
American Journal of Computational Mathematics, 2017, 7, 321-349 
http://www.scirp.org/journal/ajcm 

ISSN Online: 2161-1211 
ISSN Print: 2161-1203 

 

DOI: 10.4236/ajcm.2017.73024  Sep. 5, 2017 321 American Journal of Computational Mathematics 
 

 
 
 

Finite Element Processes Based on GM/WF in 
Non-Classical Solid Mechanics 

K. S. Surana1, R. Shanbhag1, J. N. Reddy2 

1Department of Mechanical Engineering, University of Kansas, Lawrence, KS, USA 
2Department of Mechanical Engineering, Texas A & M University, College Station, TX, USA  

 
 
 

Abstract 
In non-classical thermoelastic solids incorporating internal rotation and con-
jugate Cauchy moment tensor the mechanical deformation is reversible. This 
suggests that within the realm of linear mathematical models that only con-
sider small strains and small deformation the mechanical deformation is re-
versible. Hence, it is possible to recast the conservation and balance laws along 
with constitutive theories in a form that adjoint ∗A  of the differential oper-
ator A  in mathematical model is same as the differential operator A . This 
holds regardless of whether we consider an initial value problem (IVP) (when 
the integrals over open boundary are neglected) or boundary value problem 
(BVP). Thus, in such cases Galerkin method with weak form (GM/WF) for 
BVPs and space-time Galerkin method with weak form (STGM/WF) for IVPs 
are highly meritorious due to the fact that: 1) the integral form for BVPs is 
variationally consistent (VC) and 2) the space-time integral forms for IVP are 
space time variationally consistent (STVC). The consequence of VC and 
STVC integral forms is that the resulting coefficient matrices are symmetric 
and positive definite ensuring unconditionally stable computational processes 
for both BVPs and IVPs. Other benefits of GM/WF and space-time GM/WF 
are simplicity of specifying boundary conditions and initial conditions, espe-
cially traction boundary conditions and initial conditions on curved bounda-
ries due to self-equilibrating nature of the sum of secondary variables that on-
ly exist in GM/WF due to concomitant. In fact, zero traction conditions are 
automatically satisfied in GM/WF, hence need not be specified at all. While 
VC and STVC feature also exists in least squares process (LSP) and space-time 
least squares finite element processes (STLSP) for BVPs and IVPs, the ease of 
specifying traction boundary conditions feature in GM/WF and STGM/WF is 
highly meritorious compared to LSP and STLSP in which zero traction condi-
tions need to be explicitly specified. A disadvantage of GM/WF and STGM/ 
WF is that the mathematical models (momentum equations) needed in the 
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desired form contain higher order derivatives of displacements (upto fourth 
order), hence necessitate use of higher order spaces in their solution. As well 
known, this problem can be easily overcome in LSP and STLSP by introduc-
tion of auxiliary equations and auxiliary variables, thus keeping the highest 
orders of the derivatives of the dependent variables to one or any other de-
sired order. A serious disadvantage of this approach in LSP is the significant 
increase in the number of dependent variables, hence poor computational ef-
ficiency. In this paper we consider non-classical continuum models for inter-
nally polar linear elastic solids in which internal rotations due to displacement 
gradient tensor (hence internal polar physics) are considered in the conserva-
tion and the balance laws and the constitutive theories. For simplicity, we only 
consider isothermal case; hence energy equation is not part of mathematical 
model. When using mathematical models derived in displacements in 
GM/WF and LSP in constructing integral forms, we note that in GM/WF the 
number of dependent variables is reduced drastically (only three in 3 ), 
whereas in case of first order systems used in LSP and STLSP we may have as 
many as 22 dependent variables for isothermal case. Thus, GM/WF results in 
dramatic improvement in computational efficiency as well as accuracy when 
minimally conforming spaces are used for approximations. In this paper we 
only consider mathematical model in 2  for BVPs (for simplicity). Mathe-
matical models for IVP and BVP in 3  will be considered in subsequent 
paper. The integral form is derived in 2  using GM/WF. Numerical exam-
ples are presented using GM/WF and LSP to demonstrate advantages of fi-
nite element process derived using integral form based on GM/WF for 
non-classical linear theories for solids incorporating internal rotations due to 
displacement gradient tensor. 
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1. Introduction Literature Review, and Scope of Work 

In Lagrangian description of deforming matter, the Jacobian of deformation is a 
fundamental quantity of the measure of deformation of the solid continua. In 
general, the Jacobian of deformation varies between material points, i.e. it varies 
between a material point and its neighbors. Polar decomposition of the Jacobian 
of deformation at material points into stretch (left of right) and pure rotation 
shows that if the Jacobian of deformation varies between a material point and its 
neighbors so do the rotations. We could also consider the decomposition of the 
displacement gradient tensor into symmetric and skew symmetric tensors. The 
skew symmetric tensor is a measure of pure rotations while the symmetric 
tensor is a measure of strains. Strain measures (such as Green’s strain) are purely 
a function of stretch tensor or alternatively symmetric part of the displacement 
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gradient tensor. In these measures, rotation tensor plays no role. 
In non-polar continuum theories, only conjugate stress and strain tensors 

contribute to the stored energy in the deforming solid continua. Likewise, the 
dissipation mechanism is purely due to stress tensor and rates of conjugate 
strain tensor. In such theories, the influence of rotations and the influence of the 
rates of rotations on the mechanism of energy storage and dissipation is not 
considered. In the present work, we consider solid continua in which the 
rotations and the rates of rotations that exist between neighboring material 
points are resisted by the constitution of the matter, hence result in energy 
storage and energy dissipation. Thus, the continuum theory used here for solid 
continua in Lagrangian description incorporates new physics associated with 
varying internal rotations and their conjugate moments. This physics is 
completely absent in the currently used continuum theories for isotropic, 
homogeneous solid continua. As established in the abstract the theory presented 
here is indeed a polar continuum theory that incorporates internal varying 
rotations and conjugate moments in the derivation of conservation and balance 
laws. 

The theory used here is a continuum theory in Lagrangian description for 
polar continuum and should not be confused with micropolar continuum 
theories [1]-[11] that are designed to accommodate effects at scales smaller than 
the continuum scale. Micropolar continuum theories require definitions of 
additional strain measures [6] related to micromechanics. The polar continuum 
theory used here incorporates standard measures of strains as used currently in 
non-polar continuum theories. In the polar continuum theory used here, the 
motivation is to account for the influence of varying rotations at neighboring 
material points that arise during evolution as these may result in additional 
energy storage in some solid continua. Polar decomposition of the Jacobian of 
deformation at neighboring material points clearly substantiates this. An 
important point to note is that the theory considered here can only account for 
local rotation effects due to deformation at material points; hence the theory 
used here is intrinsically a local polar continuum theory, thus cannot account for 
nonlocal effects. 

