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Abstract 
Physically the examined perturbation problem can be regarded as a set of col-
lision events of a time-independent perturbation potential with a quantum sys-
tem. As an effect of collisions there is an expected definite change of energy of 
an initially unperturbed state of the system to some stationary perturbed state. 
The collision process certainly occupies some intervals of time which, however, 
do not enter the formalism. A striking property is the result of a choice of the 
sequence of collisions according to the applied circular scale of time: the scale 
produces almost automatically the energy terms predicted by the Schrödinger 
perturbation theory which usually is attained in virtue of complicated mathe-
matical transformations. Beyond of the time scale and its rules—strictly connected 
with the perturbation order N introduced by Schrödinger—a partition process of 
the number 1N −  is applied. This process, combined with contractions of the 
time points on the scale, provides us precisely with the perturbation terms en-
tering the Schrödinger theory. 
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1. Introduction 

The present paper has two aims. The first one is to provide an evident simplifi-
cation of the treatment of the Schrödinger perturbation series for energy, espe-
cially at large perturbation order N. Another aim is to demonstrate that a circu-
lar scale of time can be indispensable in realization of the first aim. 

According to the definition of the German “Physikalisches Wörterbuch” [1], 
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time is an independent variable in the classical mechanics. In fact the description 
of any motion cannot be done without the use of the notion of time: all funda-
mental mechanical parameters like the position change of a body, its velocity, 
acceleration, the force acting in course of the motion, apply the notion of time. 
With the development of the theory of relativity, a special attention has been at-
tached to the time interval and its peculiar properties. 

A special treatment concerning the time notion is applied in the quantum 
theory; see e.g. [2] [3]. Here the time variable does not possess its independent 
operator, so only the changes of the observables obtained with a change of time 
are considered. This kind of approach is done on the basis of commutators of 
the operators representing the observables with the Hamiltonian operator. In 
fact the energy operator becomes a central operator and energy variable becomes 
a central physical parameter of the quantum formalism. A characteristic point is 
that the notion of the time interval is practically banned out of the quantum 
theory in which a probabilistic approach is mainly applied in description of the 
effects connected with the particle transitions. 

A general idea of the present and former papers by the author [4]-[9] is to point 
out the time importance in the use of the quantum perturbation theory. This theory 
has been developed [10] simultaneously with the Schrödinger wave-mechanical 
approach to the quantum systems [11] [12] [13]. Evidently it became clear already 
at the introduction moment of the Schrödinger wave mechanics that an exact ap-
plication of that theory is possible only for very special physical systems. This 
means that in a treatment of other systems only the approximate solutions should 
be sought and used. Typical situations concerned an interest in the systems 
which differ only slightly from the systems which are easy to solve. The differ-
ence could be reduced to a rather small potential present in a more complicated 
Hamiltonian. Such a potential—called the perturbation potential—when com-
bined with the wave functions and energies of a more simple system, could pro-
vide us with an approach to similar parameters of a more complicated system. 
The corresponding formalism—elaborated by Schrödinger and called the per-
turbation theory [10]—became a purely mathematical problem in solving of 
which the notion of time has not been applied. Nevertheless, an accurate treat-
ment of the perturbation formalism occurred to be an extremely complicated 
task. This difficulty becomes clear already at the stage of presentation of the 
problem. 

But in a series of former papers [4]-[9] an attempt has been done to demon-
strate that the introduction of the time notion, as well as application of the cir-
cular scale of time as an appropriate scale in the perturbation theory, can sub-
stantially simplify that theory and its calculations. The aim of the present paper 
is to outline the perturbation theory in a still more simple way. 

In Section 2 we present the properties of the time scale which are essential for 
its application. It should be noted that the time variable and the Feynman dia-
grams based on it have been used a long time before the present approach to 
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the Schrödinger perturbation theory has been developed [14]. The results and 
drawbacks of the method based on the Feynman diagrams are discussed in Sec-
tion 3. 

2. Scale of Time Considered in Reference to the Properties of 
the Observed System as Well as Abilities of the Observer 

Time is an evidently subjective notion because it depends on the physical phe-
nomena represented by the observed system, as well as abilities possessed by an 
observer. In reality the physical and philosophical properties of the notion of 
time were combined gradually with the experience and observation of the eve-
ryday life; science—excepting perhaps for astronomy—had, at least at its early 
stage, not much to do with time. A separate component of the view on time is 
provided by the human imagination. This second component seems to be mainly 
responsible for application of the time notion—with a variable degree of certain-
ty—from the atom to universe. 

It is easy to demonstrate a subjective character of time mentioned above. If we 
limit our “universe” to one hydrogen atom, and the observer’s ability to distinc-
tion between the atomic nucleus and electron as well as the size of the distance 
separating these both objects, we obtain two possibilities concerning time. The 
first one—created by assuming a constant nucleus-electron distance in course of 
the electron motion done, say, along a circle—cannot serve to establish any no-
tion of time because no change of the system can be detected by the observer. 
But another situation is obtained when the distance between two mentioned 
particles changes systematically, say in effect of a planar motion of the electron 
along an ellipse. In this case the observer’s measurements are spread within the 
interval length equal to a double difference between the longer and shorter semi 
axis of the ellipse. If the motion is perfectly periodic, the observed interval of 
length repeats after the same period of time T. In result all time points accessible 
by the observations are enclosed within the interval  

( )0,T                             (1) 

which repeats incessantly because no limit is imposed on the electron motion 
along the ellipse. 

However, the everyday observations on time are evidently against the limit 
given in (1). The effect of these observations combined with imagination impos-
es a replacement of T in (1) by infinity:  

( )0, .∞                             (2) 

Moreover, a further analysis of the contemporary situation as an effect of ear-
lier situations combined again with imagination, provides us also with an infi-
nite size of the interval of time concerning the past. In effect this gives a com-
monly admitted interval  

( ), .−∞ ∞                            (3) 

Characteristically, the interval (3) encloses practically all possible events in 
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nature, but it does not explain much what happens within (2) or (3). A rather 
simple example can be suggested by the quantum theory. 

In the modern theory of atom—an object which is best penetrated by the 
quantum physics—we have a positively charged nucleus surrounded by the 
cloud of a negative electron charge. If the atom is in its lowest state of energy, 
called also the ground state, and no external fields or collisions act on it, it can 
remain—according to the present knowledge—in such a state practically infi-
nitely long time with no change. Therefore no idea, or scale, of time can or should 
be applied in order to describe such atom. 

But a different situation is obtained when—at some moment—the atom be-
comes perturbed, for example by the action of an external field. Let us assume 
that this field is independent of time. If the time moment of inclusion of the 
perturbation potential is denoted by  

1 0,t t= =                           (4) 

in any time moment  

2 1t t>                             (5) 

the properties of the atom are changed in comparison with those possessed at 
time (4). However—for a sufficiently weak perturbation potential perV —we can 
assume that in effect of the action of perV  at some  

0lt t=                             (6) 

the atom will approach another stationary state, certainly different than that oc-
cupied at 0t = . The stationary state means that at  

lt t                             (7) 

the atom properties will be not effectively different than those possessed at 

lt t= . In other words the atom behaves at (7) as an unchanged object identical 
to that obtained at time lt t=  in (6). For such an object the idea of time loses 
its sense. A question becomes how time is going within the interval between 

0t =  and lt t= . 

3. Feynman’s Treatment and Present Treatment of the Time 
Interval ( )lt0,  Characteristic for the Perturbation Process 

A fundamental difference in the Feynman’s and present treatment of the Schrödin-
ger perturbation series concerns the system behaviour in dependence on time. In 
fact Feynman assumes that the time interval followed by a physical system on his 
diagrams is of an unlimited length, i.e. the interval is that of (2) or (3); see [15]. 
The answer of the atomic system to an applied perturbation is a set of energy 
transitions in different time moments done to different quantum states which 
are possible to be attained for an unperturbed atom. If the degeneracy with re-
spect to energy of the system does not hold, only one of the system states is the 
ground state, the other ones are necessarily the excited states. In principle all ex-
cited states of the unperturbed system are admissible for the energy transitions 
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in the perturbation process. In order to obtain a final result of the perturbation, 
the Feynman’s method admits that gradually more and more time moments are 
involved in the system contacts with the perturbation potential. 

But these contacts are arranged practically on an equal footing: there does not 
exist a classification of the time moments which are more or less admissible by 
the system in course of its way with time. In effect a convergent result for the 
perturbation energy requires an enormous number of diagrams, or energy com-
ponents, in order to approach a final perturbation result. This is expected to hold 
especially when the physical nature of the system makes the perturbation series 
only slowly convergent in the original, i.e. time-independent, Schrödinger per-
turbation formalism. 

A look on the original approach proposed by Schrödinger makes it clear that 
the quantum system should contact its perturbation in different but specified 
ways, in dependence on the number of contacts. A full number of contacts of a 
given kind were called the perturbation order labeled by N; an increasing number 
of considered orders evidently increase the accuracy of a final perturbation result. 
Mathematically this led to special perturbation terms the number of which was 
strictly connected with the order N. When the perturbation of a non-degenerate 
quantum system was considered, the number of the perturbation terms NS  cha-
racteristic for a given N could be expressed by the formula [16] [17] 

( )
( )

2 2 !
.

! 1 !N

N
S

N N
−

=
−                        

(8) 

But the number of the Feynman diagrams NP , classified as belonging to the 
order N and necessary to obtain the energy contribution corresponding to N, 
was [14]  

( )1 !NP N= −                          (9) 

For a large perturbation order, say 20N = , we obtain from (9) the number 
of the Feynman terms equal to  

17
20 19! 1.216 10 .P = ≈ ×                     (10) 

On the other hand, the number of the Schrödinger perturbation terms from 
the formula (8) and 20N =  becomes  

9
20 1.767 10 .S ≈ ×                        (11) 

This means that in average  

820

20

0.7 10
P
S

≅ ×
                        

(12) 

Feynman terms should be combined in order to give a contribution furnished 
by a single Schrödinger perturbation term for energy. In a computational prac-
tice this task could be difficult to be both programmed and performed. 

The aim of the present method—instead to formulate a new computational 
problem—was a search to simplify both the scheme given by Feynman and that 
by Schrödinger. Since the atomic system and its perturbation potential remain 
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constant, the time scale of the perturbation events became the object of an anal-
ysis. In fact we show that a suitable sequence of the system collisions with the 
perturbation potential done according to a circular scale of time can provide us 
readily with the perturbation terms given by Schrödinger and formula (8). More-
over, the individual terms of the Schrödinger series could be obtained from the 
proposed time scale without following their complicated derivation presented in 
[10]. 

