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Abstract 
Simulated annealing (SA) has been a very useful stochastic method for solving 
problems of multidimensional global optimization that ensures convergence 
to a global optimum. This paper proposes a variable cooling factor (VCF) 
model for simulated annealing schedule as a new cooling scheme to determine 
an optimal annealing algorithm called the Powell-simulated annealing (PSA) 
algorithm. The PSA algorithm is aimed at speeding up the annealing process 
and also finding the global minima of test functions of several variables with-
out calculating their derivatives. It has been applied and compared with the 
SA algorithm and Nelder and Mead Simplex (NMS) methods on Rosenbrock 
valleys in 2 dimensions and multiminima functions in 3, 4 and 8 dimensions. 
The PSA algorithm proves to be more reliable and always able to find the op-
timum or a point very close to it with minimal number of iterations and 
computational time. The VCF compares favourably with the Lundy and Mees, 
linear, exponential and geometric cooling schemes based on their relative 
cooling rates. The PSA algorithm has also been programmed to run on an-
droid smartphone systems (ASS) that facilitates the computation of combina-
torial optimization problems. 
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1. Introduction 

Simulated annealing (SA) is a random search optimization technique that is very 
useful for solving global optimization problems involving several variables and 
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ensures convergence to a global optimum [1]. It was inspired by the metallurgic-
al process of heating up a solid and then cooling slowly until it crystallizes. The 
atoms of the heated solid material gain high energies at very high temperatures, 
giving them a great deal of freedom in their ability to restructure themselves. As 
the temperature is reduced, the energy of these atoms decreases until a state of 
minimum energy is achieved. However, if the cooling is not performed slowly 
enough, the process ceases to attain its minimal energy state [2] [3] [4]. Thus, an 
optimal cooling schedule, consisting of a set of parameters, needs to be designed 
to reach the required globally solution. For detailed discussions on SA, see 
Kirkpatrick et al. [2], who originally proposed the method. Henderson, et al. [5] 
provides a comprehensive review of SA and practical guidelines for implement-
ing cooling schedules while other readings can be found in van Laarhoven and 
Aarts [6], Aarts and Korst [7], Bryan et al. [8], Tiwari and Cosman [9] and 
Thompson and Bilbro [10]. SA is a non-numerical algorithm which is simple 
and globally optimal, and well suited for solving the large-scale combinatorial 
optimization problems. Similar search algorithms such as the hill climbing, ge-
netic algorithms, gradient decent, and Nelder and Mead Simplex (NMS) method 
are also suitable for solving optimization problems [11] [12]. SA’s strength is 
that it avoids getting trapped at either local optimum solution that is better than 
any other nearby. However, the SA algorithms still raise many open questions 
about the proper choice of cooling schedule (the process of decrementing tem-
perature) parameters. For example, what is a sufficiently high initial tempera-
ture?; how fast should the temperature (cooling factor) be lowered?; how is 
thermal equilibrium detected?; and what is the freezing temperature? Among 
these questions, the most important and fundamental one is how to find a suita-
ble cooling factor (β) that will help to reduce the computational time while get-
ting a good optimum solution. Available literature on SA algorithms focuses 
mainly on the asymptotic convergence properties with less considerable work on 
the finite-time behaviour [5]. A careful search also indicates no known standard 
method for finding a suitable initial temperature and β-value for a whole range 
of optimization problems. 

This paper seeks to propose a variable cooling factor model for SA schedule to 
speed up the annealing process. It further formulates the Powell-simulated an-
nealing (PSA) algorithm [13] for finding global minima of functions of several 
variables. The PSA algorithm is then programmed to run on android smart-
phone systems (ASS) that facilitates the computation of optimization problems.  

2. SA Cooling Schedule 
2.1. Cooling Schemes 

SA, as noted in the previous section, is a powerful search algorithm for solving 
global optimization problems. The rate at which the SA reaches its global mini-
mum is determined by the cooling schedule parameters, which include the 
starting temperature, cooling factor, number of transitions at each temperature 
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and other termination conditions [1] [14]. The most significant of these deter-
minants (or parameters) is the cooling factor, which describes how SA reduces 
temperature to its next value. Numerous methods and algorithms have been 
used to determine the parameters of SA cooling schedule in various optimization 
problems. Kirkpatrick et al. [2] introduced the linear (or arithmetic) cooling 
schedule as given by Equation (1): 

1k kT T T+ = − ∆                          (1) 

where 1kT +  is the new temperature value obtained from the old kT  and T∆  is 
the amount of temperature reduction, kept constant and chosen from the inter-
val [0.1, 0.2] while the initial temperature strongly depends on the problem be-
ing considered. van Laarhoven and Aarts [6] proposed the geometric cooling 
scheme described by the temperature-update scheme in Equation (2): 