In the following we present a brief literature review on micropolar theories, 
nonlocal theories and stress couple theories. A comprehensive treatment of 
micropolar theories can be found in the works by Eringen [1]-[9]. The concept 
of couple stresses is presented by Koiter [10]. Balance laws for micromorphic 
materials are presented in reference [11]. The micropolar theories consider 
micro deformation due to micro constituents in the continuum. In references 
[12] [13] [14] by Reddy et al. and reference [15] by Zang et al. nonlocal theories 
are presented for bending, buckling and vibration of beams, beams with 
nanocarbon tubes and bending of plates. The nonlocal effects are believed to be 
incorporated due to the work presented by Eringen [6] in which definition of a 
nonlocal stress tensor is introduced through integral relationship using the 
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product of macroscopic stress tensor and a distance kernel representing the 
nonlocal effects. The polar continuum theory for solid continua presented in this 
paper is strictly local and non-micropolar. The concept of couple stresses was 
introduced by Voigt in 1881 by assuming a couple or moment per unit area on 
the oblique plane of the deformed tetrahedron in addition to the stress or force 
per unit area. Since the introduction of this concept many published works have 
appeared. We cite some recent works, most of which are related to micropolar 
stress couple theories. Authors in reference [16] report experimental study of 
micropolar and couple stress elasticity of compact bones in bending. Conservation 
integrals in couple stress elasticity are reported in reference [17]. A microstructure- 
dependent Timoshenko beam model based on modified couple stress theories is 
reported by Ma et al. [18]. Further account of couple stress theories in 
conjunction with beams can be found in references [19] [20] [21]. Treatment of 
rotation gradient dependent strain energy and its specialization to Von Kármán 
plates and beams can be found in reference [22]. Other accounts of micropolar 
elasticity and Cosserat modeling of cellular solids can be found in references [23] 
[24] [25]. We remark that in references [16]-[25], Lagrangian description is used 
for solid matter, however the mathematical descriptions are purely derived using 
strain energy density functional and principle of virtual work. This approach 
works well for elastic solids in which mechanical deformation is reversible. 
Extension of these works to thermoviscoelastic solids with and without memory 
is not possible. In such materials the thermal field and mechanical deformation 
are coupled due to the fact that the rate of work results in rate of entropy 
production. In references [26]-[37] various aspects of the kinematics of micropolar 
theories, stress couple theories, etc. are discussed and presented including some 
applications to plates and shells. 

If the varying rotations and their rates result in energy storage and dissipation, 
then their energy conjugate moment (shown later in the paper) must exist in the 
deforming matter. This necessitates the existence of moment (per unit area) on 
the oblique plane of the deformed tetrahedron. Thus, at the onset, we consider 
average force per unit area and displacements, and average moment per unit 
area and the rotations on the oblique plane of the deformed tetrahedron. The 
work used here [38]-[44] follows a strictly thermodynamic approach using these 
i.e., for polar solid continua we consider: (i) Conservation of mass and present 
reasons for not deriving conservation of inertia (ii) Balance of linear momenta 
(iii) Balance of angular momenta (iv) Balance of moments of moments (or 
couples) (v) First law of thermodynamics and (vi) Second law of thermodynamics 
in Lagrangian description in which stress and strain, moment and rotations are 
energy conjugate pairs. The mathematical description for polar solid continua 
used here is applicable to polar thermoelastic solids for small deformation and 
small strain. 

In the present work the mathematical model derived by Surana, et al. [38]-[44] 
in Lagrangian description for thermoelastic polar solids incorporating internal 
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rotations with small strain, small deformation, isothermal case is used to derive 
balance of linear momenta equations purely in terms of displacements for 
boundary value problems. 2D plane stress case is used to present details. These 
equations are then used to construct finite element formulations using GM/WF. 
Merits and advantages of this approach over least squares finite element 
formulation based on mathematical model consisting of a first order system of 
equations are illustrated in terms of formulation details as well as through three 
plane stress model problems. 

2. Mathematical Model 

For non-classical elastic solid matter with internal rotation and conjugate 
moment physics undergoing small deformation and small strain, the mathematical 
model for BVPs has been presented by Surana et al. [38]-[44]. In present work 
we assume isothermal deformation process i.e. no entropy production due to 
mechanical work, hence the mathematical model in Lagrangian description 
consists of balance of linear momenta, balance of angular momenta, balance of 
moments of moments (as a balance law or its absence) [38]-[45] and the 
constitutive theories for: symmetric part of Cauchy stress tensor, symmetric part 
of Cauchy moment tensor and antisymmetric part of Cauchy moment tensor (if 
balance of moments of moments is not used as a balance law). We have the 
following dimensionless form of the mathematical model in 2  (neglecting 
body forces) assuming that balance of moments of moments is not a balance law 
[45]. Using the decomposition of the Cauchy moment tensor into symmetric 
and antisymmetric tensors s a= +m m m , we have constitutive theories for s m  
and a m . Choosing 1x x= , 2y x= , 1u u= , 2v u=  we can write the following 
for balance laws and the constitutive theories , xyx y∀ ∈Ω .  