4. The Schrödinger Perturbation Formalism and a Suitable 
Scale of Time 

As a first step we outline the fundamentals of the Schrödinger perturbation for-
malism specified for the case when a non-degenerate quantum state of a single 
particle is perturbed. Let this state be, for example, the lowest one of a set of 
non-degenerate quantum states being the eigenstates of the unperturbed and 
time-independent Hamiltonian operator 0Ĥ . The unperturbed eigenenergies 
are  

( ) ( ) ( ) ( )0 0 0 0
1 2 3 4 ,E E E E< < < <                  (13) 

so ( )0
1E  is the lowest energy. The time-independent parts of the eigenfunctions 

of 0Ĥ  corresponding to energies (13) are  

1 2 3 4, , , , ,ψ ψ ψ ψ                        (14) 

so for any pair of iE  and iψ  there is satisfied the eigenequation  
( )0

0
ˆ .i i iH Eψ ψ=                        (15) 

Our aim is to calculate the eigenenrgies and eigenfunctions of a perturbed 
Hamiltonian  

per per
0

ˆ ˆH H V= +                        (16) 

where  

( )per perV̂ V= r                         (17) 

is a time-independent perturbation potential dependent solely on the particle 
position r . We assume that the potential (17) is sufficiently small to represent 
the perturbation formalism by a convergent procedure. 

In principle we seek for the wave-function solutions  
per per per
1 2 3, , ,ψ ψ ψ                        (18) 

and eigenenergies  
per per per
1 2 3, , ,E E E                         (19) 

of a new eigenproblem  
per per per perˆ ,i i iH Eψ ψ=                       (20) 

but this may occur to be much more difficult than solution of an unperturbed 
problem (15). In general, by considering the energy alone, we look for a series  

https://doi.org/10.4236/jmp.2017.89098


S. Olszewski 
 

 

DOI: 10.4236/jmp.2017.89098 1656 Journal of Modern Physics 
 

( ) ( ) ( ) ( )0 1 2 3per
1 1 1 1 1E E E E E= + ∆ + ∆ + ∆ +               (21) 

where  
( )0
1E                             (22) 

is the unperturbed energy and  
( )
1

iE∆                             (23) 

are the correcting terms of (22) arranged according to an increasing perturbation 
order  

1,2,3,4,i N≡ =                        (24) 

In general any  
( )
1

iE∆                            (25) 

is a combination of the matrix elements  
perm V n                          (26) 

where  

mm ψ=                           (27) 

and  

nn ψ=                           (28) 

are the unperturbed wave functions from the set (11). 
Beyond of the matrix elements (26) also the unperturbed eigenenergies (13) 

enter the expressions (25). Excepting for the term  
( )1 per
1 1 1 ,E V∆ =                       (29) 

other series components ( )
1

iE∆  entering the sum (21) are represented by expres-
sions containing infinite sums over the quantum states. A single infinite sum is 
characteristic solely for 2N = :  

( )
( ) ( )

2per
2

1 0 0
1 1

1
;

p p

V p
E

E E≠

∆ =
−

∑
                    

(30) 

here and in (29) the bra 1  means 1ψ  and ket p  refers to any energy state 
beyond of that labeled by 1. 

A total number of the kinds of terms which compose the sum of  
( )
1

iE∆                            (31) 

belonging to successive perturbation orders i is equal to  

i
i

S∑
                           

(32) 

where iS  is presented in (8) for i N= . 
A difficulty is in construction of particular terms entering any (31). With the 

aid of the Schrödinger formalism this construction becomes a very complicated 
task, especially for large i N= . But this task can be evidently simplified by in-
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troducing the scale of time suitable for the Schrödinger perturbation problem. 

5. Properties of the Time Scale 

In general any scale of time is defined by the order in which the physical events 
do succeed on it. In a conventional scale of time, assumed for example in con-
struction of the Feynman diagrams, the scale is extended from a minus to plus 
infinity. Therefore the time moment of the next event is compulsorily more dis-
tant from the beginning point than a former event; the events, in the perturba-
tion theory, are represented by collisions of the perturbation potential with an 
unperturbed quantum system. 

For the Schrödinger theory the perturbation order i, labeled usually by N, is 
suitable as a basis of classifying the events. For example it is convenient to as-
sume that a separate amount of collisions belong to the order 1N = , another 
set of collisions belong to 2N = , still another set belongs to 3N = , etc. When 
the scale of time for a set of collisions is assumed to be not infinitely progressive 
but circular, its advantage is that the Schrödinger perturbation terms occur al-
most automatically from it. The basic postulate is that collisions of the external 
perturbation potential with an unperturbed system can be grouped together into 
specific sets. The total number of the time points of collisions which enter such a 
set does not exceed N. So we have one collision point of time in the set belonging 
to 1N = , two collision time points in the set belonging to 2N = , three colli-
sion time points in the set for 3N = , etc. For each set, after travelling the whole 
set of time points belonging to that set, the system returns to its beginning time 
point after which a new set of collisions can begin. This situation provides us 
with an unlimited number of the time scales of a circular character, each scale 
having 1,2,3,N =   time points on it. For 1N =  we have only one point on 
the scale which represents a beginning-end point of this scale, but the scales 
belonging to 1N >  have evidently one or more time points beyond the be-
ginning-end point of time; see Figure 1 where diagrams for 1,2N = , and 3 are 
presented. 

In order to obtain a full set of the Schrödinger perturbation terms from the 
time points belonging to the scale of a given set of N points, the time points on  

 

 
Figure 1. Diagrams denoting the Schrödinger perturbation terms for 1,2N =  and 3. 
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the scale should have a property to merge together in a definite way [see e.g. 
Figure 1(d)]. The fundamental rules concerning the merging process are two: (i) 
the beginning-end point on the scale describing a whole perturbation term is free 
from the merging process; (ii) the merging between two or more time points present 
on the scale can be done only in the way that a sequence of the time events 
represented by these points is not violated by the merging process. 

This means, for example, that two points on the scale, say  

and , and , and ,a b c d e ft t t t t t                   (33) 

can be merged together on condition that any of these points is not a begin-
ning-end point on the scale; moreover the points represent a sequence  

, , ,a b c d e ft t t t t t< < <                      (34) 

which is indicated by the fact that  

, , ,a b c d e f< < <                      (34a) 

The merging symbols representing the individual Schrödinger perturbation 
terms given by contractions mentioned in (33) and (34) are:  

: , : , : ,a b c d e f                        (35) 

The merging process can be extended to a larger number of the time points 
than two. For example three time points , ,a b ct t t  can be also merged together. 
This situation is represented by the contraction symbols  

: : ,a b c                           (36) 

: : : ,a b c d                         (36a) 

etc., for which the sequence relations  

,a b c< <                          (37) 

,a b c d< < <                        (37a) 

are satisfied. Certainly the number of the time points participating in any merg-
ing process is limited by 1N −  where the term −1 is due to exclusion of one, i.e. 
the beginning-end point of time on the scale. 

But there exist also combined merging processes of the time points which can 
be accepted by the theory. For example  

: :a d b c                          (38) 

can be a valid contractions pair on condition that there holds the relation  

a b c d< < <                         (39) 

which is identical with (37a). 
The merging processes listed above provide us with the side loops of time 

which are formed on the scale together with the main loop of time. The main 
loop is considered to be that loop on which the beginning-end point of the scale 
is present. Evidently some time points lying formerly on the main loop can be 
shifted to a side loop, or loops, in effect of the merging process. 

By considering several sets of the merged points the rule (ii) mentioned above 
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should be taken into account. This means, for example, that there is not allowed 
a crossing of the time loops on the diagram; see e.g. [4]. 

A consequent application of the idea outlined above provides us with a full set 
of the Schrödinger perturbation terms for energy belonging to any order N; see 
Section 6. These calculations, limited to 7N = , have been presented already 
before [8] [9]. However a plain rule allowing for calculating all perturbation terms 
belonging to any given N was lacking. In the next Sections we develop such rule 
on the basis of partitions of N and contractions of the time points entering these 
partitions. 

6. Partitions of the Time Points on the Scale 

The next step to obtain the Schrödinger series is a partition of the number  

1N −                            (40) 

which is the perturbation order N decreased by one. The −1 is a correction term 
due to a circular character of the time scale. The partitions done for individual N 
(and contractions of the time points for low N) are given in the Tables, see Tables 
1-4 and Table 6. 

Evidently the perturbation order 1N =  does not provide partitions since  
 

Table 1. Partitions of the time points and Schrödinger perturbation terms for energy; or-
ders N from 1N =  to 4N = . iS  are the Huby-Tong numbers of the Schrödinger terms 
labeled by the index i; see (8). The abbreviation symbols are represented in (41)-(41c); see 
also [8] [9].  

1N = : no time points are present on the scale excepting for the beginning-end point; 1 1S = ; 

Schrödinger perturbation energy: 1E V∆ =  

2N = : only one time point is present on the scale beyond the beginning-end point; 2 1S = ; 

Schrödinger perturbation energy: 2E VPV∆ =
 

3N = , 1 2N − = ; 

Partitions of 1N −  Schrödinger term(s) for partition 

1 1 VPVPV  

2 2V VP V−  

 
2

3 1 2 1 1 2S S S= + = + =  
2

3 1E E V∆ = −∆  

4N = , 1 3N − = ; 

 Partitions of 1N −  Schrödinger term(s) for partition 

 1 1 1 VPVPVPV  

 2 1 2V VP VPV−  

 1 2 2V VPVP V−  

 3 2VPV VP V−  

  ( )2 3V VP V  

3
4 1 2 1 1 2 3 1 1 1 2 5S S S S S S S= + + + = + + + =  

( )22 2 2 3
4 1 1 2 1 .E VPVPVPV E VP VPV E VPVP V E VP V E VP V∆ = − ∆ − ∆ − ∆ + ∆  
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Table 2. Partitions of the time points and Schrödinger perturbation terms for energy; or-
der 5N = . iS  are the Huby-Tong numbers of the Schrödinger terms labeled by the in-
dex i; see (8). The abbreviation symbols are represented in (41)-(41c); see also [8] [9]. 

