Let  min : .ih i v k  Then there exists a di-

visor d of v such that d is not a divisor of 1hk  . By 

Theorem 2.1 there exists a vertex  ,eg G p k  such 

that .ep
ord g uv  Let mod

uv
eda g p  . Then  ep

ord a

d  and 
1hka


 is not congruent modulo  to 1, but ep

 od1 mka
h

 ep . We have  by the 

definition of height function. 
  h C h h a

Conversely if ,a C  then there exists  such 

that 

1j 

  ,k e1 mod
j

a p  then .ep
ord a k  But ,ep

ord a uv  hence 

.ep
ord a v  And  1 mod .

hka  ep  That is   .hh C   

Lemma 3.6 is proved.□  
Now we can prove our first result. 
Theorem 3.1 Let  be two positive inte-

gers. Then 
2, 1k m 

 2 ,mG k is symmetric if and only if one of 
the following conditions holds. 

i) 1;m   
ii) 2,2 ;m k  
iii) 4, 2;m k   
iv) 5, 4;m k   
v) 2m3, 2 , .m k k m   
Proof. The case 3m   follows directly by simple 

computations, so we may assume that , thus 3m 
  22 2m  . We first suppose that  is sym-

metric. Let 0  and 1  be the components of 
 2 ,m kG

C C
 2 ,mG k  containing the vertex 0 and 1, respectively. 

Then it is easy to see that 0  is just 2 . Since 
the cycle lengths of 0  and 1C  are 1, by the assump-
tions and Lemma 3.1 we must have , thus 

C 2 ,mG k

0C C



1

C

   0 1h Ch h C 
1h

. 
If  , then k  and m    gcd 1nd2 ,k i 2m  

 0 2d 1min   , where 1  if k is odd, and 2  if 
2 k . We must have 22m k . 

If 2 k , then 1  is a cycle, however  is not a 
cycle. Hence we may assume that 

C 0C
2 ,k r 1r   and 

2h  .  We have    22m
1 min : ih h C i k   by  

Lemma 3.6. It implies that 

 1 2r h m rh    .           (3.1) 

Since  0h h C , by Lemma 3.5 we have 
1 .hk m k   h              (3.2) 

Combining (3.1) and (3.2), we obtain 
 1 12 1r h hk m rh 1,       

so 3h   and 2r  . By an easy computation, we have 
       5 6,4,2,2 , 5,2,3,1, , ,m k h r , 4,2,2 ,  or   4,2,2,1 .

 16,2GBy computations we know that both  and 
 32,4G  are symmetric. For  and 32, 2G   , 464G , 
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by Lemmas 3.2 and 3.3, we have , and for 
any vertex a in 1  which has positive indegree, 

. Similarly , 

 2
32ind 4 8

  16
C

 2
32ind 4a  4

64ind 16  a 84
64ind  . 

Thus neither of them are symmetric. 
Finally, from Theorem 1.1 it is clear that if m, k satisfy 

one of i) - v), then  is symmetric. Theorem 3.1 
is proved.□  

2 ,m kG

G

 
4. Properties of Digraphs Product 
 
Given two digraphs 1  and 2G . Let 1 2G  be the 
digraph whose vertices are the ordered pairs 

G
 1 2, ,a a  

where i  and there is a directed edge from ia G  1 2,a a
b

1 2 1,n n

 
to  if there is a directed edge from i  to i  
for  In [13] L. Somer and M. Krizek proved the 
following fact: Let  where 

 1 2,b b
1, 2.i 

a

gcd ,1 2n n n   
then 1 2  And the canonical 
isomorphism is given by  where 

 G n k , ,n k  G n k

, .
 1 2,a a a

G 
a   

  In general we have  mod ,i ia n

 G n k

r

ii
n




 1 2gcd ,n n 

1, 2.

 , ,k

i

 , re e
rk G p 

n n n

 , k1 2
1 2

e
G p ,

p

G p   

if 
1

 is the prime factorization of n. We need 
this fact and the following lemma. 

ie

Lemma 4.1 ([4] Lemma 3.1) Let 1 2  where 
. Let iC  be a component of 1  ,iG n k

1 2

. 
And the cycle length of iC  is i . Then t C C  is a 
subdigraph of G n  consisting of  com-
ponents, each having cycles of length . 

 , k



  1 2gcd ,t t
 1 2lcm ,t t
 1 2gcd ,n n



 1Lemma 4.2 Let 1 2  where n n n  . If 
 is symmetric, then  is symmetric.  1,G n k

G n

G n

1 2k G n


,k

( , )k
Proof. It follows immediately from Lemma 4.1 and 

the fact .□   , ,k 
k

G n
 ,G nLemma 4.3 If  is symmetric, then  , rG n k  

is also symmetric for any . 1r 
 ,G n k


Proof. Assume that  has 2m components, say, 

1 2 2  and for each  there exists 
an isomorphism 

, , , mC C C , 1, 2, ,i m
i  of digraphs: 

: .mi i iC C 

 d  

 

If two vertices x, y are in the same component of 
, then there exists a vertex z and positive inte-

gers u, v and 
 , rG n k

mo
ukx z n ,  which 

implies that x, y are in the same component of 
mod  

vky z n
 ,G n k


. 
It follows that if D is a component of , then 
there exists a  such that 

 , rG n k
 2,j  2m1, , jD C . 

