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1. Introduction

Let R®*=RxRx---xR (s times, s>1 integer) be the direct product space,
and let W (X, X,, %)= W, (X )W, (X,)---W, (X, ), where W (X)>0 be even

S

weight functions. We suppose that for every nonnegative integer n,

ij"Wi(X)dx<oo, n=0,12,, i=12,,s.
0

In this paper we will study to approximate the real-valued weighted function
(WF)(X, %, %) by weighted polynomials (WP)(X,X,,-=,X) , where
P(Xl,xz,---,xs) €Prnn (RS). Here, B, ., (Rs)(z: R,:s(RS)) means a class of
all polynomials with at most n-degree for each variable x,i=12,---,s. We
need to define the norms. Let 0< p<oo, and let f:R°®—>R be measurable.

Then we define

LTI x)
"\Nf ”LP(RS) = sup (Wf)(xl'.__,xs )|’ —

(% )R

P ve o
dxl---dxs] , if0< p<oo;
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We assume that for 0< p<o the integral is independent of the order of
integration with respect to each x;,i=12,---,5. When "\Nf "LP(RS) <00, we write
Wf e L? (RS ) If p=oo,we require that fis continuous and
lim, W (X)f(X)=0, where |X]| =|(%,-,x,)| = max|x|;i=1,2,-+-,5. Then
we write Wf €C, (RS) .

Our purpose in this paper is to approximate the weighted function
Wf e L® (RS) by weighted polynomials WP;P e, (RS) . In Section 2, we give

a class of the weights which are treated in this paper. In Section 3, we state our

main theorems. First, we consider the Lagrange interpolation polynomials. Next,
we give the necessary and sufficient conditions for the best approximation. In

Sections 4 and 5, we will prove theorems.

2. Class of Weight Functions and Preliminaries

Throughout the paper C,C,,C,,--- denote positive constants independent of
n,X,t or polynomials F’(X) . The same symbol does not necessarily denote the
same constant in different occurrences. Let f (X)~g(X) mean that there exists
a constant C>0 such that C*'f (X)S g(X)SCf (X) holds for all xel,
where | c R isa subset.

We say that f:R— [0,00) is quasi-increasing if there exists C>0 such
that f(X)<Cf(y) for 0<x<y.Hereafter we consider following weights.

Definition 2.1. Let Q:R —>[0,oo) be a continuous and even function, and
satisfy the following properties:

(a) Q'(X) is continuous in R, with Q(O) =0.

(b) Q"(x) exists and is positive in R\ {0}.

(¢) lim,,, Q(x)=c0.

(d) The function

is quasi-increasing in (0, OO) , with

T(x)=A>1 xeR\{0}.

(e) There exists C, >0 such that

Q'(x) . [k
Q= e

Then we write W= exp(—Q) € f(Cz) .
Moreover, if there also exists a compact subinterval J (9 0) of R, and
C, >0 such that

, aexelR.

,aexeR\J,

then we write W=exp(-Q)e .7:(C2 +). If T(X) is bounded, then the weight
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w=exp(-Q)e .7:(C2 +) is called a Freud-type weight, and if T(X) is
unbounded, then wis called an Erdés-type weight.

Let w(x)=exp(-Q(x))e }'(C2 +) , 0<A<(m+2)/(m+1) and m=>1 be
an integer. Then we write We F, (C"1+2 +) if Q is C™?-class and there exist
C21 and K=>1 such that for all |X| 2K,

Q0 @
Q(x)

and

‘()| | Q"

()| _[" ()|
Q (%) |

for every k=2,---,m and also

Specific examples are shown in the following:
Example 2.2 (cf. [1] [2]). (1) If an exponential Q(X) satisfies

(xQ'(x)
Q(x)

where A;,i=12 are constants, then we call w= exp(—Q (X)) the Freud
weight. The class F (C2 +) contains the Freud weights.
(2) For a>1,1>1 we define

Q(x)=Qu (x)=exp, X" ~exp, 0),

1<A < <A

21

where exp, (x)= exp(exp(exp---exp x)) (1times). Moreover, we define
Qo (X)=|x[" {expI (|x|“)—a*exp|(0)}, a+m>1,m>0,a>0,
where a =0 if =0, and otherwise & =1. We note that Q, gives a

Freud-type weight, thatis, T(X) is bounded..
(3) We define

Q, (x)=(1+)" -1 a>1.