0s yx a yxs xx

x y y
σ σσ ∂ ∂∂

+ + =
∂ ∂ ∂                     

(1) 

0s xy s yy a yx

x y x
σ σ σ∂ ∂ ∂

+ − =
∂ ∂ ∂                     

(2) 

( )2 0yzxz
a yx

xz s xz a xz
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σ
∂∂
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= +
                    

(3) 
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( )0
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( )0
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(8) 

1
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 ∂ ∂
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(9) 

( )11 22 12 21 332 2; ;
2 11 1
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= = = = = =
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(10) 

The Cauchy stress tensor has also been decomposed into symmetric and 
antisymmetric tensors. In order to obtain the dimensionless Equations (1)-(10), 
we first write these with hat (  ) on all quantities and variables indicating that 
they all have their usual dimensions in terms of length ( L̂ ), force ( F̂ ), and time 
( t̂ ). If we choose 0 0,L F  and 0t  as reference length, force and time, then the 
dimensionless length, force and time ( ,L F  and t ) are defined as  

0 0 0

ˆ ˆ ˆ
, ,L F tL F t

L F t
= = =

                   
(11) 

If we consider 0Ê EE= , 0x̂ xL= , 0ŷ yL= , 0m̂ mm= , 0
0

0

m
L
τ

= , 0
0

0

F
L
τ

= , 

0ˆ Eα α=
 

, 0
ˆ Eβ β=
 

 and choose 0L , 0E , then we obtain the dimensionless 

form of Equations (1)-(10). In these 0

0 0

E
m L

 is in fact unity but has been left in  

the constitutive theories for the moment tensor for sake of clarity. Equations 
(1)-(9) are a system of eleven partial differential equations in eleven dependent 
variables u , v , s xxσ , s yyσ , s xyσ , a yxσ , s xzm , s yzm , a xzm , a yzm  and 

i zΘ . We substitute a yxσ  from (3) into (1) and (2).  

( ) ( ) ( ) ( )
( )1

1 , 0, ,
2

s yx yzs xx xz
xy

mm
A u v x y

x y y x y

σσ  ∂ ∂∂ ∂∂  + + + = = ∀ ∈Ω
 ∂ ∂ ∂ ∂ ∂   

(12) 

( ) ( ) ( ) ( )
( )2

1 , 0, ,
2

s xy s yy yzxz
xy

mm
A u v x y

x y x x y

σ σ  ∂ ∂ ∂∂∂  + − + = = ∀ ∈Ω
 ∂ ∂ ∂ ∂ ∂   

(13) 

Equations ((12) and (13)) form the basis for finite element formulation based 
on GM/WF. 

3. Finite Element Formulation 

The symmetric stress tensor components are defined by (4) and are function of u 
and v. Likewise xzm  and yzm  consists of the decomposition in (3) and the 
constitutive theories for symmetric and antisymmetric Cauchy moment tensors 
are given by (5)-(8) with i zΘ  defined by (9), hence there are also functions of 
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the gradients of u and v. Let T e
xy xye

Ω = Ω


 be the discretization of xyΩ , 
domain of definition of mathematical model in which e e e

xy xyΩ =Ω Γ  is a 
typical finite element. 1A  and 2A  in (12) and (13) are differential operators 
that act on u and v ( yzm  and xzm  are functions of the gradients of u and v and 
so are stresses). The balance of linear momenta equations in the form (12) and 
(13) are helpful in keeping the derivation of integral form based on GM/WF 
compact. 

Let  

1

2

h

h

w u
w v

δ
δ

=

=                           
(14) 

in which hu  and hv  are approximations of u and v over T
xyΩ . Then, based on 

the fundamental lemma of the calculus of variations [46]-[60] we construct 
scalar products of (1) and (2) with test functions 1w  and 2w  over the 
discretization T

xyΩ  and set them to zero.  

( )( )
( )( )

1 1 1

2 2 2

, , 0;

, , 0;

T
xy

T
xy

h h h

h h h

A u v w w u

A u v w w v

δ

δ

Ω

Ω

= =

= =
                

(15) 
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Ω
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substitute for 1A  and 2A  from (12) and (13)  
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(17) 
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(18) 

Integration by parts once for each term in (17) and (18) yields (noting that 
e e e
xy xyΩ =Ω Γ , eΓ  being closed boundary of e

xyΩ )  
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Integrating by parts again for the moment terms in (19) and (20)  
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Using (23) we can write (21) and (22) as follows  

( )( )
( ) ( )

( )

1 1

2 2
1 11 1

2

1
1

, ,

1 d
2

d d
2

e
xy

e
xy

e e

e e
h h

s xx s yx xz yz

n
x

A u v w

w ww w m m
x y x y y

mww t
y

σ σ

Ω

Ω

Γ Γ

  ∂ ∂ ∂ ∂ = − − − + Ω       ∂ ∂ ∂ ∂ ∂      

∂  + Γ + Γ ∂  

∫

∫ ∫ 

  

(24) 
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( )( )
( ) ( )

( )

2 2

2 2
2 22 2

2

2
2

, ,

1 d
2

d d
2

e
xy

e
xy

e e

e e
h h

s xy s yy xz yz

n
y

A u v w

w ww w m m
x y y xx

mww t
x

σ σ

Ω

Ω

Γ Γ

  ∂ ∂ ∂ ∂ = − − + + Ω       ∂ ∂ ∂ ∂∂      

∂  + Γ + − Γ ∂  

∫

∫ ∫ 

  

(25) 

From (24) and (25) we can conclude that the primary and the secondary 
variables (PV and SV) are  

 
PV SV 

u  xt  

v  yt  

u
y
∂
∂

 
2

nm  

v
x
∂
∂

 
2

nm−  

 
Substituting for s xxσ , s xyσ , s yyσ  from (4) into (24) and (25) and i zΘ  

from (9) into (5)-(8) and then (5)-(8) into (24) and (25) we can write  

( )( ) ( ) ( )1 1 1 1 1 1, , , ;
e
xy

e e e e e e
h h h hA u v w B u v w l w

Ω
= −

            
(26) 

( )( ) ( ) ( )2 2 2 2 2 2, , , ;
e
xy

e e e e e e
h h h hA u v w B u v w l w

Ω
= −

            
(27) 

in which  

( )

( )

1 1
1 1 11 12 33

2 2 2 22 2
1 1

2 2 2

, ;

1 d
2

e
xy

e e e e
e e e h h h h

h h

e e e e
h h h h

u v u vw wB u v w D D D
x y x y x y

u v u vw w
x y x y y xx y y

α β

Ω

    ∂ ∂ ∂ ∂∂ ∂= − + − +   
∂ ∂ ∂ ∂ ∂ ∂    

    ∂ ∂ ∂ ∂∂ ∂ − − − + − Ω     
∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂      

∫





(28) 

( ) 1
1 1 1 d d

2e e

e n
x

mwl w w t
yΓ Γ

∂  = − Γ − Γ ∂  ∫ ∫ 

               
(29) 

( )

( )

2 2

2 2
33 21 22

2 2 2 22 2
2 2

2 2 2

, ;

1 d
2

e
xy

e e e
h h

e e e e
h h h h

e e e e
h h h h

B u v w

u v u vw wD D D
y x x x y y

u v u vw w
x y x y y xx x y

α β

Ω

    ∂ ∂ ∂ ∂∂ ∂= − + − +   
∂ ∂ ∂ ∂ ∂ ∂    

    ∂ ∂ ∂ ∂∂ ∂ + − − + − Ω     
∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂      