Let 
1

1s

1 ji
 and  where C  D 2

1

s

m ji
E

1C   jD , 

1  and ,  are components of 
. If 

1, 2, ,j s 
 , rG n k

lE

1

2s1, 2, ,l  
,x yC  and  mod  ,

rkx y n
1 modk

  then there 
exist  such that 1 2, ,y y , ry  y  ,x y n  and 

 1 modk
i i  .y y  n  So  1 k  1 mod  x y n  and  k

iy    1
 1 1 moi  d  ,y n   we get  1 1

rk    mo  dx y n   
and 1  still preserves arrows e consider 1C  and 

1mC

if w

  as subdigraph f s o  , rk  

1 2

G n
It fo s sllows that   and 1  is still an isomor-

phism if we consid 1C   as subdigraphs of er 1C  and m

 , rG n k . Hence  G n  is a symmetric. Lemma 
ved.□  

Let G be a digra

, rk ls

h. Let 

o 
4.3 is pro

G  d g enote the number of 
vertices in G, and let     ax .c GmM G ind c  

Lemma 4.4 Let G dand H o digraphs, an be tw  ,a G  
.Hb  Then       ind , ind ind ,a b a b   HM G   

    ,M G M H  and G H G H  . 
Proof

of th

ve

. It follows im hmediately from t e definitions.□  
The following lemma is the key lemma for the pr f oo

he digraph whose set of 
e main result of this paper. 

Lemma 4.5 Let mO  denote t
rtices is  0 1 1, , ma a a    and there is a directed 

edge from 
,a

ia  to ja  if 
ph

and on
o 

ly if 0ja a a  . Let G 
and H be tw digra s such that all vertices  and H 
have outdegree 1. Then m mO G O H   if and only if 
G H . 

in G

: m mO G O H     
et 

Proof. Assume that is an iso-
morphism of digraphs. L

  0 ind 0G x G x   ,   1 ind 0G x G x   , 

   0 0H x H ind x   ,   1 0H x H ind x   . 
 and If 1x G      ind , ind 0,a x a ind x   th  en

  d 0.  Lin  ,a x et     ', , ,ja x a x   then we have 
'

1x H  and .ja a  N p 1 1 1:G How we define a ma    
by   ' ,1 x x 1.  x G Obviously, 1  is inj

If
ective. 

 '
1,y H  eth e exists a ve x  ,a y  of pn ther rte osi-

tive i in mO Gndegree   such that     ' .a y   
Hence 

, ,a y
  '

1 y y   and 1  is also surjecti
Now  that 1

ve. 
we assume ,x y G , and there is a directed 

edge from x to y. Let    ' ', ,1 1x x y y  by defini-
tion we have 

 
  x a x  ',  and ,a   ,a y   

 ', .a y  We know   that there is a directed edge from
 ,a x  to  , ,a y  then there is also a directed edge 
from    to ',a x  ',a y  since   preserves arrows. So 
there  a d d edge from 'is also irecte x  and 'y . We 
showed that 1  preserves arrows. 

For any 1y G , let 

   
   1 0

 is a directed edge from  to ,

there is a directed edge from  to ,

x G x y

x G x y



 
 

y

d the above union is a disjoin  union since each 

0 0 thereE y 

E y

then 

An
ve

 
1

0 0y G
G E


  

t
rtex has outdegree 1. If   '

1 y y  , by Lemma 4.4 we 
have 

       
       

0 1

' '
0 1

'

,

                ind ,

a y m E y E y

a y m E y E y

 

  
 

indeg
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and    '1 1E y E y  maps  1E y since 1  into 
. Then we also have  '1E y    ' .0 0E y  Now e 
ne a map 

E y  w
can defi 0  from  to 0 0G H  such that for 
any  0x yE ,      0 .0 1x E y  

Fi ly we can define : G H
 

nal    

   i ia a a G  

fo

if ,  

r 0,1.i   It is easy to show that   is bijective. 
Now we prove that   preserve arrows. Suppose 

,x y G  
 need

and ther dge from x to y. We 
 

e is a directed e
only to treat the case when 0x G  and y 1G . 
Le   't   1y y y   . By the construction of 0  we 

     '0 0 ,see that x x E y    so there is also a arrow 
from  x  to  y . It is easy to show that the number 
of direc is equal to the number of di cted 
edges of

te
 
d edges of G 
H. Thus 

re
  is

 
 an orphism. Lemma 4.5 is 

proved.□
 
5. The Main Theorem 
 

o begin wi

 isom

T th, we prove the following lemma. 
 component ofLemma 5.1 Let E be the   64 ,4G q  

be another 
phic to F. 
lid. 

containing the vertex 0 where q is odd and F 

is 
 where 

pr

component of  64 ,4G q . Then E is not isomor
An  d the similar result for 32 ,2G q  is also va

Proof. We only prove the case for  64 , 4G q , the 
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is not isomorphic to F ed.
Theorem 5.1 (Main Theorem) Let and n

. Lemma 5.1 is prov □  
2k     
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