5N = , 1 4N − = . 

Partitions of 1N −  Schrödinger term(s) for partition 

1 1 1 1 VPVPVPVPV  

2 1 1 2V VP VPVPV− ; 

1 2 1 2V VPVP VPV− ; 

1 1 2 2V VPVPVP V−  

2 2 ( )2 2 2V VP VP V  

3 1 2VPV VP VPV−  

 ( )2 3V VPVP V  

1 3 2VPV VPVP V−  

 ( )2 3V VPVP V  

4 

2 2VPVPV V VP V VP V − + ×  ; 
3V VPV VP V ; 
3VPV V VP V ; 

( )3 4V VP V−  
4 2 2

5 1 2 1 2 1 3 43 2 1 3 1 4 5 14S S S S S S S S= + + + + = + + + + = ; 

( )
( ) ( )

( )

2 2
5 1 1

22 2 2 2
1 1 2

2 23 2 3
1 2 1

32 3 4
3 1 2 12

E VPVPVPVPV E VP VPVPV E VPVP VPV

E VPVPVP V E VP VP V E VP VPV

E VP VPV E VPVP V E VPVP V

E VP V E E VP V E VP V

∆ = − ∆ − ∆

− ∆ + ∆ − ∆

+ ∆ − ∆ + ∆

− ∆ + ∆ ∆ − ∆

 

 
Table 3. Partitions of the time points and Schrödinger perturbation terms for energy; or-
der = 6N . iS  are the Huby-Tong numbers of the Schrödinger terms labeled by the in-
dex i ; see (8). For the abbreviation symbols see (41)-(41c) and [8] [9]. 

Partitions of 1N −  Schrödinger term(s) for partition 

1 1 1 1 1 VPVPVPVPVPV  

2 1 1 1 2V VP VPVPVPV−  

1 2 1 1 2V VPVP VPVPV−  

1 1 2 1 2V VPVPVP VPV−  

1 1 1 2 2V VPVPVPVP V−  

2 2 1 ( )2 2 2V VP VP VPV  

2 1 2 ( )2 2 2V VP VPVP V  

1 2 2 ( )2 2 2V VPVP VP V  

3 1 1 ( )2 3V VP VPVPV  

 2VPV VP VPVPV−  

1 3 1 ( )2 3V VPVP VPV  

 2VPV VPVP VPV−  
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Continued 

1 1 3 ( )2 3V VPVPVP V  

 2VPV VPVPVP V−  

3 2 2 2VPV V VP VP V  

 ( )3 3 2V VP VP V−  

2 3 2 2VPV V VP VP V  

 ( )3 2 3V VP VP V−  

4 1 ( )2 2VP VPV VPVPV V VP V− −  
3V VPV VP VPV  
3V VPV VP VPV  

( )3 4V VP VPV−  
 

1 4 ( )2 2VP VPV VPVPV V VP V− −  
3V VPV VPVP V  
3V VPV VPVP V  

( )3 4V VPVP V−  

 

5 2
4E VP V−∆  

 3
1 3E E VP V∆ ∆  

 3
2 2E E VP V∆ ∆  

 3
3 1E E VP V∆ ∆  

 ( )2 4
1 2E E VP V− ∆ ∆  

 ( )2 4
1 2E E VP V− ∆ ∆  

 ( )2 4
1 2E E VP V− ∆ ∆  

 ( )4 5
1E VP V∆  

2 2 4
5 4 1 3 2 1 2 12 3 5 2 2 1 3 1 14S S S S S S S S= + + + + = + × + + + =  

5 3 2 2
6 1 1 2 2 1 3 1 3 2 4 1 54 3 3 2 2

1 4 3 3 2 2 2 2 5 14 42
S S S S S S S S S S S S S= + + + + + +

= + + + × + × + × + =
 

( )

( ) ( ) ( )

( )

( )

2 2
6 1 1

22 2 2 2
1 1 1

2 2 22 2 2 2 3
1 1 1

22 3 2
2 1 2

2 3 2 2 2
1 2 1 2

E VPVPVPVPVPV E VP VPVPVPV E VPVP VPVPV

E VPVPVP VPV E VPVPVP V E VP VP VPV

E VP VPVP V E VPVP VP V E VP VPVPV

E VP VPVPV E VPVP VPV E VPVP VPV

E VPVPVP V E VPVPVP V E E VP VP V

∆ = − ∆ − ∆

− ∆ − ∆ + ∆

+ ∆ + ∆ + ∆

− ∆ + ∆ − ∆

+ ∆ − ∆ + ∆ ∆

( ) ( )

( )

( )

( )

( ) ( )

3 33 2 2 2 2 3
1 1 2 1

32 3 4
3 1 2 1

32 3 4
3 1 2 1

22 3 3
4 1 3 2

2 44 5
1 2 1

2

2

2

3

E VP VP V E E VP VP V E VP VP V

E VP VPV E E VP VPV E VP VPV

E VPVP V E E VPVP V E VPVP V

E VP V E E VP V E VP V

E E VP V E VP V

− ∆ + ∆ ∆ − ∆

− ∆ + ∆ ∆ − ∆

− ∆ + ∆ ∆ − ∆

− ∆ + ∆ ∆ + ∆

− ∆ ∆ + ∆
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Table 4. Partitions of the time points and Schrödinger perturbation terms for energy; 
= 7N . For the sake of brevity the individual Schrödinger terms are combined into ener-

gy terms. The Huby-Tong number of the Schrödinger perturbation terms ( )pS  is calcu-

lated separately for any partition.  

Partition pS  Schrödinger energy term(s) 

1 1 1 1 1 1 1 VPVPVPVPVPVPV  

2 1 1 1 1 1 2
1E VP VPVPVPVPV−∆  

1 2 1 1 1 1 2
1E VPVP VPVPVPV−∆  

1 1 2 1 1 1 2
1E VPVPVP VPVPV−∆  

1 1 1 2 1 1 2
1E VPVPVPVP VPV−∆  

1 1 1 1 2 1 2
1E VPVPVPVPVP V−∆  

2 2 1 1 1 ( )2 2 2
1E VP VP VPVPV∆  

2 1 2 1 1 ( )2 2 2
1E VP VPVP VPV∆  

2 1 1 2 1 ( )2 2 2
1E VP VPVPVP V∆  

1 2 1 2 1 ( )2 2 2
1E VPVP VPVP V∆  

1 1 2 2 1 ( )2 2 2
1E VPVPVP VP V∆  

1 2 2 1 1 ( )2 2 2
1E VPVP VP VPV∆  

3 1 1 1 2 2
2E VP VPVPVPV−∆  

  ( )2 3
1E VP VPVPVPV+ ∆  

1 3 1 1 2 2
2E VPVP VPVPV−∆  

  ( )2 3
1E VPVP VPVPV+ ∆  

1 1 3 1 2 2
2E VPVPVP VPV−∆  

  ( )2 3
1E VPVPVP VPV+ ∆  

1 1 1 3 2 2
2E VPVPVPVP V−∆  

  ( )2 3
1E VPVPVPVP V+ ∆  

3 2 1 2 2 2
2 1E E VP VP VPV∆ ∆  

  ( )3 3 2
1E VP VP VPV− ∆  

3 1 2 2 2 2
2 1E E VP VPVP V∆ ∆  

  ( )3 3 2
1E VP VPVP V− ∆  

2 3 1 2 2 2
1 2E E VP VP VPV∆ ∆  

  ( )3 2 3
1E VP VP VPV− ∆  

2 1 3 2 2 2
1 2E E VP VPVP V∆ ∆  

  ( )3 2 3
1E VP VPVP V− ∆  

1 3 2 2 2 2
2 1E E VPVP VP V∆ ∆  

  ( )3 3 2
1E VPVP VP V− ∆  

1 2 3 2 2 2
1 2E E VPVP VP V∆ ∆  

  ( )3 2 3
1E VPVP VP V− ∆  
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Continued 

4 1 1 5 2
3E VP VPVPV−∆  

  3
2 1E E VP VPVPV+∆ ∆  

  3
1 2E E VP VPVPV+∆ ∆  

  ( )3 4
1E VP VPVPV− ∆  

1 1 4 5 2
3E VPVPVP V−∆  

  3
2 1E E VPVPVP V+∆ ∆  

  3
1 2E E VPVPVP V+∆ ∆  

  ( )3 4
1E VPVPVP V− ∆  

1 4 1 5 2
3E VPVP VPV−∆  

  3
2 1E E VPVP VPV+∆ ∆  

  3
1 2E E VPVP VPV+∆ ∆  

  ( )3 4
1E VPVP VPV− ∆  

2 2 2 1 ( )3 2 2 2
1E VP VP VP V− ∆  

3 3 4 2 2
2 2E E VP VP V∆ ∆  

  ( )2 3 2
1 2E E VP VP V− ∆ ∆  

  ( )2 2 3
2 1E E VP VP V−∆ ∆  

  ( ) ( )2 2 3 3
1 1E E VP VP V∆ ∆  

4 2 5 2 2
3 1E E VP VP V∆ ∆  

  ( )2 3 2
2 1E E VP VP V− ∆ ∆  

  ( )2 3 2
1 2E E VP VP V− ∆ ∆  

  ( )4 4 2
1E VP VP V∆  

2 4 5 2 2
1 3E E VP VP V∆ ∆  

  ( )2 2 3
2 1E E VP VP V−∆ ∆  

  ( )2 2 3
1 2E E VP VP V− ∆ ∆  

  ( )4 2 4
1E VP VP V∆  

5 1 14 2
4E VP VPV−∆  

  3
1 3E E VP VPV∆ ∆  

  3
3 1E E VP VPV∆ ∆  

  ( )2 3
2E VP VPV∆  

  ( )2 4
1 2E E VP VPV− ∆ ∆  

  4
1 2 1E E E VP VPV−∆ ∆ ∆  

  ( )2 4
2 1E E VP VPV−∆ ∆  

  ( )4 5
1E VP VPV∆  

1 5 14 2
4E VPVP V−∆  

  3
1 3E E VPVP V∆ ∆  

  3
3 1E E VPVP V∆ ∆  

  ( )2 3
2E VPVP V∆  
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Continued 