(4) Let w= exp(—Q) € .7:(C2 +) , and let us define

) 915) e T /09

Q(x) " e Q(x)/ Q(x)

p,=limsup—

X—>0 Q (X)

If u, =pu ,then we say that the weight wis regular. All weights in examples
(1), (2) and (3) are regular.

(5) More generally we can give the examples of weights we F, (C””2 +). If
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the weight w is regular and if Q € C™?(R\{0}) satisfies definition (2.1), then

for the regular weights we have we F, (Cm+2 +) (see [3], Corollary 5.5 (5.8)).
Proposition 2.3 ([3], Theorem 4.2 and (4.11)). Let m be a positive integer,

0<A<(m+2)/(m+1) andlet w=exp(-Q)eF; (C™+). Then for

u,v,a, R, we can construct a new weight w, . eF, (Cm+l +) c ]—'(C2 +)

such that

TW(X)”(“X ) (1+Q(x) (1+|Q |) w(x)~w,, . ,(x) onR,

and for some C>1,

ayc(W,,,,)<a,(w)<ag,(W,,,,) and Tu,n, ()~ Tu(x)=T(x),

where a, ( #vaﬂ) and a,(W) are MRS-numbers for the weight W, ap OF
W, respectively, and Topapr Tw are correspond for W, . or w; respectively.

Let {pn} be orthonormal polynomials with respect to a weight w; that is,

p, is the polynomial of degree 11 such that

I P, (X) Py (X)W (X)dx =5, (the Kronecker delta).

For 1< p<o, we denote by L° (R) the usual L? space on R (here for
p=co,if wfel” (R) then we require f to be continuous, and fw to have
limit 0 at oo ). Let we F (Cz +). We need the Mhaskar-Rakhmanov-Saff
numbers (MRS numbers) a,;

X :Eﬁ&(ai)du, x> 0.

(1-v*)

we see easily

lima, =0 and lima,=0

X—>0 x—+0

and

.a . a
lim—==0 and lim =% =co.

X=X x=>+0 ¥

For wf el (R) (l <ps< oo) the degree of weighted polynomial approximation
is defined by

E, (Wf

3. Main Results

Let Wiej’:(C2 ) i=1,2,---,5,andlet W (X )—Hsl w, (X; ) , where

X =(X, X;,++, X, ) € R*. Then we have the following theorem.
Theorem 3.1 ([4], Theorem 3.3). We suppose

w; =exp(-Q;)e 7, (C*+)(0<1<3/2), j=12,,5 andlet

2/3
(i) BLLEN
Tj(an )gc[a“)] ,j=12,---,8

n
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If Hiszl{TinVi}f eC, (RS), then there exist P, € R, (RS), n=12.3,-- such
that we have

—0 asn— oo,

w(f-PR)

First, we consider the Lagrange interpolation operators. We construct the

w(w)

orthonormal polynomials p,; with respect to the weight w, for each
i=12,--s . Let X
orthonormal polynomial p,;, that is, pn,i(xkim)=o, ki =12,---,n and put
S ={(Xk1'n’l,"‘,st‘nvs);lg k <n,i=1 2,---,8}. Then for Wf eCy(R) we define

n

i < Xoani < <X 1=L2,---,8 are zeros of the

the Lagrange interpolation polynomial on S, as

Lo (£ %) = 2 2 (Xna s X ) T T bons () (3.1)

k=l k=1

where

L (%)= Pul) (32)
i (%) (Xi _in,n,i) Phi (in,n,i)