∫





    

(30) 

( ) 2
2 2 2 d d

2e e

e n
y

mwl w w t
xΓ Γ

∂  = − Γ − − Γ ∂  ∫ ∫ 

              
(31) 

Functionals ( )1 ,eB ⋅ ⋅ , ( )2 ,eB ⋅ ⋅ , ( )1
el ⋅ , ( )2

el ⋅  are linear in all of their 
arguments. We note that ( )1

el ⋅ , ( )2
el ⋅  are concomitants resulting only because 

of integration by parts. We can represent (28)-(31) in matrix and vector form  
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( )( )
( )( )

( )
( )

( )
( )

1 1
1 1 1 1

2 22 22 2

, , , ;

, ;, ,

e
xy

e
xy

e e
e e e eh h

h h

ee e ee e
h hh h

A u v w B u v w l w
l wB u v wA u v w

Ω

Ω

          = −     
                  

(32) 

( ) ( )
( ) ( )

( )
( )

11 1 12 1 1 1

2 221 2 22 2

, ,
=

, ,

e e e e e
h h

ee e e e
h h

b u w b v w l w
l wb u w b v w

 +     −   
 +       

(33) 

in which  

( )

( )

1 1
11 1 11 33

2 22 2
1 1

2 2

,

1 d
2

e
xy

e e
e e h h

h

e e
h h

u uw wb u w D D
x x y y

u uw w
x y x y y y

α β

Ω

    ∂ ∂∂ ∂= − −    
∂ ∂ ∂ ∂    

    ∂ ∂∂ ∂ − − + Ω    
∂ ∂ ∂ ∂ ∂ ∂      

∫



       

(34) 

( )

( )

1 1
12 1 12 33

2 22 2
1 1

2 2

,

1 d
2

e
xy

e e
e e h h

h

e e
h h

v vw wb v w D D
y x x y

v vw w
x y y xx y

α β

Ω

    ∂ ∂∂ ∂= − −    
∂ ∂ ∂ ∂    

    ∂ ∂∂ ∂ − − − − Ω    
∂ ∂ ∂ ∂∂ ∂      

∫



      

(35) 

( )

( )

2 2
21 2 33 21

2 22 2
2 2

2 2

,

1 d
2

e
xy

e e
e e h h

h

e e
h h

u uw wb u w D D
y x x y

u uw w
x y y xx y

α β

Ω

    ∂ ∂∂ ∂= − −    
∂ ∂ ∂ ∂    

    ∂ ∂∂ ∂ + − + Ω    
∂ ∂ ∂ ∂∂ ∂      

∫



       

(36) 

( )

( )

2 2
22 2 33 22

2 22 2
2 2

2 2

, {

1 d
2

e
xy

e e
e e h h

h

e e
h h

v vw wb v w D D
x x y y

v vw w
x y y xx x

α β

Ω

   ∂ ∂∂ ∂
= − −   

∂ ∂ ∂ ∂   

    ∂ ∂∂ ∂ + − − − Ω    
∂ ∂ ∂ ∂∂ ∂      

∫



      

(37) 

The functions ; , 1, 2e
ijb i j =  have the following properties.  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

11 1 11 1 11

22 2 22 2 22

12 2 21 2

21 1 12 1

, , , is symmetric

, , , is symmetric

, ,

, ,

e e e e e
h h

e e e e e
h h

e e e e
h h

e e e e
h h

b u w b w u b

b v w b w v b

b w u b u w

b w v b v w

= ⇒ ⋅ ⋅

= ⇒ ⋅ ⋅ 


= 


=            

(38) 

Equations (32) are the weak form of the mathematical model (12) and (13). 
Equations (38) imply that the element equations constructed from (38) using 
local approximation e

hu  and e
hv  will contain symmetric element coefficient 

matrix. 
Let e

xyΩ  be a nine node p-version hierarchical element with local 
approximation in higher order scalar product space ( ),k p e

xyH Ω  [57] [58] [59] 
[60]. Consider [ ] [ ]1,1 1,1e e

xy ξηΩ →Ω = − × − , a map of e
xyΩ  in ,ξ η  space in a 

two unit square. Then, we can write  

https://doi.org/10.4236/ajcm.2017.73024


K. S. Surana et al. 
 

 

DOI: 10.4236/ajcm.2017.73024 331 American Journal of Computational Mathematics 
 

( ) ( )( )
1

, ,
un

e u u e
h i i

i
u Nξ η ξ η δ

=

=∑
                  

(39) 

( ) ( )( )
1

, ,
vn

e v v e
h i i

i
v Nξ η ξ η δ

=

=∑
                  

(40) 

( ),u
iN ξ η  and ( ),v

iN ξ η  are local approximation functions and ( )u e
iδ  and 

( )v e
iδ  are corresponding nodal degrees of freedom for u and v. Using (39) and 

(40)  
( )
( )

1

2

, ; 1, 2, ,

, ; 1, 2, ,

e u u
h j

e v v
h k

w u N j n

w v N k n

δ ξ η

δ ξ η

= = =

= = =



                
(41) 

Let the total degrees of freedom for an element e be { }eδ   

{ } { } { }
{ }
{ }

u e

e u e v e

v e

δ
δ δ δ

δ

  = =  
  



                 

(42) 

Substituting from (39)-(41) into (34)-(37), we can write  

( ) ( )

( ) ( )

( )

11 11 33
1 1

22

1

22

2 2
1

1
2

d ; 1,2, ,

u u

e
xy

u

u

u uu un n
j je u e u ei i

i i
i i

uun
ju ei

i
i

uun
ju e ui

i
i

N NN N
b D D

x x y y

NN
x y x y

NN
j n

y y

δ δ

α β δ

δ

= =Ω

=

=

 ∂ ∂   ∂ ∂= − −       ∂ ∂ ∂ ∂    
 ∂ ∂

− −   ∂ ∂ ∂ ∂ 
∂ ∂ + Ω =   ∂ ∂   

∑ ∑∫

∑

∑







     

(43) 

( ) ( )

( ) ( )

( )