  ( )2 4
1 2E E VPVP V− ∆ ∆  

  4
1 2 1E E E VPVP V−∆ ∆ ∆  

  ( )2 4
2 1E E VPVP V−∆ ∆  

  ( )4 5
1E VPVP V∆  

6 42 2
5E VP V−∆  

  3
1 4E E VP V∆ ∆  

  3
4 1E E VP V∆ ∆  

  3
3 2E E VP V∆ ∆  

  3
2 3E E VP V∆ ∆  

  ( )2 4
1 2E E VP V−∆ ∆  

  4
2 1 2E E E VP V−∆ ∆ ∆  

  ( )2 4
2 1E E VP V− ∆ ∆  

  ( )2 4
3 1E E VP V−∆ ∆  

  4
1 3 1E E E VP V−∆ ∆ ∆  

  ( )2 4
1 3E E VP V− ∆ ∆  

  ( )3 5
1 2E E VP V∆ ∆  

  ( )2 5
1 2 1E E E VP V∆ ∆ ∆  

  ( )2 5
1 2 1E E E VP V∆ ∆ ∆  

  ( )3 5
2 1E E VP V∆ ∆  

  ( )5 6
1E VP V− ∆  

71 5 1 6 1 4 2 6 2 3 5 1 1 4 2 5 2 14 42 132p
p

S S= + × + × + × + × + × + + × + × + × + = =∑  

7 the sum of terms entering the last column of the present Table.E∆ =  

 
1 0N − = : the time loop has only one point on it which is the beginning-end 

point of the scale, and there exist no additional points of collisions with the per-
turbation potential. In Table 1 are presented partitions of 1N −  for N from 2 
to 4 and the corresponding energy perturbation terms are given also there. In 
this case the abbreviations of energy expressions done in the former papers [8] 
[9] are applied. For example  

( )( )( )( )
np pq qr rs sn

p q r s n p n q n r n s

U U U U U
VPVPVPVPV

E E E E E E E E
=

− − − −
∑∑∑∑

  
(41) 

is the uncontracted perturbation term for 5N = , where  
per .abU a V b=                      (41a) 

An example of a contracted perturbation term representing a contribution of 
the main loop of time is  

VP VP VP Vα β γ


                     
(41b) 

where symbols V replace the matrix elements of the kind given in (41a) and  
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( ) ( ) ( )
1 1 1, , ,

n rn p n q

P P P
E EE E E E

α β γ
α β γ= = =

−− −


    

(41c) 

The summation symbols in (41) run over the unperturbed states being differ-
ent than n. The data for N from 5 to 7 are given in Tables 2-4. 

The partition operations are of importance because they lead to the sets of 
time points which—when submitted to contractions—provide us readily with 
the Schrödinger perturbation terms. The corresponding rules are given in Sec-
tion 7. The summation symbols present in (41) indicate that the way along any 
main loop of time belonging to 1N >  can be repeated in order to take into ac-
count more than one quantum state from the set of p, q, r, and s states attainable, 
for example, in case of 5N = . 

In numerous cases the perturbation terms belonging to a given N are found 
equal to products of the perturbation terms for energy having the order lower 
than N. Another simplification comes from the symmetry properties entering 
partitions: for large N this gives a reduction of the number of terms necessary to 
calculate to about one half of the original number of the terms belonging to N. 

7. Contractions of the Time Points Entering the Sets  
Obtained Due to Partitions  

The contractions of the time points grouped in the sets due to partitions of 
1N −  in (40) can be best explained by an example. Let us consider partition of  

1M N= −                          (42) 

into two sets, so  

,M Q R= +                         (42a) 

therefore we have the time points labeled by  

1,2,3, ,Q                          (43) 

in the first set, and the time points labeled by  

1 ,2 ,3 , , R′ ′ ′
                         (44) 

in the second set. Evidently  

1 1 ,Q ′+ =                           (45) 

2 2 ,Q ′+ =                         (45a) 

3 3 ,Q ′+ =                         (45b) 

etc. Our aim is to examine the contractions of the time points entering set Q and 
set R. To this purpose let us take for example  

3, 4.Q R= =                         (46) 

This case corresponds to 8N =  and is explicitly considered in Table 6 of the 
present paper. 

The three time points of Q can give contractions  

1: 3,                             (47) 
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and  

1: 2 : 3,                           (47a) 

therefore the number of contractions is  

3 2.QS S= =                          (48) 

In a similar way the four points of set R give contractions  

1 : 4 ,′ ′                            (49) 

1 : 4 2 : 3 ,′ ′ ′ ′

                       (49a) 

1 : 2 : 4 ,′ ′ ′                          (49b) 

1 : 3 : 4 ,′ ′ ′                          (49c) 

1 : 2 : 3 : 4 ,′ ′ ′ ′                         (49d) 

so together five contractions:  

4 5RS S= =                          (50) 

are present. Let us note that the end points 1 and 3 enter obligatorily contractions 
of set Q and the end points 1′  and 4′  enter obligatorily contractions of set R. 
Because of  

2 5 10,Q RS S× = × =                      (51) 

both sets Q and R give together 10 Schrödinger perturbation terms belonging to 
8N =  for the chosen example of Q and R. 

Moreover the absolute value of the Schrödinger perturbation term obtained in 
virtue of contraction (47) is equal to 2E∆  and a similar value due to contraction 
(47a) is equal to  

( )2
1 1 1 .E E E∆ ∆ = ∆                       (52) 

Also contractions of the set R give the energy terms. The two terms resulted 
from contractions (49) and (49a) can be combined into the energy term  

3 ,E∆                            (53) 

the absolute value of the term given by contraction (49b) is equal to  

1 2 ,E E∆ ∆                           (54) 

the absolute value of the term given by contraction (49c) is equal to  

2 1,E E∆ ∆                           (55) 

and the absolute value of the term given by contraction (49d) is equal to  

( )3
1 1 1 1 .E E E E∆ ∆ ∆ = ∆                      (56) 

In general the contractions of sets belonging to Q and R provide us with the 
side loops of time. Such contractions give either the energy terms represented by 
these loops ( 1N =  and 2N = ), or the Schrödinger perturbation terms which 
can be combined into the energy terms. Let us note that a maximal order of the 
perturbation energy given by the set Q is  

1 3 1 2,Q − = − =                        (57) 
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and a maximal order of the perturbation energy given by set R is  

1 4 1 3.R − = − =                        (58) 

Any contribution given by the side loops should be supplemented by that 
given by the main loop of time. Single contractions like  

1: 3                             (59) 

or  

1 : 4′ ′                             (60) 

give together the term  
2 2 ;VP VP V

                        
(61) 

double contractions like  

1: 2 : 3                            (62) 

combined with  

1 : 2 : 4 or 1 : 3 : 4′ ′ ′ ′ ′ ′                      (63) 

give the term  
3 3 .VP VP V

                         
(64) 

A mixed order of contractions gives respectively mixed exponents of P in the 
energy term given by the main loop of time. For example contractions of 1: 3  
and 1 : 2 : 3 : 4′ ′ ′ ′  give the energy contribution from the main loop of time equal 
to  

2 4 .VP VP V
                         

(65) 

In general the mixed orders of contractions given by the sets of Q and R pro-
vide us with the terms  

VP VP Vα β

                         
(66) 

where  

, 2α β =                           (67) 

for single contractions,  

, 3α β =                            (68) 

for double contractions,  

, 4α β =                           (69) 

for triple contractions, i.e. involving four time points, etc. The exponent of P due 
to a combined contraction (49a) is such as for a single contraction, because only 
contraction 1 : 4′ ′  defines the side loop of time in this case. 

The results obtained for two-component partitions (viz. M Q R= + ) can be 
readily extended to many-component partitions of the number M. 

The full perturbation terms are products of the terms obtained from the main 
loop of time and the side loops, respectively. The 10 terms obtained from the side 
loops in virtue of Equation (50) are in fact reduced to 8 terms because of the com-
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bination of two terms from the set R into one term representing the perturbation energy 

3E∆ . Therefore the partition ( ) ( ), 3, 4Q R =  gives the following Schrödinger per-
turbation terms belonging to the order 8N = :  

2 2
2 3VP VP V E E∆ ∆

                      
(70) 

for contractions 1: 3  and 1 : 4′ ′  combined with 1 : 4 2 : 3′ ′ ′ ′ ,  
2 3

2 1 2VP VP V E E E− ∆ ∆ ∆
                   

(71) 

for contractions 1: 3  and 1 : 2 : 4′ ′ ′ ,  
2 3

2 2 1VP VP V E E E− ∆ ∆ ∆
                   

(72) 

for contractions 1: 3  and 1 : 3 : 4′ ′ ′ ,  

( )32 4
2 1VP VP V E E∆ ∆

                    
(73) 

for contractions 1: 3  and 1 : 2 : 3 : 4′ ′ ′ ′ ,  

( )23 2
1 3VP VP V E E− ∆ ∆

                    
(74) 

for contractions 1: 2 : 3  and 1 : 4′ ′  combined with 1 : 4 2 : 3′ ′ ′ ′ ,  

( )23 3
1 1 2VP VP V E E E∆ ∆ ∆

                   
(75) 

for contractions 1: 2 : 3  and 1 : 2 : 4′ ′ ′ ,  

( )23 3
1 2 1VP VP V E E E∆ ∆ ∆

                   
(76) 

for contractions 1: 2 : 3  and 1 : 3 : 4′ ′ ′ , and  

( ) ( )2 33 4
1 1VP VP V E E− ∆ ∆

                   
(77) 

for contractions 1: 2 : 3  and 1 : 2 : 3 : 4′ ′ ′ ′ . Evidently some terms, like (71) and (72) 
or (75) and (76), become equal. 

The sign of terms (70)-(77) is defined by the rule that the full time scale hav-
ing an odd number of loops on its diagram gives a term with a plus sign, whereas 
for an even number of loops this scale gives the term with a minus sign. 

8. Partitions of N − 1 Define the Terms Characteristic for the  
Perturbation Order N  

In our attempt to demonstrate that a suitable time scale can provide us with a 
correct series expansion of the Schrödinger perturbation terms for energy let us 
note that not all perturbation terms belonging to some N are new: numerous of 
them—especially for large N—are combinations of terms obtained for the per-
turbation orders lower than N, i.e. they enter the terms belonging to N N′ < . 
The aim of the present Section is to select the terms which are specific for a giv-
en N: they are such that no energy terms NE ′∆ , with N N′ <  excepting for a 
single  

1,E∆                             (78) 

or the powers of 1E∆  enter into them. 
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The set of such specific, or characteristic terms, for a given N can be obtained 
with the aid of the partition numbers of  

1.N −                            (79) 

The way to get them from the whole number NS  of the terms belonging to 
the order N is very simple: we choose from NS  only the terms which are built 
up of 1NE E′∆ = ∆ . 