In the rest of this paper, if w,i=12,---;s are the Freud-type weights then
we suppose a) = o(1)n*°.
Theorem 3.2. Let W, eJ’-'(C2 +),i:1,2,---,s , and let f:R°*—>R be

continuous. If
s B2
Hizl{(1+xf) "Vi(xi)}|f(xl,---,xs)

holds, then there exists n, >0 such that for n>n,

i o kzn"ll_[isﬂ}‘k.,n,i f (Xkynvl’ " X )
-

koL

sCHHfl{(lJr xf)ﬁ w2 (X )} f (%0 %)

€ Cy(R%) (3.3)

(3.4)

w(®)

where for each i=12,---,5, invnvi(ki:1,2,---,n) are zeros of P,;(X). In

particular,

lim Zn: “'Zn:Hiszlﬂki,n,i f (Xk1,n,1""’ st,n,s)

n—o k=l k=1 (35)
:.[:.“J.:His:lwiz(xi) f (le---,Xs)dxln-dxs.

Theorem 3.3. Let WiGE(C3+)(O</I<3/2),i=1,2,3,...,s' Let f>1/2,
andlet f:R°—>R satisfy (3.3), then we have for n=12,---,

Tt (0], =S T ) w ) 1 (xe0x)
)

e (3.6)
L (]R Loo(Rs)

where for each =125, X .., k=12-,n are zeros of pn‘i(Xi). In

particular, if H;{(1+ X7 )(/3/2) T (% )W (% )} f(x,.%)eC, (RS) , then we
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have

lim =

n—o

C(E)

Hiszlwi(f_l‘n(f))

For p=#2 we also obtain the similar results. We need a function as follows:

X) = ! . (3.7)

(1+Q(x)"T(x)

Theorem 3.4. Let WiGE<C3+),O</1<3/2(i:1,2,---,5).Let l<p<2 and
ﬂ>]/p, and let ‘I’(X) be defined by (3.7) for each w,i=12,---;s. If

f :R > R iscontinuous, and satisfies

L) 7 ) it o) () £ ()

(3.8)
X eR®, i=12s,
then we have
s /2 _
I (Ol <) 02 2 0 ) G9)
n=12,.
Especially, if f satisfies

‘Hf_l{(u X2 )T () W )}W (X) F(X)|eC,(R°), (3.10)

then we have
lim | (- L,(f ))||Lp(RS) =0. (3.11)

For 2< p<o we have the following:
Theorem 3.5. Let W, €F, (C3 +), 0<A<3/2(i=12,-,5), and let satisfy
T, (aﬁi)) <Cn¥’.Let 2<p<w and A >1/p.Furthermore we assume

Q [aE)JZC(Iog(Qi (a§‘>)))4, i=1,2,,s. (3.12)

If f:R° >R iscontinuous, and satisfies

T T () w2t () w () ()

<o, X eR®, (3.13)

then we have

T v oo, (1)

LP (&%)

<c Hnjl{(u )T () )

(=)

Especially, by (3.13) we have
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=0.

Le(we)

lim

n—o0

{TT Y ()W (f-L,(1))

Remark 3.6. (1) We note that (3.13) means

(HMT,V“)W feCy(RY),

where Hiszl{(1+ x? )ﬂlz TV (X, )‘Pi’l/4 (X )}W ~W"e .?’-'(C2 +) (see Theorem
2.3).

(2) All examples in Example 2.2 hold (3.12).

(3) To prove Theorem 3.5 we use Proposition 4.5. Then Assumption (3.12)
plays an important role.

Next, we characterize the best approximation polynomial (cf. [5]).