12 12 33
1 1

22

2
1

22

2
1

1
2

d ; 1,2, ,

v v

e
xy

v

v

u uv vn n
j je v e v ei i

i i
i i

uvn
jv ei

i
i

uvn
jv e ui

i
i

N NN N
b D D

y x y y

NN
x yx

NN
j n

y x y

δ δ

α β δ

δ

= =Ω

=

=

 ∂ ∂   ∂ ∂= − −       ∂ ∂ ∂ ∂    
 ∂ ∂

+ −    ∂ ∂∂ 
∂ ∂ + Ω =   ∂ ∂ ∂   

∑ ∑∫

∑

∑







     

(44) 

( ) ( )

( ) ( )

( )

21 33 21
1 1

22

2
1

22

2
1

1
2

d ; 1,2, ,

u u

e
xy

u

u

v vu un n
j je u e u ei i

i i
i i

vun
ju ei

i
i

vun
ju e vi

i
i

N NN N
b D D

y x x y

NN
x y x

NN
j n

y xy

δ δ

α β δ

δ

= =Ω

=

=

 ∂ ∂   ∂ ∂= − −       ∂ ∂ ∂ ∂    
 ∂ ∂

+ −   ∂ ∂ ∂ 
∂ ∂ + Ω =    ∂ ∂∂   

∑ ∑∫

∑

∑







     

(45) 

( ) ( )

( ) ( )

( )

22 33 22
1 1

22

2 2
1

22

1

1
2

d ; 1,2, ,

v v

e
xy

v

v

v vv vn n
j je v e v ei i

i i
i i

vvn
jv ei

i
i

vvn
jv e vi

i
i

N NN N
b D D

x x y y

NN
x x

NN
j n

x y x y

δ δ

α β δ

δ

= =Ω

=

=

 ∂ ∂   ∂ ∂= − −       ∂ ∂ ∂ ∂    
 ∂ ∂

− −   ∂ ∂ 
∂ ∂ + Ω =   ∂ ∂ ∂ ∂   

∑ ∑∫

∑

∑







     

(46) 
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Using (43)-(46) we can write (33) as follows  

( )( )
( )( )

{ } { }

{ }
{ }

{ }
{ }

1 1

2 2

11 12
1

21 22
2

, ,

, ,

e
xy

e
xy

e e
h h

e e e

e e
h h

u e ee e

v e ee e

A u v w
K P

A u v w

PK K

PK K

δ

δ

δ

Ω

Ω

 
 

 = − +   
 
 

               = − +                        

(47) 

in which  

( )
22

11
11 33

22

2 2

1
2

d ; , 1, 2, ,

e
xy

u u uu u u
j j je i i i

ij

uu
j ui

N N NN N NK D D
x x y y x y x y

NN i j n
y y

α β
Ω

 ∂ ∂ ∂∂ ∂ ∂= + + − 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂∂ + Ω =
∂ ∂ 

∫






   

(48) 

( )
22

12
12 33 2

22

2

1
2

d ; 1,2, , ; 1, 2, ,

e
xy

v v vu u u
j j je i i i

ij

vu
j u vi

N N NN N NK D D
x y y x x y x

NN i n j n
y xy

α β
Ω

 ∂ ∂ ∂∂ ∂ ∂= + − − 
∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂∂ + Ω = =
∂ ∂∂ 

∫




 

   

(49) 

( )
22

21
33 21 2

22

2

1
2

d ; 1,2, , ; 1, 2, ,

e
xy

u u uv v v
j j je i i i

ij

uv
j u vi

N N NN N NK D D
x y y x x yx

NN i n j n
y x y

α β
Ω

 ∂ ∂ ∂∂ ∂ ∂= + − − 
∂ ∂ ∂ ∂ ∂ ∂∂ 

∂∂ + Ω = =
∂ ∂ ∂ 

∫




 

   

(50) 

( )
22

22
33 22 2 2

22

1
2

d ; , 1, 2, ,

e
xy

v v vv v v
j j je i i i

ij

vv
j vi

N N NN N NK D D
x x y y x x

NN i j n
x y x y

α β
Ω

 ∂ ∂ ∂∂ ∂ ∂= + + − 
∂ ∂ ∂ ∂ ∂ ∂ 

∂∂ + Ω =
∂ ∂ ∂ ∂ 

∫






   

(51) 

We note that  
11 11 11

T12 21 12 21

22 22 22

; , 1, 2, , , hence is symmetric

;

; , 1, 2, , , hence is symmetric

e e u e
ij ji

e e e e
ij ji

e e u e
ij ji

K K i j n K

K K K K

K K i j n K

 = =  

   = =   
 = =  





      

(52) 

From (52) we can conclude that eK    in (47) is symmetric. For the entire 
discretization we can write  

( )( )
( )( )

( )( )
( )( )

{ } { }( )

1 1 1 1

2 2 2 2

, , , ,

, , , ,

0

e e
xy xy

e e
xy xy

e e e e
h h h h

e e e ee
h h h h

e e e

e

A u v w A u v w

A u v w A u v w

K Pδ

Ω Ω

Ω Ω

   
   

=   
   
   

 = − + = 

∑

∑
        

(53) 
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Hence  

{ }( ) { }e e e

e e
K Pδ  = ∑ ∑

                   
(54) 

or  

[ ]{ } { }K Pδ =                         (55) 

in which  

[ ] ; assembly of element equationseK K =  ∑           
(56) 

{ } { }e
e

δ δ=
                         

(57) 

{ } { }e

e
P P=∑

                        
(58) 

4. Approximation Spaces and Some Remarks  

1) Since the mathematical model ((12) and (13) contains up to fourth order 
derivatives of the displacements, the approximation functions in spaces 

( ), , 5k p e
h xyV H k⊂ Ω ≥  are admissible in (12) and (13) and 5k =  i.e. local 

approximation of class ( )4 e
xyC Ω  corresponds to minimally conforming space.  

2) Weak form (32) resulting from GM/WF only contains derivatives of up to 
order two of u and v, hence it is tempting to use e

hu  and e
hv  of class ( )1 e

xyC Ω  
but in doing so we rely on weak convergence of the solutions of class 1C  to 
class 2C  and eventually to class 4C  needed for the mathematical model.  

3) Numerical values of the coefficients of eK    are obtained using Gauss 
quadrature.  

4) Solution is computed using assembled equations (55) for T
xyΩ  after 

imposing boundary conditions.  
5) Linearity of the algebraic system and symmetry eK    and [ ]K  are due 

to the fact that the differential operator in (12) and (13) is linear in displacements 
u and v and the adjoint *A  of the differential operator A  is same as the 
operator A  (when the mathematical model is expressed in displacements u 
and v)  

6) In the study of the model problem we chose 0β =  (based on the material 
presented in [45]) i.e. we consider balance of moments of moments as a balance 
law, hence the Cauchy moment tensor is symmetric.  