These terms—together with the basic perturbation term corresponding to the 
scale of N for which no contraction points are considered—provide us with the 
characteristic terms for N. There exists a one-to-one correspondence of the cha-
racteristic terms for N and partitions of 1N − ; see Table 5. 

The number of characteristic terms is equal to  
22N

NC −=                          (80) 

and is evidently smaller than NS . The ratios of NS  and NC  obtained for the 
neighbouring order numbers N are respectively  

( ) ( )
( ) ( )1

242 ! 1 !
4,

12 2 ! 1 ! 1
N N

N N NS S
N N

N

+

−−
= = ≅

− + +
             

(81) 

and  
1 2

1 2

2 2.
2

N

N N NC C
+ −

+ −= =
                     

(82) 

Therefore NS  grows up with N more rapidly than NC . Moreover—because 
of symmetry—the number of NC  can be reduced to about one-half of its origi-
nal value when N is large. 

9. Large Partition Numbers and Their Contribution to the 
Schrödinger Perturbation Energy  

The order number N means N points of time present on the circular scale for 
that N:  

1,2,3, , .N                          (83) 

Let the Nth point be the beginning-end point on the scale, so this point is free 
from contractions. Then the largest partition number corresponding to N is  

1.M N= −                          (84) 

For 7N =  taken as an example this gives evidently 7 1 6M = − = . The aim 
of the present Section is to present the contribution to the perturbation energy 
given by the partition number equal to M. 

First let us note that contraction  

( )1: 1: 1M N= −                        (85) 

gives the largest side loop corresponding to N. The number of the time points on 
this loop is  

1.M −                            (86) 
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Table 5. Terms characteristic for the perturbation order N. They begin their existence in 
the perturbation series at a given N. The table presents the characteristic terms for 

4,5N =  and 6. A common property of these terms is that they possess the multipliers 
being solely a power of 1V E= ∆ . The number of characteristic terms is discussed in 

Section 8.  

4N =  Partition of 1N −  Characteristic term 

 1 1 1 VPVPVPV  

 2 1 2
1E VP VPV−∆  

 1 2 2
1E VPVP V−∆  

 3 ( )2 3
1E VP V∆  

5N =  Partition of 1N −  Characteristic term 

 1 1 1 1 VPVPVPVPV  

 2 1 1 2
1E VP VPVPV−∆  

 1 2 1 2
1E VPVP VPV−∆  

 1 1 2 2
1E VPVPVP V−∆  

 2 2 ( )2 2 2
1E VP VP V∆  

 3 1 ( )2 3 1
1E VP VP V∆  

 1 3 ( )2 3
1E VPVP V∆  

 4 ( )3 4
1E VP V− ∆  

6N =  Partition of 1N −  Characteristic term 

 1 1 1 1 1 VPVPVPVPVPV  

 2 1 1 1 2
1E VP VPVPVPV−∆  

 1 2 1 1 2
1E VPVP VPVPV−∆  

 1 1 2 1 2
1E VPVPVP VPV−∆  

 1 1 1 2 2
1E VPVPVPVP V−∆  

 2 2 1 ( )2 2 2
1E VP VP VPV∆  

 2 1 2 ( )2 2 2
1E VP VPVP V∆  

 1 2 2 ( )2 2 2
1E VPVP VP V∆  

 3 1 1 ( )2 3
1E VP VPVPV∆  

 1 3 1 ( )2 3
1E VPVP VPV∆  

 1 1 3 ( )2 3
1E VPVPVP V∆  

 3 2 ( )3 3 2
1E VP VP V− ∆  

 2 3 ( )3 2 3
1E VP VP V− ∆  

 4 1 ( )3 4
1E VP VPV− ∆  

 1 4 ( )3 4
1E VPVP V− ∆  

 5 ( )4 5
1E VP V∆  

 
If, in their turn, no supplementary contractions are taken into account, the 

side loop given by contraction (85) represents the uncontracted loop of the scale 
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corresponding to the perturbation order of energy equal to  

1 2.M N− = −                         (87) 

In effect the uncontracted side loop due to contraction (85) provides us with 
the first contribution to the perturbation energy equal to  

2
1 .ME VP V−−∆

                       
(88) 

The next contributions to the perturbation energy due to M are given by triple 
contractions which are  

1: 2 : ,
1: 3 : ,
1: 4 : ,

1: 1: .

M
M
M

M M−


                        

(89) 

Such contractions will provide us with the energy terms  
3

1 2

3
2 3

3
3 4

,

,

,

M

M

M

E E VP V

E E VP V

E E VP V

−

−

−

∆ ∆

∆ ∆

∆ ∆
                      

(90) 

etc., on one side, and symmetrical terms to (90), viz.  

3
4 3

3
3 2

3
2 1

,

,

,

M

M

M

E E VP V

E E VP V

E E VP V

−

−

−

∆ ∆

∆ ∆

∆ ∆



                      

(91) 

on the other side. The contraction process of (89) should be prolongated by oth-
er contractions than triple ones to a situation when the last component of energy 
due to M is attained: this component is of the form  

( ) 1
1 ;M ME VP V−± ∆

                     
(92) 

see Table 7. A full number of the perturbation terms entering Table 7 is equal to 

1 6 42NS S− = = . 
An important point of calculations is that the energy terms presented on the 

left-hand side of the first column given in Table 7 are characteristic for partition 
number 6 independently of the position which this 6 attains in the partition 
process of 1N − . For example for 8N = , so here 7M = , the partition number 
6 is entering the following partitions of M:  

6 1                            (93) 

and  

1 6.                            (94) 

The energy terms entering the left side of the main column in Table 6 will be  
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Table 6. Partitions of the time-points number and the Schrödinger perturbation terms 
for energy; 8N = . For the sake of brevity the individual Schrödinger terms are combined 
into energy terms. The Huby-Tong number of the Schrödinger perturbation terms ( )pS  

is calculated for any partition as a product of iS  given by numbers i entering the parti-
tions of 1 7N − = . 

Partition pS  Schrödinger energy term(s) 

1 1 1 1 1 1 1 1 VPVPVPVPVPVPV  

2 1 1 1 1 1 1 2
1E VP VPVPVPVPVPV−∆  

1 2 1 1 1 1 1 2
1E VPVP VPVPVPVPV−∆  

1 1 2 1 1 1 1 2
1E VPVPVP VPVPVPV−∆  

1 1 1 2 1 1 1 2
1E VPVPVPVP VPVPV−∆  

1 1 1 1 2 1 1 2
1E VPVPVPVPVP VPV−∆  

1 1 1 1 1 2 1 2
1E VPVPVPVPVPVP V−∆  

2 2 1 1 1 1 ( )2 2 2
1E VP VP VPVPVPV∆  

1 2 2 1 1 1 ( )2 2 2
1E VPVP VP VPVPV∆  

1 1 2 2 1 1 ( )2 2 2
1E VPVPVP VP VPV∆  

1 1 1 2 2 1 ( )2 2 2
1E VPVPVPVP VP V∆  

2 1 2 1 1 1 ( )2 2 2
1E VP VPVP VPVPV∆  

2 1 1 2 1 1 ( )2 2 2
1E VP VPVPVP VPV∆  

1 2 1 1 2 1 ( )2 2 2
1E VPVP VPVPVP V∆  

2 1 1 1 2 1 ( )2 2 2
1E VP VPVPVPVP V∆  

1 2 1 2 1 1 ( )2 2 2
1E VPVP VPVP VPV∆  

1 1 2 1 2 1 ( )2 2 2
1E VPVPVP VPVP V∆  

2 2 2 1 1 ( )3 2 2 2
1E VP VP VP VPV− ∆  

2 2 1 2 1 ( )3 2 2 2
1E VP VP VPVP V− ∆  

2 1 2 2 1 ( )3 2 2 2
1E VP VPVP VP V− ∆  

1 2 2 2 1 ( )3 2 2 2
1E VPVP VP VP V− ∆  

3 2 1 1 2 2 2
2 1E E VP VP VPVPV∆ ∆  

  ( )3 3 2
1E VP VP VPVPV− ∆  

3 1 2 1 2 2 2
2 1E E VP VPVP VPV∆ ∆  

  ( )3 3 2
1E VP VPVP VPV− ∆  

3 1 1 2 2 2 2
2 1E E VP VPVPVP V∆ ∆  

  ( )3 3 2
1E VP VPVPVP V− ∆  

2 3 1 1 2 2 2
1 2E E VP VP VPVPV∆ ∆  

  ( )3 2 3
1E VP VP VPVPV− ∆  

1 3 2 1 2 2 2
2 1E E VPVP VP VPV∆ ∆  

  ( )3 3 2
1E VPVP VP VPV− ∆  

1 3 1 2 2 2 2
2 1E E VPVP VPVP V∆ ∆  

  ( )3 3 2
1E VPVP VPVP V− ∆  
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Continued 