Theorem 3.7. Let O<p<o. There is a best approximation polynomial
P; € R, such that

Epns (W zpleg:]:s"W (f-P ||U’ R®) ”W

Theorem 3.8 (Kolmogorov-type theorem). P e is a best of approximation
for a continuous function f with ”m\(xl,---,xs)\aww (%, %) F (%, %) =0, if
and only if for each polynomial Qe 7,,,

max [W(xi,---,xs)(f (xl,---,xs)—P(x1,~~-,xs))JQ(xl,n-,xs)zO, (3.14)

(4% )eA

LP ]RS

where A denotes the set (which depends on f and P ) of all points
(Xl, -, S)eA for which

M (o) (£ (m00026) = P (300%,)

:"W(f - P) L(re)”

WGF(C2 +),i=1-,s and 1<p<oo. Let

Theorem 3.9. Let W = Hsl
<k. < ) =1--,5) be a linearly independent

P » where K= k)

system satisfying W¢K elL ) and we consider polynomials

(0
(R
Q(x)=3

ke=1

"'%C(k1,~-,ks)¢(k1,-~,ks)(X)' (3.15)
Let Wf el (]RS) . The polynomial

P(X)= Z ch1 )Pl ) (X) (3.16)

Ke=l kgl

is a polynomial of the best approximation for f if and only if for every

polynomial (3.15) the following equality (3.17) holds.
Jes QUON(X)=P ()| sign( (x) ~P (X)) W * (x) DX

=[]

x[sign(f(xl,m,xs)—P(xl,m,xs))]w“(xl,-'-,xs)dxl---dxS =0

(3.17)
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holds. If p=1, we also assume that f(X)—P(X) vanish only on a set of

measure zZero.

4. Proofs of Theorems 3.2, 3.3, 3.4 and 3.5

Lemma 4.1. Let X, ;<X j,; < +<X,; be zeros of the orthonormal

polynomial p,;,and let

0<ji<n-1,i=12,--s

where a; . ; are coefficients. If for every (Xklyn’l, X s ) ,

s

P (Xns s Xons ) =0, 1€k <ni=1,0 s, (4.1)

n

then we have P,_, =0. Therefore, for P, (Xi, Xpytees XS) eP, (RS) we have
Pn—l = I‘n (Pn—l)' (4-2)

Proof. Now we fix any (sz,nyz,--nxks,n,s)eRH, and then we consider the
polynomial Q,, (%) in 7, (R) such that

11=0

n-1
_ j i j
Qn—l(xl)_ Z[ Z ajl,m,jsxkaz,n,Z"'Xk:,n,stlh'
0<ji<n-1,i=23,-s

Since
Qn—l(xkl,n,l) =0, k1 =12,---,n

(see (4.1)), all coefficients of Q,; (Xi) equal to zero, that is,

o

2.
sz,n,z ks.n,s

A =0, foreach j =0,1,---,n-1. (4.3)
I

Next, we fix any

3 (0< ji<n=1) and (X001 % 0 ) ERT?,

and we consider R, €7, (R) such that

n-1
— I i i
Rn—l(xz)_ Z Z aj1,~--,jsxk33,n,3'”Xk:,n,s Xzz-
0<jj<n-1,i=3,4,-.s

j2=0
Then by (4.3), we see
Rnfl (sz,n,z) = O, k2 = 1’ 2l el n.

Hence,

> ay. X, cexh =0, foreach j, j,=01-,n-1.
0<jj<n-1,i=3,4,-.s

If we continue this method inductively, then we have

n-1 .
>a, X% =0, foreach j;, j,,--, jo, =0,1---,n-1. (4.4)
Js=0
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Weput H _,eP (R) as
n-1 )
Hn—l (Xs ) = Z ajl,,..'js XS]S y
js=0
then from (4.4) we have H_ (Xk o S) 0,k, =1,2,---,n. Therefore, we conclude

a, .. =0 j=02%--n-1(i=12-5s),

Rl

thatis, P_ =0. #

n

In the rest of this paper, we use the following notations:
W =TT w, X =0 )0 X (u)=(uye,u,)
D(X)=dx---dx,, D(X (u))=du,--du,.
We also use
Pos(R*) =R (R*):={P,| P, (x,,+++, %) are polynomials with degree < n
for each x;,i=1,---,s}.