5. A Least Squares Formulation in 2  (Plane Stress) Based 
on Residual Functional 

We consider the following mathematical model (obtained using (1)-(10)) in the 
dimensionless form (in the absence of balance of moments of moments as a 
balance law [45]) consisting of first order partial differential equations.  

( )

0; 0

2 0

s yx a yx s xy s yy a yxs xx

yzxz
a yx

x y y x y x
mm

x y

σ σ σ σ σσ

σ

∂ ∂ ∂ ∂ ∂∂
+ + = + − =

∂ ∂ ∂ ∂ ∂ ∂
∂∂

+ + =
∂ ∂         

(59) 
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11 12 21 22

33

; ;s xx s yy

s xy

u u u vD D D D
x y x y

u vD
y x

σ σ

σ

∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂

 ∂ ∂
= + ∂ ∂            

(60) 

( ) ( )

( ) ( )

0 0

0 0 0 0

0 0

0 0 0 0

;

;

i z i z
s xz s yz

i z i z
a xz a yz

E Em m
m L x m L y

E Em m
m L x m L y

α α

β β

∂ Θ ∂ Θ   
= =   

∂ ∂   
∂ Θ ∂ Θ   

= − = −   
∂ ∂   

 

         

(61) 

( )11 22 12 21 332 2; ;
2 11 1

1
2i z

E E ED D D D D G

u v
y x

ν
νν ν

= = = = = =
+− −

 ∂ ∂
Θ = − ∂ ∂       

(62) 

In (59)-(62), 0

0 0

E
m L

 is in fact one, but it has been left in constitutive theory  

for the moment tensors for sake of clarity. Equations (59)-(62) are a system of 
eleven first order linear coupled differential equations in eleven dependent 
variables u , v , s xxσ , s yyσ , s xyσ , a yxσ , s xzm , s yzm , a xzm , a yzm  and 

i zΘ . A least squares formulation (LSF) of (59)-(62) is constructed using residual 
functionals [57] [61]-[66] resulting from each of the eleven equations when the 
local approximations for the dependent variables are substituted in them. The 
local approximations considered in higher order scalar product space 

( ),k p e
xyH Ω , e

xyΩ  being an element of the discretization which are p-version 
hierarchical with higher order global differentiability. Since (59)-(62) are a 
system of first order equations 2k =  i.e. local approximations of class ( )1 e

xyC Ω  
for each variable constitute minimally conforming space of approximations [57]. 
However, for the model problems considered here the solutions are sufficiently 
smooth, thus permitting the use of ( )0 e

xyC Ω  local approximations with weak 
convergence to ( )1 e

xyC Ω . 

6. Model Problems 

In this section we can consider three model problems in 2 : 1) Simply 
supported thin plate with transverse in plane loading. 2) fixed-fixed thin plate 
with transverse in plane loading. 3) a square plate with a circular hole at the 
center subjected to uniaxial uniform loading.  

Remarks.  
• In all numerical studies we consider both formulations, GM/WF as well as 

LSP.  
• We choose 0β =



 in all studies [45] which implies that 0a =m  and 

s=m m  implying that balance of moments of moments is a balance law. 
This is necessary for incorporating correct polar physics due to internal 
rotations in the mathematical model [45]. Thus, 0a xzm =  and 0a yzm =  in 
(59)-(62) and the mathematical model reduces to nine partial differential 
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equations in nine dependent variables.  
• We note that the integral form in GM/WF contains upto second order 

derivatives of u and v, hence 3k =  is minimally conforming approximation 
space (i.e. solutions of class 2C  in x and y) for the integral forms for which 
all integrals over the spatial discretization are Riemann. On the other hand 
for 2k =  i.e 1C  approximations in x and y, the integrals over the spatial 
discretization are Lebesgue. For simply supported and fixed-fixed plate we 
consider numerical studies with 3, 5k p= =  (i.e. 2C  local approximations 
in x and y with p-level of 5) and also with 2, 7k p= = , i.e. 1C  local 
approximations with p-level of 7. In case of square plate with a hole we 
consider 2k =  with p-level of 7.  

• Computations for least squares formulation are only performed and 
compared with those from GM/WF for the simply supported and fixed-fixed 
plate to ensure that the solutions obtained using GM/WF in fact have the 
desired accuracy for the choices of k and p. In these studies we choose 

1, 9k p= =  i.e. solutions of class 0C  with p-level of nine as used in 
references [40] [45]. For 1k =  integrals over the discretization is in Lebesgue 
sense.  

6.1. Simply Supported and Fixed-Fixed Plate: Model Problems 1 
and 2 

We consider a thin plate of length ˆ 20l =  inches with width ˆ 0.5h =  inches 
and thickness ˆ 0.1t =  inches. With 0 10L =  inches, the dimensionless plate is 

2 0.05 0.01L h t× × = × × . Figure 1(a) and Figure 1(b) show schematics of the 
plate, boundary conditions and loading for the formulation based on GM/WF 
for both simply supported and fixed-fixed boundary conditions. The load is 
applied over a length of 0.4b =  as forces at the nodes that corresponds to 
uniform stress in the y-direction (see Figure 1). Figure 2(a) and Figure 2(b) 
show same schematics with BCs and loading used in least squares formulation. 
In all numerical studies the plates are discretized using a 20 element uniform 
discretization (10 elements along the length and two elements width b) using a 
nine node p-version hierarchical higher order global differentiability finite 
elements. In all computations we choose Poisson’s ratio of 0.3, 0

6ˆ 30 10E E= = ×  
psi, hence 1E = , and 0 0.25α≤ ≤



 with 0.0β =


. 0α =


 corresponds to 
classical continuum theory. Progressively increasing values of α



 produces 
progressively more pronounced polar physics (resistance to deformation). 
Numerical solutions are calculated for the following:  

1) For GM/WF we consider 3k =  (solutions of class 2C  in x and y) with 
5p = . For this choice of k, integrals over the spatial discretization are Riemann.  

2) For GM/WF we also consider 2k =  (solutions of class 1C  in x and y) 
with 7p = . For this choice of k integrals over the spatial discretization are in 
Lebesgue sense.  