2 1 3 1 2 2 2
1 2E E VP VPVP VPV∆ ∆  

  ( )3 2 3
1E VP VPVP VPV− ∆  

1 2 3 1 2 2 2
1 2E E VPVP VP VPV∆ ∆  

  ( )3 2 3
1E VPVP VP VPV− ∆  

1 1 3 2 2 2 2
2 1E E VPVPVP VP V∆ ∆  

  ( )3 3 2
1E VPVPVP VP V− ∆  

2 1 1 3 2 2 2
1 2E E VP VPVPVP V∆ ∆  

  ( )3 2 3
1E VP VPVPVP V− ∆  

1 2 1 3 2 2 2
1 2E E VPVP VPVP V∆ ∆  

  ( )3 2 3
1E VPVP VPVP V− ∆  

1 1 2 3 2 2 2
1 2E E VPVPVP VP V∆ ∆  

  ( )3 2 3
1E VPVPVP VP V− ∆  

3 1 1 1 1 2 2
2E VP VPVPVPVPV−∆  

  ( )2 3
1E VP VPVPVPVPV∆  

1 3 1 1 1 2 2
2E VPVP VPVPVPV−∆  

  ( )2 3
1E VPVP VPVPVPV∆  

1 1 3 1 1 2 2
2E VPVPVP VPVPV−∆  

  ( )2 3
1E VPVPVP VPVPV∆  

1 1 1 3 1 2 2
2E VPVPVPVP VPV−∆  

  ( )2 3
1E VPVPVPVP VPV∆  

1 1 1 1 3 2 2
2E VPVPVPVPVP V−∆  

  ( )2 3
1E VPVPVPVPVP V∆  

2 2 3 2 ( )2 2 2 2
1 2E E VP VP VP V− ∆ ∆  

  ( )4 2 2 3
1E VP VP VP V∆  

2 3 2 2 ( )2 2 2 2
1 2E E VP VP VP V− ∆ ∆  

  ( )4 2 3 2
1E VP VP VP V∆  

3 2 2 2 ( )2 2 2 2
1 2E E VP VP VP V− ∆ ∆  

  ( )4 3 2 2
1E VP VP VP V∆  

3 3 1 4 ( )2 2 2
2E VP VP VPV∆  

  ( )2 2 3
2 1E E VP VP VPV−∆ ∆  

  ( )2 3 2
1 2E E VP VP VPV− ∆ ∆  

  ( )4 3 3
1E VP VP VPV∆  

3 1 3 4 ( )2 2 2
2E VP VPVP V∆  

  ( )2 2 3
2 1E E VP VPVP V−∆ ∆  

  ( )2 3 2
1 2E E VP VPVP V− ∆ ∆  

  ( )4 3 3
1E VP VPVP V∆  

1 3 3 4 ( )2 2 2
2E VPVP VP V∆  
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Continued 

  ( )2 2 3
2 1E E VPVP VP V−∆ ∆  

  ( )2 3 2
1 2E E VPVP VP V− ∆ ∆  

  ( )4 3 3
1E VPVP VP V∆  

4 1 1 1 5 2
3E VP VPVPVPV−∆  

  3
1 2E E VP VPVPVPV∆ ∆  

  3
2 1E E VP VPVPVPV∆ ∆  

  ( )3 4
1E VP VPVPVPV− ∆  

1 4 1 1 5 2
3E VPVP VPVPV−∆  

  3
1 2E E VPVP VPVPV∆ ∆  

  3
2 1E E VPVP VPVPV∆ ∆  

  ( )3 4
1E VPVP VPVPV− ∆  

1 1 4 1 5 2
3E VPVPVP VPV−∆  

  3
1 2E E VPVPVP VPV∆ ∆  

  3
2 1E E VPVPVP VPV∆ ∆  

  ( )3 4
1E VPVPVP VPV− ∆  

1 1 1 4 5 2
3E VPVPVPVP V−∆  

  3
1 2E E VPVPVPVP V∆ ∆  

  3
2 1E E VPVPVPVP V∆ ∆  

  ( )3 4
1E VPVPVPVP V− ∆  

4 2 1 5 2 2
3 1E E VP VP VPV∆ ∆  

  ( )3 3 2
1 2E E VP VP VPV− ∆ ∆  

  ( )2 3 2
2 1E E VP VP VPV−∆ ∆  

  ( )4 4 2
1E VP VP VPV∆  

4 1 2 5 2 2
3 1E E VP VPVP V∆ ∆  

  ( )2 3 2
1 2E E VP VPVP V− ∆ ∆  

  ( )2 3 2
2 1E E VP VPVP V−∆ ∆  

  ( )4 4 2
1E VP VPVP V∆  

2 4 1 5 2 2
1 3E E VP VP VPV∆ ∆  

  ( )2 2 3
1 2E E VP VP VPV− ∆ ∆  

  ( )2 2 3
2 1E E VP VP VPV−∆ ∆  

  ( )4 2 4
1E VP VP VPV∆  

1 4 2 5 2 2
1 3E E VPVP VP V∆ ∆  

  ( )2 3 2
1 2E E VPVP VP V− ∆ ∆  

  ( )2 3 2
2 1E E VPVP VP V−∆ ∆  

  ( )4 4 2
1E VPVP VP V∆  

2 1 4 5 2 2
1 3E E VP VPVP V∆ ∆  

  ( )2 2 3
1 2E E VP VPVP V− ∆ ∆  
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Continued 

  ( )2 2 3
2 1E E VP VPVP V−∆ ∆  

  ( )4 2 4
1E VP VPVP V∆  

1 2 4 5 2 2
1 3E E VPVP VP V∆ ∆  

  ( )2 2 3
1 2E E VPVP VP V− ∆ ∆  

  ( )2 2 3
2 1E E VPVP VP V−∆ ∆  

  ( )4 2 4
1E VPVP VP V∆  

5 1 1 14 2
4E VP VPVPV−∆  

  3
1 3E E VP VPVPV∆ ∆  

  ( )2 3
2E VP VPVPV∆  

  3
3 1E E VP VPVPV∆ ∆  

  ( )2 4
1 2E E VP VPVPV− ∆ ∆  

  4
1 2 1E E E VP VPVPV−∆ ∆ ∆  

  ( )2 4
2 1E E VP VPVPV−∆ ∆  

  ( )4 5
1E VP VPVPV∆  

1 5 1 14 2
4E VPVP VPV−∆  

  3
1 3E E VPVP VPV∆ ∆  

  ( )2 3
2E VPVP VPV∆  

  3
3 1E E VPVP VPV∆ ∆  

  ( )2 4
1 2E E VPVP VPV− ∆ ∆  

  4
1 2 1E E E VPVP VPV−∆ ∆ ∆  

  ( )2 4
2 1E E VPVP VPV−∆ ∆  

  ( )4 5
1E VPVP VPV∆  

1 1 5 14 2
4E VPVPVP V−∆  

  3
1 3E E VPVPVP V∆ ∆  

  ( )2 3
2E VPVPVP V∆  

  3
3 1E E VPVPVP V∆ ∆  

  ( )2 4
1 2E E VPVPVP V− ∆ ∆  

  4
1 2 1E E E VPVPVP V−∆ ∆ ∆  

  ( )2 4
2 1E E VPVPVP V−∆ ∆  

  ( )4 5
1E VPVPVP V∆  

4 3 10 2 2
3 2E E VP VP V∆ ∆  

  ( )2 2 3
3 1E E VP VP V−∆ ∆  

  3 2
2 1 2E E E VP VP V−∆ ∆ ∆  

  ( )2 3 3
2 1 1E E E VP VP V∆ ∆ ∆  

  ( )2 3 2
1 2E E VP VP V−∆ ∆  

  ( )2 3 3
1 2 1E E E VP VP V∆ ∆ ∆  

  ( )3 4 2
1 2E E VP VP V∆ ∆  
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Continued 

  ( )5 4 3
1E VP VP V− ∆  

3 4 10 2 2
2 3E E VP VP V∆ ∆  

  ( )2 3 2
1 3E E VP VP V− ∆ ∆  

  2 3
2 1 2E E E VP VP V−∆ ∆ ∆  

  ( )3 2 4
1 2E E VP VP V∆ ∆  

  ( )2 2 3
2 1E E VP VP V− ∆ ∆  

  ( )2 3 3
1 2 1E E E VP VP V∆ ∆ ∆  

  ( )3 3 3
2 1E E VP VP V∆ ∆  

  ( )5 3 4
1E VP VP V− ∆  

5 2 14 2 2
4 1E E VP VP V∆ ∆  

  ( )2 3 2
1 3E E VP VP V− ∆ ∆  

  ( )2 3 2
2 1E E VP VP V− ∆ ∆  

  ( )2 3 2
1 3E E VP VP V− ∆ ∆  

  ( )3 4 2
1 2E E VP VP V∆ ∆  

  ( )3 4 2
1 2E E VP VP V∆ ∆  

  ( )3 4 2
1 2E E VP VP V∆ ∆  

  ( )5 5 2
1E VP VP V− ∆  

2 5 14 2 2
1 4E E VP VP V∆ ∆  

  ( )2 2 3
3 1E E VP VP V−∆ ∆  

  ( )2 2 3
1 2E E VP VP V−∆ ∆  

  ( )2 2 3
3 1E E VP VP V−∆ ∆  

  ( )3 2 4
2 1E E VP VP V∆ ∆  

  ( )3 2 4
2 1E E VP VP V∆ ∆  

  ( )3 2 4
2 1E E VP VP V∆ ∆  

  ( )5 2 5
1E VP VP V− ∆  

6 1 14 2
5E VP VPV−∆  

 5 3
1 4E E VP VPV∆ ∆  

 5 3
4 1E E VP VPV∆ ∆  

 2 3
3 2E E VP VPV∆ ∆  

 2 3
2 3E E VP VPV∆ ∆  

 1 ( )2 4
1 2E E VP VPV−∆ ∆  

 1 4
2 1 2E E E VP VPV−∆ ∆ ∆  

 1 ( )2 4
2 1E E VP VPV− ∆ ∆  

 2 ( )2 4
3 1E E VP VPV−∆ ∆  

 2 4
1 3 1E E E VP VPV−∆ ∆ ∆  

 2 ( )2 4
1 3E E VP VPV− ∆ ∆  

 1 ( )3 5
1 2E E VP VPV∆ ∆  
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 1 ( )2 5
1 2 1E E E VP VPV∆ ∆ ∆  