Proposition 4.2 (cf. [6], Theorem 1.2.2). Let W, EF(CZ-I-),i:l,Z,---,S, and
let n>1 be an integer. Then for all Pe’Pans( ),we have

o POX (W)W (X () D(X (u))

n n (4.5)
= Z Zﬂkl,n,l.'./‘Lks,n,sp(xkl,n,l’""st,n,s)i
ks=1 k=1
where
Aknl _[ Ik iV )dX i=12,,s. (4.6)

Proof. (see [6], pp.12-13). Let PP

n-1;s

( ) From (3.1) and (4.2) we see
P(X)=L,(P:X)
:kZ: z:klnl( ) ks ns(Xs)P(Xkl,n,l'”"xks,n,s)'

Hence we have

o P (X (u))W? (X (u)) D(X (u))

n
Z 1nl ﬂks,n,sp(xkl,n,l'“"st,n,s)'

H M’

that is, (4.5) holds. Now, we see that (4.5) holds for any Pe P, . (RS) . In fact,
for P e, (R°) weset

P () = QUt w6 [T Pt (4)+ RO%.01%,)
QReR, ..(R°).
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Then
Joe POX (U)W (X (w)) D (X (u))
= [ QUX (W)L, Pa (uy )W (X (u)) D(X ()
o ROX (W)W (X () D(X (u))
= [ ROX (U)W (X () D(X (u))

n

n
= z"'kz/lkl,n,l'"ﬂksvnysR(Xkl’n‘l'm’st'n's)
=

ke =1 1
= kil' . kilj’kbn,l . '/’Lks,n,s (Q(Xk1,n,1' ] st,n,s )Hiszl pn,i (in,n,i )+ R(Xkl,n,l’ T st,n,s ))
s = 9=

n n
- Z”'Zﬁ'kl,n,l”'ﬂ'ks,n,sp(xkyn,l"”’stvn's)'
ks=1 k=1

that is, (4.5) holds forany Pe 7, . (R°).  #
Lemma 4.3 ([7], Theorem 2.1). Let W=eXp(—Q) € J’:(C2 +), beR.If wisa
Freud-type weight, then we assume a, :0(1)n2/ ¥, Then there exist constants

C,,C, >0 such that for every integer n>1,
Clj'i"1 (1+x )b dx < zn“ik,nw‘z (Xen ) (1%, )b < CZ'[: (1+x° )b dx.
n = "

Proof of Theorem 3.2.

i“ inlelk,nl f(xkl,n,l" Xk ns)
ke=1 k=1

$ BT 2|

1

®
i

A
.

e

aLl] s S\ B
. J-—a,[f] e J.,aLl]Hi:l (1+ Xi ) Xm V. dXS
by Lemma 4.3

<C

LT (0 w7 ()] 1 (5.,

()

Therefore we have (3.4). To prove (3.5) we use (3.4) and Proposition 4.2. For
PeR, (RS) we see
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an::l. "kzn::l{H;lki,n,i} f (Xkl,n,l"'xks,n,s)

_I:I:f (%, X )WE (%)= W2 (%, ), -+ g

é...é{niﬂmi}(f ~P)(Xns - X

+

<

n

ZZH:{H;’%m}( f- P)(Xkl,n,l o st,n,s)

K=l kgl

I P) Ot () (i -

<L (+5¢) W ()] (F =P)(,-x,)

<

()
M) wefr -]
[ LT ) i
<cfIT{fvs ) w0l =Pl
Now, we can take P =P, as
i IT; (5 ) W ()} (F =P ) (%-1%) UL

B
In fact, when we put His:l(l+ Xf) W (x) ~W, e ]:(CZ +) (see Proposition
2.3), from (3.3) we see

H;{Ti]/“(xi)(1+ xiz)ﬂ wiz} f SCH;{(h xf)ﬁ w, (X, )} f eCy(R?).