3) Since the solution for LSP yields residual functional values of the order of 

( )1510O −  or lower, comparing the computed solutions from (1) and (2) we 
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confirm that when both solutions are almost indistinguishable from each other, 
the solution from GM/WF has good accuracy.  

4) For Least squares formulation we consider solutions of class 0C  in x and y 
with p-level of nine [40] [45].  

Results 
GM/WF: 
Figures 3(a)-(c) shows plots of v, i zΘ  and s xzm  versus x at 0.025y =  

(center line of the plate) for 0 0.25α≤ ≤


. For 0α =


 we have classical continuum 
behavior. Progressively increasing values of α



 results in progressively 
increasing resistance to deformation, hence progressively reducing displacement 
v, reducing rotation i zΘ  but increasing moment s xzm . Similar graphs of v, 

i zΘ  and s xzm  versus x at 0.025y =  for fixed-fixed plate are shown in Figures 
4(a)-(c) for 0 0.25α≤ ≤



. We observe similar behaviors of v, i zΘ  and s xzm   
 

 
Figure 1. Model Problem 1 and 2: Schematics, BCs and loading (dimensionless): GM/WF. (a) Simply 
suppported plate ( 0.4b = ); (b) fixed-fixed plate ( 0.4b = ). 

https://doi.org/10.4236/ajcm.2017.73024


K. S. Surana et al. 
 

 

DOI: 10.4236/ajcm.2017.73024 337 American Journal of Computational Mathematics 
 

 
Figure 2. Model Problem 1 and 2: Schematics, BCs and loading (dimensionless): LSP. (a) Simply 
suppported plate ( 0.4b = ); (b) fixed-fixed plate ( 0.4b = ). 

 
with increasing α  values. Due to clamped boundaries the displacement v is 
significantly reduced and i zΘ  and s xzm  follow accordingly. 

Comparison of results: GM/WF and LSP: 
The numerical solutions obtained from LS formulation for exactly same BCs 

and loading (Figure 2) using local approximations of class 0C  at p-level 9 are  
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Figure 3. , i zv Θ  and s xzm  versus 0.025y = : Simply supported plate (GM/WF). (a) v versus x at 

0.025y = ; (b) i zΘ  versus x at 0.025y = ; (c) s xzm  versus x at 0.025y = . 
 

 
Figure 4. , i zv Θ  and s xzm  versus 0.025y = : Fixed-fixed plate (GM/WF). (a) v versus x at 0.025y = ; (b) 

i zΘ  versus x at 0.025y = ; (c) s xzm  versus x at 0.025y = . 
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Figure 5. Simply supported plate: comparison of LSP and GM/WF. (a) v versus x at 0.025y = ; (b) i zΘ  versus x at 0.025y = ; (c) 

s xzm  versus x at 0.025y = . 
 

compared with those obtained using GM/WF ( 2C  solutions at 5p =  or 1C  
solutions at 7p = ). In the LSP the residual functional for the discretization is of 
the order ( )1510O − . This ensures that the computed solutions satisfy the 
governing differential equations in the pointwise sense, hence the computed 
solutions are virtually same as the theoretical solution. Comparison of these 
solutions with GM/WF provides a check on the accuracy of the solutions 
obtained using GM/WF as in GM/WF there is no direct measure of accuracy in 
the method itself. 

Figures 5(a)-(c) show the plots of v, i zΘ  and s xzm  versus x at 0.025y =  
for 0α =



, 0.001, and 0.1 ( 0α =


 being the classical theory) obtained using 
GM/WF and a comparison with least squares method for simple supported plate. 
Similar results for GM/WF and a comparison with LSP for fixed-fixed plate are 
shown in Figures 6(a)-(c). In both Figure 5 and Figure 6, v, i zΘ  and s xzm  
obtained using GM/WF and LSP are in perfect agreement with each other for all 
three values of α



. 
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Figure 6. Fixed-fixed plate: comparison of LSP and GM/WF. (a) v versus x at 0.025y = ; (b) i zΘ  versus x at 0.025y = ; (c) s xzm  
versus x at 0.025y = . 

6.2. A Square Plate with a Circular Hole: Model Problem 3 

We consider a 6" × 6" square plate of thickness 0.1" with a 0.48" diameter 
circular hole at the center. We use 0 1.5"L = . The material properties, reference 
quantities etc. used here are same as for model problems 1 and 2. Poisson’s ratio 
of 0.3 is used. This gives rise to a 4 4 0.06× ×  dimensionless plate with a hole 
diameter of 0.16 (Figure 7(a)). The plate is subjected to uniform displacement of 
0.01 (dimensionless) on its vertical faces that creates a uniform dimensionless 
stress field of ( )0

0.0048xxσ = . The details of the BCs and loading for quarter 
plate are shown in Figure 7(a). Figure 7(c) shows a graded discretization of the 
quarter plate. The plate is divided in four bicubic patches (Figure 7(b)). In each 
patch a 3 × 3 uniform discretization of nine-node p-version hierarchical elements 
with higher order global differentiability local approximation [59] [67] is used 
giving a total of 36 elements for the quarter of the plate. Computations are 
performed only using the formulation based on GM/WF with local approximation 
of class 1C  i.e 2k =  in x and y space (for distorted elements in 2 , xy-space  
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Figure 7. Schematic of a quarter of the plate with a circular hole, BCs, loading and finite element discretization. 
 

[57] [67]) with p-level of 7. For this choice of k, the integrals over the 
discretization are Lebesgue, but due to smoothness of the solution we can expect 
these solutions to converge to class 2C  in the weak sense.  

Results and Discussion 
The stresses s xxσ  and s yyσ  are normalized using ( )0xxσ , i.e. ( )s xx n

σ =
( )0s xx xxσ σ  and ( ) ( )0s yy s yy xxn

σ σ σ= . It is well known that based on 
classical continuum theory (when 0α =



) we have stress concentration of 3.0 at 
E (Figure 7(a)) i.e. in this case we expect ( ) 3.0s xx n

σ =  at point E (Figure 7(a)). 
With increasing values of α



 increasing presence of internal polar physics is 
present that results in progressively increasing resistance to deformation. As a 
consequence stresses increase as α



 increases. Figure 8(a) shows plots of  
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Figure 8. Normalized stress versus y at 0.0.x =  (a) Normalized stress versus y at 

0.0x = ; (b) Exploded view in the vicinity of hole. 
 