 1 ( )2 5
1 2 1E E E VP VPV∆ ∆ ∆  

 1 ( )3 5
2 1E E VP VPV∆ ∆  

 1 ( )5 6
1E VP VPV− ∆  

1 6 14 2
5E VPVP V−∆  

 5 3
1 4E E VPVP V∆ ∆  

 5 3
4 1E E VPVP V∆ ∆  

 2 3
3 2E E VPVP V∆ ∆  

 2 3
2 3E E VPVP V∆ ∆  

 1 ( )2 4
1 2E E VPVP V−∆ ∆  

 1 4
2 1 2E E E VPVP V−∆ ∆ ∆  

 1 ( )2 4
2 1E E VPVP V− ∆ ∆  

 2 ( )2 4
3 1E E VPVP V−∆ ∆  

 2 4
1 3 1E E E VPVP V−∆ ∆ ∆  

 2 ( )2 4
1 3E E VPVP V− ∆ ∆  

 1 ( )3 5
1 2E E VPVP V∆ ∆  

 1 ( )2 5
1 2 1E E E VPVP V∆ ∆ ∆  

 1 ( )2 5
1 2 1E E E VPVP V∆ ∆ ∆  

 1 ( )3 5
2 1E E VPVP V∆ ∆  

 1 ( )5 6
1E VPVP V− ∆  

7 42 2
6E VP V−∆  

 14 3
1 5E E VP V∆ ∆  

 14 3
5 1E E VP V∆ ∆  

 5 3
4 2E E VP V∆ ∆  

 2 2×  3
3 3E E VP V∆ ∆  

 5 3
2 4E E VP V∆ ∆  

 5 ( )2 4
1 4E E VP V− ∆ ∆  

 5 ( )2 4
4 1E E VP V−∆ ∆  

 5 4
1 4 1E E E VP V−∆ ∆ ∆  

 2 4
3 2 1E E E VP V−∆ ∆ ∆  

 2 4
2 3 1E E E VP V−∆ ∆ ∆  

 2 4
2 1 3E E E VP V−∆ ∆ ∆  

 2 4
3 1 2E E E VP V−∆ ∆ ∆  

 2 4
1 3 2E E E VP V−∆ ∆ ∆  

 2 4
1 2 3E E E VP V−∆ ∆ ∆  

 1 ( )3 4
2E VP V− ∆  

 2 ( )3 5
3 1E E VP V∆ ∆  
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 2 ( )2 5
1 3 1E E E VP V∆ ∆ ∆  

 2 ( )2 5
1 3 1E E E VP V∆ ∆ ∆  

 2 ( )3 5
1 3E E VP V∆ ∆  

 1 ( ) ( )2 2 5
2 1E E VP V∆ ∆  

 1 5
2 1 2 1E E E E VP V∆ ∆ ∆ ∆  

 1 ( )2 5
2 1 2E E E VP V∆ ∆ ∆  

 1 ( )2 5
1 2 1E E E VP V∆ ∆ ∆  

 1 5
1 2 1 2E E E E VP V∆ ∆ ∆ ∆  

 1 ( ) ( )2 2 5
1 2E E VP V∆ ∆  

 1 ( )4 6
1 2E E VP V− ∆ ∆  

 1 ( )3 6
1 2 1E E E VP V− ∆ ∆ ∆  

 1 ( ) ( )2 2 6
1 2 1E E E VP V− ∆ ∆ ∆  

 1 ( )3 6
1 2 1E E E VP V−∆ ∆ ∆  

 1 ( )4 6
2 1E E VP V−∆ ∆  

 1 ( )6 7
1E VP V∆  

821 1 20 2 3 4 10 5 3 14 2 10 2 14 2 42 132 429p
p

S S= × + × + × + × + × + × + × + × + = =∑  

 
not changed, as well as the Huby-Tong numbers presented in the central column. 
The only change will concern the terms entering the ,V P  brackets present on 
the right of the energy column. These bracket terms are coming from the main 
loop of time. In effect instead of terms  

VP Vα
                          

(95) 

where  

2 6α≤ ≤                           (96) 

is valid for 7N = , we obtain in case of 8N =  the bracket terms  

VP VPVα

                         
(97) 

for partition (93), and similar terms  

VPVP Vα
                         

(98) 

for partition (94) entering Table 6. 
The present Section can be concluded by saying that any partition number has 

its own set of energy terms. This property makes—to some extent—the considered 
partition number independent of other numbers of similar kind entering the parti-
tions of 1N − . The dependence of energy connected with some partition number 
on other partition numbers is due solely to the ,V P  term represented in brackets. 
This term is modified according to position which occupies a given partition num-
ber among other partition components which add together into the sum equal to 

1N − . The exponent of P in the bracket terms denotes the number of the time 
loops which touch together in one contraction point. 
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Table 7. Energy contributions given by the largest partition number due to 7N = , i.e. 
1 7 1 6M N= − = − = ; see column one. The indices of the perturbation energies follow 

the partitions of 2 5N − = ; see column two. The third column represents the Hu-
by-Tong number of the Schrödinger perturbation terms connected with the partitions 
given in column two. The sum of the number of perturbation terms entering the table is 
equal to 6S .  

Energy term Partitions of 2 7 2 5N − = − =  
The Huby-Tong number of  

perturbation terms 

2
5E VP V−∆  5 14 

3
1 4E E VP V∆ ∆  1 4 5 

3
4 1E E VP V∆ ∆  4 1 5 

3
3 2E E VP V∆ ∆  3 2 2 

3
2 3E E VP V∆ ∆  2 3 2 

( )2 4
1 2E E VP V−∆ ∆  1 2 2 1 

4
2 1 2E E E VP V−∆ ∆ ∆  2 1 2 1 

( )2 4
2 1E E VP V− ∆ ∆  2 2 1 1 

( )2 4
3 1E E VP V−∆ ∆  3 1 1 2 

4
1 3 1E E E VP V−∆ ∆ ∆  1 3 1 2 

( )2 4
1 3E E VP V− ∆ ∆  1 1 3 2 

( )3 5
1 2E E VP V∆ ∆  1 1 1 2 1 

( )2 5
1 2 1E E E VP V∆ ∆ ∆  1 1 2 1 1 

( )2 5
1 2 1E E E VP V∆ ∆ ∆  1 2 1 1 1 

( )3 5
2 1E E VP V∆ ∆  2 1 1 1 1 

( )5 6
1E VP V− ∆  1 1 1 1 1 1 

  6 42S =  

10. Circular Scale of Time and Irreversibility of the  
Perturbation Process 

The effect of a perturbation of a quantum system can be roughly compared to a 
spoiling effect exerted on a toy: beyond of the original piece of the toy, many 
pieces from inside of it occur as a spoiling effect. Their size depends on the na-
ture (construction) of the toy. It seems to be not reasonable to expect that the 
spoiling effect can be reversed in time. This means that a change of a quantum 
state due to perturbation is an irreversible effect. Some other examples of irre-
versibility are given in [18]. In fact we can do a transfer of the perturbed system 
into unperturbed one by removing the perturbation potential from the per-
turbed system. But the way in time due to such operation is different than the 
way from an originally unperturbed system to the perturbed one: just at the re-
moving moment of the perturbation, the system is based on the perturbed eige-
nenergies and eigenstates. This means—in general—that the system reacts with 
the aid of the matrix elements between eigenstates and energies characteristic for 
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the perturbed quantum state. The problem of comparison of two ways demands 
a precise knowledge of the time dependence of the system connected with an 
application of the perturbation in one case, and the time dependence connected 
with a removal of the perturbation in the reversed case. 

11. Summary of the Calculation Results 

Physically the perturbation problem is regarded as a set of collision events of a 
non-degenerate quantum system with a time-independent perturbation potential. 
The effect of collisions is expected to provide a definite change of energy of the 
original (unperturbed) system and transforms the system to another stationary 
(perturbed) state. The collisions process certainly occupies an interval of time 
which, however, does not enter the formalism. 

A striking result is that a suitable choice of the sequence of collisions per-
formed along a circular scale of time—dependent in practice only on the per-
turbation order N—does produce almost automatically the set of energy terms 
predicted by the Schrödinger perturbation theory. In this theory, as well as in its 
graphical modification due to Feynman, the corresponding calculations represent 
regularly a much more complicated task. 

In the present case the method is based on an analysis of partitions concerning 
the number of time points present on the scale and contractions possible for 
these points. The contractions provide regularly the energy contributions of the 
order lower than considered N, but the total number of perturbation terms cha-
racteristic for a given N becomes identical to that predicted by the number NS  
given by Huby and Tong [16] [17]; see (8) and for example the bottom of Table 
6. 

12. General Remarks on Time and Its Scale Done from the 
Point of View of the Present Method  

So what is time? A short answer may begin with a statement that time is a para-
meter connected necessarily with a change: without a change the idea of time is 
hardly possible to be established. In classical physics the time concerns rather 
the geometry and not physical properties of a body. In fact the relation of time to 
geometry is a typical feature of the relativistic formalism. But the meaning of the 
time idea becomes much different in the quantum theory than classical one. 
Formally time has not its own operator and quanta of time cannot be treated in a 
way specified for other dynamical observables like, for example, the energy. 

A well-known property of energy is its favourite position in the quantum 
theory. In practice, most accurate calculations done in that theory concern the 
energy. Simultaneously time is often qualified to be a quantity complementary to 
energy, but a real knowledge on time and ability to approach accurate data for it 
are in fact much poorer than in case of energy. In result time usually does not 
enter explicitly the quantum calculations but its effect is obtained—or rather ap-
proached—in a probabilistic, or statistical way. An exception is here perhaps a 
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quantum counterpart of the classical Joule-Lenz law for a dissipated energy E∆  
performed in course of the time interval t∆  [19] [20] [21]. For, when the prob-
lem concerns the transition of energy between two neighbouring quantum states, 
we have the relation  

E t h∆ ∆ =                          (99) 

where h  is the Planck constant. For E∆  in the atomic spectroscopy equal to 
about 121 eV 1.6 10  erg−= ×  and 276.67 10 erg sech −= × ⋅ , we obtain t∆  equal 
to about 1510  sec− . This interval is probably much too short to be investigated 
more deeply by both experimental and theoretical methods. The accuracy with 
which the relation (99) is satisfied increases with the quantum number n pos-
sessed by the considered states. 

The relation (99) can be extended to the treatment of energy transitions be-
tween more distant states than neighbouring ones [22], and results obtained for the 
emission intensity in this way, for example for the hydrogen atom [23] [24] [25], do 
not differ much from those calculated on the basis of a probabilistic quan-
tum-mechanical formalism [26]. 

Another interesting property of time—more connected with the present pa-
per—is its guiding property represented by its scale. Here the problem of the size 
of the time intervals is replaced by that of the sequence of events. Since centuries 
we are accustomed to the scale of time which does not allow for any repetition of 
the physical events. In fact it is assumed that everything in the nature follows 
this scale. This is the so-called straight-linear scale of time which means that the 
longer is the way travelled along this scale from a given situation or event, the 
farther is the time distance which separates this event or situation from the ac-
tual moment of time. 

The aim of the present, and former papers of similar kind, is to show that such 
behaviour of time is not a general property characteristic for the quantum process. 
The point can be easily demonstrated on the example of the Schrödinger pertur-
bation theory developed for a non-degenerate quantum state. 