Hence from Theorem 3.1 with Wﬂ we have (4.7). Therefore we conclude
(3.5). #

Proof of Theorem 3.3. By Proposition 4.2 with P=L2(f) and Theorem 3.2
with (3.4),

[T wa (1)

L (re)

n

Z {His:lﬂki'nyi }{Ln ( f: X1 X ms )}2

Il
M:

S A
<ol fies v tren],

2

= CHHL{(H X )(ﬂ/z) w, (% )} f (%, %)

()
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that is, we have (3.6). From Theorem 4.1 with

B2
His:1<1+ Xiz) W (x)~W 512 € ]:(C +) (note Proposition 2.3) and our
assumption, there exists P, , € P, such that

T fto) ™ w )] (1 =)0 )

2
=0.
L“‘O(Rs)

lim

n—o0

Then

W (F =L ()] e S (F =)
sHHfl{(lerf) Z)Wi(xi)}(f—Pn_l)(xl,---,xs)

L2 Rs "\NL" |||_2 ]RS
§ s 2\(=5/2)
() [T ) ()

2 #

+

T {(1+ X)) w, (% )}(f TP (X%,

L*(RS)
2
—0 as n— oo,

()

We know the following propositions with respect to one variable.
Proposition 4.4 ([8], Theorem 2.7). Let weF, (C3 +), 0<1<3/2. Let
1<p<2 and B>1p.If f:R° >R iscontinuous, and satisfies

o) T ) (w0 )

<o) wx)f(F =R xx)

<o, XeR,

then we have

wi, ( f )||LD(R) <C H(l+ xz)ﬂ/2 TY2(x) ¥ (x) wf ,N=12--.  (4.8)

L*(R)

Especially, if

‘(1+ xz)'g/zTM(x)‘P’“(x)w(x) f (x)[eCy(R),

then we have

n—o0

lim |w( f - L, (f ))||LD(R) =0.

Proposition 4.5 ([8], Theorem 2.8). Let wWe F, (C3 ) 0<21<3/2, and let
satisfy T, ( )< Cn'?.Let 2<p<w and g >1/p. Furthermore we assume

o[ )=c(os(a(a)"

If f:R—>R satisfies

<1+ XZ)MTV2 (X) ¥ (x)w(x) f (x)

<C, xeR,

then we have

[ (ot (1)],,,,, <C H(1+ XY T () (x)w

*(R) (4.9)

n=12,.-..
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Especially, if

‘(l+xz)ﬂ/zT”(x)‘P’“(x)w(x) f(x)eCy (R),

we have

lim|w(f —L,(f))

n—o

=0.

LP()

Proof of Theorem 3.4. We use Proposition 4.4 (4.8).

WL ()l

s ST O [ 06 2 (s (5)]
X‘H:zlk o (% ‘pdxz---dxS
<G 2 S {TTw ()
el G om0 o)
L ]R(l)
X{His:2|ki,n,i (% )} dx, ---dx,
= {1 T () i (xw (0)]
Joo X ST ) [ O )
X{His:Z boni (% )} B % L (g )
<y (107 (0w O () (1) T2 () 92 (s ()
Xjﬂ{g;lki:lmil{nisﬂwi(Xi)}p|f(Xl’xz""’xs)p
><{]_L:3Ikivnyi (% )}dx3~-~dxs e
<CIITL {00 T 0w ) ()] (5,0 fww)-
Hence we have (3.9).
Next we show (3.10). There exists P, € 7 (RS) such that
HH;{(lJr xf)ﬂ/zTil/z(xi)‘}’i‘l/“(xi )}W(f -P) ]
<CE,,, (H ey e . f)
HH 1+x PR (4 )W (x ,)}W(f—Pn)Lw(RS)
<CE,,. (]‘[;{(u X )ﬂ/z T2 (%)W (% )}w, f j
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where B, €7, . Then

"VV ( f- L, ( f ))"LP(RS) < "\N ( f- R )"LF(]RS) +"\NL“ ( f- R )"L"(RS)
SRl () T ) G (1 -2

ey

<

L7 w8
H;{(“ X )WZ T2 (%)W (% )} ()

O TTaf(r) T (1) )W (£ =R)

w(w)