( )s xx n
σ  versus y along the the edge of ED of the plate for different values of α



. 
At D, ( ) 1s xx n

σ =  as expected. As we approach E from D, stress ( )s xx n
σ  

increases. The exploded view in the vicinity of point E shown in Figure 8(b) 
confirms that when 0α =



 i.e. the classical theory, ( )s xx n
σ  is indeed 3.0. With 

increasing α


 (for the range considered here), ( )s xx n
σ  as high as 3.5 is 

obtained. From Figure 8(a) we note that the for progressively increasing values 
of α



, ( )s xx n
σ  progressively increases from a value of 1.0 at D to upto 3.5 at E  
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Figure 9. Contour plots showing quarter of a plate with a circular hole under uniaxial loading. (a) classical; 
(b) 0.0001α =



; (c) 0.000185.α =


 
 

for the largest value of α


 ( 0.000185α =


) used in the studies. Figures 9(a)-(c) 
show carpet plots of ( )s xx n

σ  for 0.0,0.0001,0.000185α =


. With progressively 
increasing values of α



, higher values of ( )s xx n
σ  in the entire quarter of the 

plate are observed compared to classical theory ( 0.0α =


), most significant 
increase in ( )s xx n

σ  being at point E as expected.  

7. General Remarks 

In this section we make some remarks related to the two finite element formulations 
(GM/WF, LSP) in context with the numerical studies presented here.  

1) It is obvious that for the model problems (in 2 ) the GM/WF has only 
two dependent variables u and v whereas LSP based on first order system of 
PDEs has nine dependent variables resulting in enormous computational 
inefficiency but permitting flexibility that permits 0C  local approximations.  

2) In LSP there is no concept of secondary variables as in GM/WF, hence 
there are no self equilibrating quantities in LS finite element formulation. As a 
result, all dependent variables pertaining to the known physics, even those that 
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are zero, must be specified on the boundaries of the domain. For example in 
GM/WF stress free boundaries are automatically satisfied due to sum of secondary 
variables being zero at a node. Same is true for moment free boundaries. However, 
in LSP all boundary information must be defined in the problem data. Figure 
1(a), Figure 1(b) for GM/WF and Figure 2(a), Figure 2(b) for LSP containing 
schematics and BCs for model problem 1 and 2 clearly illustrate this. Due to the 
necessity of defining all dependent variable specifications on the boundaries of 
the domain in LSP as BCs, often the specifications become cumbersome and 
result in redundancies in their specifications. GM/WF is completely free of such 
problems. In case of square plate with a circular hole, the situation is much more 
difficult in LSP as in this case the stress and moment components normal to the 
hole are zero while the tangential components need to be computed. Definition 
of such BCs require either constrained equations or a rotated local coordinate 
system on the hole boundary that is normal and tangent to the hole boundary. In 
GM/WF normal tractions (both stress and moment) are secondary variables, 
hence their sum on the hole boundary in naturally zero at each node, thus this 
boundary condition is automatically satisfied.  

3) In GM/WF as well as in LSP we have considered integrals over the spatial 
discretization in Lebesgue sense, but there is no issue of their convergence. LS 
residual functional ( )1510O −  and perfect match of GM/WF results with LSP for 
model problems 1 and 2 confirm that both GM/WF and LSP results are 
sufficiently converged to be as good as theoretical solutions.  

8. Summary and Conclusions 

In this paper the mathematical model consisting of conservation and balance 
laws in Lagrangian description for non-classical continuum theory for elastic 
solids (small strain small deformation physics without dissipation and memory) 
incorporating internal rotation physics due to displacement gradient tensor is 
considered (derived in reference [45]). In such solids the deformation physics 
due to mechanical work is reversible; hence the differential operator A  in this 
mathematical model when expressed purely in terms of displacements is such 
that the adjoint *A  of the differential operator A  is same as A . Thus, in 
such mathematical models GM/WF is ideal for the finite element formulation of 
the corresponding BVPs. We make the following specific remarks and observations 
and draw some conclusions from the work presented in this paper.  

1) GM/WF is ideal for reversible processes as in the present case. In such 
mathematical models * =A A  holds.  

2) LSP with first order system of PDEs is computationally non competitive 
with GM/WF. In the work presented here GM/WF has only two dependent 
variables whereas LSP has nine.  

3) An important question is “could we have used LSP” for the mathematical 
model in displacements u and v derived for GM/WF. Of course we could but: (1) 
this would require solutions of class 4C  or of class 3C  for sure (2) stress and 

https://doi.org/10.4236/ajcm.2017.73024


K. S. Surana et al. 
 

 

DOI: 10.4236/ajcm.2017.73024 345 American Journal of Computational Mathematics 
 

moment boundary conditions (zero or non zero) are extremely difficult to define 
as the stresses and moments are not dependent variables any more in the 
mathematical model. (3) Due to lack of secondary variable, zero stress and 
moment boundary conditions also need to be specified. Due to these difficulties 
it is perhaps more convenient to use mathematical models consisting of first 
order PDEs in LSP which are computationally not competitive with GM/WF.  

4) Numerical studies for the three model problems clearly demonstrate 
superiority of GM/WF over LSP in almost all aspects.  

5) Numerical solutions computed using GM/WF and those using LSP satisfy 
PDEs, almost in the pointwise sense as the residual functional for the 
discretization is ( )1510O − .  

6) Presence of increasing polar physics with increasing α


 is clearly 
demonstrated in model problem 1 and 2 (also shown in references [40] [45] using 
finite element formulation based on LSP) using both finite element formulations.  

7) The third model problem is rather difficult to study using finite element 
formulation based on LSP due to the difficulty of specifying zero boundary 
conditions of stress and moment normal to the hole boundary. In GM/WF the 
secondary variables and their sum being zero on free boundaries automatically 
satisfy these BCs.  

8) In the plate problem with a circular hole the stress concentration at point E 
of 3.0 is predicted correctly when 0α =



. With progressively increasing α


, the 
stress concentration at E increases from 3 to 3.5 for the largest value of 

0.000185α =


 used here.  
9) The finite element formulation based on GM/WF for non-classical 

continuum models is a valuable approach in which the deformation due to 
mechanical work is reversible. The finite element formulation based on GM/WF 
for non-classical continuum models presented here is superior and meritorious 
in all aspects when compared to the finite element formulations based on least 
square processes. The only disadvantage one could possibly point out is the 
presence of up to fourth order derivatives of displacements in the mathematical 
models. In view of the research work on k-version [58] [59] [60] this is hardly of 
any consequence.  
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