In its original form the Schrödinger perturbation theory did not apply the no-
tion of time at all. In solving the algebraic equation for the perturbation energy 
which was a difference of energy between the perturbed and unperturbed state, 
only the unperturbed energies and matrix elements built up of the unperturbed 
quantum states and time-independent perturbation potential were taken into ac-
count. The number of terms necessary to be introduced into the equation, as well 
as the complication degree of these terms, increased rapidly with the perturba-
tion order N. 

Simultaneously none of a priori rule for construction of the individual terms 
entering the formalism could be obtained. This makes the Schrödinger perturba-
tion treatment equivalent to a very tedious task. 

Some decades after Schrödinger the Feynman diagrammatic method has been 
developed and applied to the same perturbation problem. But the method based 
on the conventional, i.e. straight-linear, scale of time became much ineffective 
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for the perturbation purpose, especially for large N, mainly because of a drastic 
inflation of the number of the Feynman terms which had to be calculated and 
applied. 

It became clear now that the Schrödinger perturbation problem could be es-
sentially simplified when a circular scale of time—specified for each order N—is 
developed. In the first step, the scale supplemented by the side loops of time due 
to contractions of the time points present on the main loop active for a given N, 
gave a one-to-one correspondence of the diagrams due to the active circular scale 
and Schrödinger perturbation terms. Moreover, the contributions due to the side 
loops of time obtained for a given N could be combined into the Schrödinger 
perturbation energy terms having orders lower than N. This situation limited the 
number of new terms necessary to calculate when the examined order N is in-
creased to 1N +  to a relatively small number of terms indicated by the main 
loop of time. In result it is found that a circular way of the arrangement of the 
collision events of an unperturbed system with the perturbation potential fits 
much better the calculation of the perturbed energy than an arrangement of the 
collision events along a straight-linear scale. 

A final problem became the replacement of a rather inconvenient diagrammatic 
method of calculations by an algebraic approach. This has been done (see [8] [9] 
and the present paper) on the basis of a partition method applied to the number 

1M N= − . With the aid of partitions we can readily obtain the Schrödinger 
perturbation terms belonging to any N. This simplification is attained almost 
automatically due to the side loops of time present on each diagram for 2N > . 

The outlined result—which means that correction of the time scale leads to a 
proper and more compact expression for the energy—seems to be rather excep-
tional in quantum theory. A question may arise to which extent the scale applied 
for the perturbation problem can be of use for other problems. 

Another question which can be formulated is: does the dependence of the 
quantum system on time—in specific boundary conditions—is an aimed, or 
aimless process? Quantum physics states solely—with no reference to time—that 
a non-perturbed quantum state may change into a perturbed one upon the ac-
tion of an external potential, and the effect of this change on the system energy is 
known. Nevertheless also some interval of time is necessary for such change, but 
the size of that interval, as well as the time intervals of separate collisions of the 
system with the perturbation, remain unknown. 

13. Conclusions  

In principle we can have two kinds of the time scale. The first one is a conti-
nuous line, so any infinitesimally close point on the line is accessible from another 
point. In mechanics such kind of scale becomes to be considered as a time coor-
dinate. For example we have a straight-linear coordinate extended from the mi-
nus to plus infinity; see Section 2. But another kind of the scale of time is also 
possible. Such scale reminds more the timetable of the train motion than a con-
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tinuous coordinate; see e.g. [9]. The most important feature of the scale is to 
register the sequence of events, for it becomes not so much important to represent 
the time distances between the events. 

In fact the ordering effect possessed by the time scale of the second kind is 
found to be a sufficient property in constructing the Schrödinger perturbation 
series for energy, especially when this series concerns a non-degenerate quantum 
state. 

A fundamental quality of the applied scale is that it is of a topologically circu-
lar shape. This means that collisions of the quantum state with the perturbation 
potential represent a cycle of collisions in which a given state n can undergo first 
a transition from n to state p, next a transition from p to state q, etc., but a final 
state attained by transitions in a cycle is again the beginning state n. A suitable 
integration of the matrix elements representing the collision process over time 
gives the Schrödinger perturbation term characteristic for a given collisions cycle 
[6] [27]. The size of the cycle, therefore the number of collisions and variety of 
their effects, increases with the perturbation order N; see Equation (8). But when 
all contractions of the time points admissible for a given N are taken into ac-
count, a full number of the Schrödinger perturbation terms characteristic for 
that N are obtained. Some of these terms can be readily combined into the ener-
gy perturbation terms of the orders N ′  which are smaller than N. 

Such a situation extremely facilitates the calculation of the Schrödinger per-
turbation series. Simultaneously, it demonstrates the power of a suitable choice 
of the time-ordering scale. The advantages of the scale are exhibited especially 
well when combined with partition properties of the perturbation order N. 

References 
[1] Berliner, A. and Scheel, K. (Eds.) (1932) Physikalisches Wörterbuch. Springer, Ber-

lin. (In German) 

[2] Schiff, L.I. (1968) Quantum Mechanics. 3rd Edition, McGraw-Hill, New York. 

[3] Slater, J.C. (1960) Quantum Theory of the Atomic Structure Vol. 1. McGraw-Hill, 
New York. 

[4] Olszewski, S. (1991) Zeitschrift für Naturforschung, 46A, 313. 

[5] Olszewski, S. and Kwiatkowski, T. (1998) Computers & Chemistry, 22, 445-461. 
https://doi.org/10.1016/S0097-8485(98)00023-0 

[6] Olszewski, S. (2003) Trends in Physical Chemistry, 9, 69. 

[7] Olszewski, S. (2013) Quantum Matter, 2, 481-483.  
https://doi.org/10.1166/qm.2013.1085 

[8] Olszewski, S. (2014) Journal of Modern Physics, 5, 1502-1523.  
https://doi.org/10.4236/jmp.2014.515152 

[9] Olszewski, S. (2014) Journal of Quantum Information Science, 4, 269-283.  
https://doi.org/10.4236/jqis.2014.44022 

[10] Schrödinger, E. (1926) Annalen der Physik, 80, 437. 

[11] Schrödinger, E. (1926) Annalen der Physik, 79, 361. 

[12] Schrödinger, E. (1926) Annalen der Physik, 79, 489. 

https://doi.org/10.4236/jmp.2017.89098
https://doi.org/10.1016/S0097-8485(98)00023-0
https://doi.org/10.1166/qm.2013.1085
https://doi.org/10.4236/jmp.2014.515152
https://doi.org/10.4236/jqis.2014.44022


S. Olszewski 
 

 

DOI: 10.4236/jmp.2017.89098 1684 Journal of Modern Physics 
 

[13] Schrödinger, E. (1926) Annalen der Physik, 81, 109. 

[14] Mattuck, R.D. (1976) A Guide to Feynman Diagrams in a Many-Body Problem. 2nd 
Edition, McGraw-Hill, New York. 

[15] Feynman, R.P. (1949) Physical Review, 76, 749.  
https://doi.org/10.1103/PhysRev.76.749 

[16] Huby, R. (1961) Proceedings of the Physical Society (London), 78, 529. 
https://doi.org/10.1088/0370-1328/78/4/306 

[17] Tong, B.Y. (1962) Proceedings of the Physical Society (London), 80, 1101.  
https://doi.org/10.1088/0370-1328/80/5/308 

[18] Davis, P.C.W. (1994) Stirring up Trouble. In: Halliwell, J.J., Perez-Mercader, J. and 
Zurek, W.H., Eds., Physical Origins of Time Asymmetry, Cambridge University 
Press, Cambridge, 119-130. 

[19] Olszewski, S. (2015) Journal of Modern Physics, 6, 1277-1288. 
https://doi.org/10.4236/jmp.2015.69133 

[20] Olszewski, S. (2016) Reviews in Theoretical Science, 4,336-352.  
https://doi.org/10.1166/rits.2016.1066 

[21] Olszewski, S. (2016) Journal of Modern Physics, 7, 162-174.  
https://doi.org/10.4236/jmp.2016.71018 

[22] Olszewski, S. (2017) Journal of Modern Physics, 8, 1158-1174.  
https://doi.org/10.4236/jmp.2017.88077 

[23] Olszewski, S. (2016) Journal of Modern Physics, 7, 827-851.  
https://doi.org/10.4236/jmp.2016.78076 

[24] Olszewski, S. (2016) Journal of Modern Physics, 7, 1004-1020.  
https://doi.org/10.4236/jmp.2016.79091 

[25] Olszewski, S. (2016) Journal of Modern Physics, 7, 1440-1448.  
https://doi.org/10.4236/jmp.2016.712131 

[26] Condon, E.U. and Shortley, G.H. (1970) The Theory of Atomic Spectra. Cambridge 
University Press, Cambridge. 

[27] Olszewski, S. (2015) Quantum Matter, 4, 523-532. 
https://doi.org/10.1166/qm.2015.1227 

 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles  
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jmp@scirp.org 

https://doi.org/10.4236/jmp.2017.89098
https://doi.org/10.1103/PhysRev.76.749
https://doi.org/10.1088/0370-1328/78/4/306
https://doi.org/10.1088/0370-1328/80/5/308
https://doi.org/10.4236/jmp.2015.69133
https://doi.org/10.1166/rits.2016.1066
https://doi.org/10.4236/jmp.2016.71018
https://doi.org/10.4236/jmp.2017.88077
https://doi.org/10.4236/jmp.2016.78076
https://doi.org/10.4236/jmp.2016.79091
https://doi.org/10.4236/jmp.2016.712131
https://doi.org/10.1166/qm.2015.1227
http://papersubmission.scirp.org/
mailto:jmp@scirp.org

	Circular Scale of Time and Construction of the Schrödinger Perturbation Series for Energy Made Simple
	Abstract
	Keywords
	1. Introduction
	2. Scale of Time Considered in Reference to the Properties of the Observed System as Well as Abilities of the Observer
	3. Feynman’s Treatment and Present Treatment of the Time Interval  Characteristic for the Perturbation Process
	4. The Schrödinger Perturbation Formalism and a Suitable Scale of Time
	5. Properties of the Time Scale
	6. Partitions of the Time Points on the Scale
	7. Contractions of the Time Points Entering the Sets Obtained Due to Partitions 
	8. Partitions of N − 1 Define the Terms Characteristic for the Perturbation Order N 
	9. Large Partition Numbers and Their Contribution to the Schrödinger Perturbation Energy 
	10. Circular Scale of Time and Irreversibility of the Perturbation Process
	11. Summary of the Calculation Results
	12. General Remarks on Time and Its Scale Done from the Point of View of the Present Method 
	13. Conclusions 
	References