X

U=

i=1

<CE,,. (Hs {(1+ xf)”/ZTiW(xi)\y;ﬂ“(xi)}w, f)—)O as n— 0,

The last convergence follows from (3.9) and Theorem 3.1 with
2 *
1., (1+ x? )ﬂ/ TV (% )P (%, )} ~W" e ]—'(C2 +) (note Proposition  2.3).
Consequently, we have (3.11).  #
Proof of Theorem 3.5. As the proof of Theorem 3.4 we can show Theorem 3.5

by Proposition 4.5 (4.9). Then we also note Remark 3.6 (1) and (3). #

5. Proofs of Theorems 3.7, 3.8 and 3.9

In this section, we characterize the best approximation polynomial (cf. [5]).

Proof of Theorem 3.7. We consider the polynomial class

T={p(x1,...,xs): P (e S"“N"ww}'

Since

||( f _O)W ||Lp(]R5) = " f\N”Lp(RS) !
the set 7 is not empty. Now we select the sequence

n k ks |~
{ Pm,n (Xl’ T XS ) = Zkizo,ilsissaky“-,ks;m Xl1 o Xs }m such that

inf

Ay - kg ;M

(f-P., )W

o(x) =Epns (Wi ).

is bounded. In fact, if it is

Here we see that |am| = maxkj:O,l,---,n;Jsjgs A hm

unbounded, then for

n

Qm,n (Xl"”'xs) = Pm,n (Xl""’xs)/am = z bkl,«»~,ks;mx1kl '”X:S'

kj=0,I<i<s
0
|

o and a fixed term

<1. Then we can take a subsequence {m,}

we see |bk1,---,k5;m

ko ok
X% such that

n
kg, ks, K K
thn(xl"“’XS):Xllo"'xsso+ Z bk1r<-,ks:m|xll"'xss'

ki=0,kj=ki 0 JA<i<s
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We can suppose Db,

im0 as | > oo (if we need it, then we consider
SERMLSHIL SERRLY

L”(RS) <M,

a subsequence). Now,

so we have

-0,

Qm| ,nW

Lw(RS)
that is,

n
_ ko ks:0 k ks _
Qu (X X ) =X X+ Y by s XX =0.
Ki=0,k; 2k o 1<i<s

kg

This is impossible because the {X1
|am| = manJ:O,l,w,n;lejSS A ok
If we select the sequence 8 ., ., —> & ., as | —>oo (if we need it, then we

Xsks} are linear independent. Hence

is bounded. Now we repeat the method as above.

consider a subsequence), then we have

(f— zn: aklfuvksxlkl"'X:SJW _Epns(W.f)'
kj=0,I<i<s LP(R)
Then we put = Zk 01<i<sPke ks X1 ks . #
Proof of Theorem 3.8. Let
”\N ( f— Pn;f ) Lw(Rs) - EWS (W’ f )'

where B €T (]RS). We see that the theorem is trivial if E (W, f)=0. So
we may assume E_ (W, f)> 0. If (3.14) is not true, there exists a polynomial
QeT, such that

max [W(Xl""'xs)(f (Xl""'xs)_Pn;f (Xi""’xs))JQ(Xi""’XS):_ZS

(g JeA

for some &>0. By the continuity of the function, there exists an open subset
G; AcG, such that

W(Xl""’XS)[f (Xi""’XS)_Pn:f (Xi""'XS)]Q(Xl""'XS)<_g' (Xi""’XS)EG'

For A>0 small enough weput R=P,. —1Q,and let

(Xl"’ 5)

M= sup W(xl, . )

(x5 JeR®

First, for (X, X, )€G we see
W (0o ) ( F (%% ) =R (000, %,))
=|W(X1,---,Xs)(
:‘W(Xl,...’xs)(f
+2,1[W(X1,...,XS)(f(Xl,...,xs)_pn;f(Xl,...,xs))JQ(xl,...,xs)
AW (X, X,)

VX Q(Xll...,xs)z
E,o (W, f)’ =226+ A*M 2.
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If we take 1 <M ¢, then we obtain

W O3 )(F (%000 %) =R g,
<E, (W, f) 226+ 26 =E (W, f) —2¢, (%, % )eG.

(5.1)

Next, we assume (Xi,---, Xs) €G® (the complement of G). For large enough
K,, K, >0 there exists 9, >0 such that

E,. (W, f
W () )« D)) 2K
and
E,. (W, f
W(X1, xs) P (X1, S) ; (2 )_ ., |(X1””'Xs) >K,,
that is,

‘W(Xl,...,xs)<f CRERS

Pn;f(xl""’xs))
<E (W, F)=25, [(%,%)|2

)| = max{K,,K,}.
Then we also see that there exists J, >0 such that
‘W(Xl,...,xs)(f(xll...7xs)—Pn;f(xly...,xs))
<En;S(W’f)_52’ (X1!"'|XS)GGC, (Xl,...,xs)

Let 0= min{251,52}>0, and let (Xl,---,xs)eGC. Then, if we take A>0
so small that A <(2M )_16 , We see

W (6 ) 0 %) =R, 0)
g’\N(Xl,'--,XS)(f (Xl,"',xs)_Pn;f (Xi""’xs))
AW (%, % )| Q%+, %)

s

<E,. (W, f)—5+g= E,e (W, F)-2.

- X

<max{K,,K,}.

(5.2)

From (5.1) and (5.2) we see that the condition (3.14) is necessary.

Next we will show that (3.14) is also sufficient. Let Re P be arbitrary
polynomial. Then there exists a point (X1,o:"':xs,o)€ A such that for
Q=P-R,

W (00 %) (F (%1 Xs0) =P (g1 %,0)) ] Q00707 Xs0) 20.
Then we see
W (g0 X0 ) (£ (0707 ) - R(Xm,...,xsyo))r
=W (00700, %0 ) 1 (Xw...,xw)_p(xlyo,...,xs’o))r
2 W (X000 X0 ) (£ (%007 X,0) P (X %,0)) Qg %)
+|W(leo,...,XSYO)Q(Xw,...,XSVO)2

2‘w(xl’o,...,xs,o)(f (Xl,o,---,xs‘o)—P(Xl,o,---,xs‘o))z

= "W (f- P)"i%(m) '
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This means that there is not R with "\N ( f— R)||L°°(R) < "\N ( f— P)”Lm(R) , that
is, P isthe best of approximation polynomial.  #
Proof of 3.9. Let the condition (3.17) be satisfied. We see

Je[tr 0 -PCOJW () D(x)

= [ AT (X)=P(X)}|f(X) P(x)|“s|gn{ (X)=P(X)}WP(X)D(X)
= [ A FOO=QUO}|F (X)=P (X sign{ £ (X) =P (X)W (X)D(X)
< [T OO =QUX)| [ (X)=P(X)|"W?(X)D(X)

SURSHf(X)—Q(X)}W(X)|pD(X)FURSHf(X)—P(X)}W|pD(X)T_ ,

o~

Ll 00=POOM ()] D) <[ [l () -E)w () D(x) |

Hence P ( X ) is the best approximation polynomial.
Next we give the converse assertion. We suppose (3.17). However if p=1, we
also assume that f (X )— P(X) vanish only on a set of measure zero. (3.17) is

equivalent to
jRS¢K(x)|f(x)—Q(x)|"’1[sign(f (x)—Q(x))]wp(x)D(x)zo
forall ¢.,K =(kl,---,ks)(0§kj Sn).Nowwe assume that for some K,
[ ()] £ (X)~Q(X)"[sign((X) - QX)) W? (X)D(X)=5 0,

then it would be possible to find A4 so small on the basis of absolute magnitude
that

ﬂ’J‘RS¢K(X)|f(X)—Q(X)_1¢K(x)|p—1
X[Sign(f(X)_Q(X))_ﬂ*@(X)JWP(X)D(X)>0.
But then
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Consequently,

and we arrive at a contradiction on the assumption concerning the polynomial

P(X). #
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