1
k

k kT Tβ+ =                           (2) 

where 1kT +  and kT  denote the new and old temperature values, respectively, 
and β  is the cooling factor assumed to be a fixed value in the interval [0.8, 0.99] 
[15] [16]. In another related study, Gong, Lin, and Qian [17] proposed the qua-
dratic cooling schedule to estimate the number of iterations of the algorithm us-
ing a fixed value of β  selected from the interval (0, 1). Nourani and Anderson 
[18], using computer experiments, compared different proposed cooling sche-
dules to find the cooling strategy with the least total entropy production at a 
given initial and final states and fixed number of iterations. Strenski and Kirkpa-
trick [19] compared two finite length cooling rates of linear and geometric 
schemes and found no significant difference in performance. They also con-
cluded that high initial temperatures do not greatly improve the optimality of 
the algorithm when a geometric factor is used. 

Lundy and Mees [20] argued that the stationary distributions for two suc-
ceeding values of the control parameter should be closed. This proposition is 
used to derive alternate decrement rules for selecting the cooling factor for SA 
cooling schedule. This proposition leads to the Lundy and Mees (L&M) model 
used to derive alternate decrement rules for selecting the cooling factor for SA 
cooling schedule, which is given by Equation (3): 

( ) 1
1 1k k kT T Tβ −
+ = +                      (3) 

where β  is a very small constant. Aarts and van Laarhoven [21] applied two 
different cooling rates, 0.50β =  and 0.90, one after the other in a simple geo-
metric cooling schedule for phase transitions of a substance. This approach al-
lowed the SA algorithm to spend less time in the high temperature phases and 
more time in the low temperature phases thereby reducing the running time. 
Similar behaviour of SA was observed by Lin and Kernighan [22] in a SA algo-
rithm for solving the travelling salesman problem (TSP). 

2.2. Formulation of VCF Model 

In this paper, we claim that the cooling factor should be a variable and not a fixed 
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value as proposed by many authors hereinabove. A variable cooling factor (VCF) 
is a factor that decreases the temperature at each transition state during cooling 
process. Starting with a low value, the VCF increases gradually in value with 
number of transition states until the frozen point is reached. This section devel-
ops a variable cooling factor model that relates the cooling rates to transition 
states that a substance undergoes during the cooling process and size of a cost 
function. First, we consider the following theorems:  
• Theorem A:  

If x∈ , the set of real numbers, where x  denotes non-negative real number, 

then 
1 1

n n

k k
k k

x x
= =

≤∑ ∑  and which follows that x x≤ , the modulus of a sum of 

kx  is not greater than the sum of the separate moduli [23].  

• Theorem B:  
Suppose 1Z  and 2Z  are continuous random variables with joint probability 

density function ( )1 2,f z z  and let 1 2Y Z Z=  (ratio of the two random va-
riables). Then Y  has the probability density function [24] in Equation (4): 

( ) ( )( ), dYf y z f z y z z
∞

−∞

= ∫                    (4) 

However, if 1Z  and 2Z  are independent, we obtain Equation (5):  

( ) ( ) ( )( )1 2
dY z zf y z f z f y z z

∞

−∞

= ∫                  (5) 

Suppose 1 2, , , NQ Q Q  are independent and identically distributed (iid) ran-
dom particles of a substance that varies with temperature variations with stan-
dard deviation σ and mean number of particles μ. For simplicity, we let the ran-
dom variables iQ , for 1,2, , ,i N=   be independent standard normal random 
variables with marginal probability density function for each i be given by Equa-
tion (6): 

( )
21

2e ,
2π

iQ

i i if Q Q
−

= −∞ < < ∞
                   

(6) 

Then the joint probability density function of the two independent random 
variables 1Q  and 2Q  is given by Equation (7): 

( )
( )2 2

1 2
1
2

12 1 2 1 2
e, , ;

2π

Q Q

f Q Q Q Q
− +

= −∞ < < ∞ −∞ < < ∞
          

(7) 

Let us consider the 2 2×  transformation in Equation (8):  

( ) ( )1 1 2 1 2 2 1 2 2, , and ,u g Q Q Q Q v g Q Q Q= = = = ,          (8) 

which is a one-to-one transformation from  
( ){ }1 2 1 2, ;u u u u u= −∞ < < ∞ −∞ < < ∞  to  
( ){ }1 2 1 2, ;v v v v v= −∞ < < ∞ −∞ < < ∞  with inverses, ( )1

1 1 ,Q g u v uv−= =  and 
( )1

2 2 ,Q g u v v−= =  and the Jacobian,  
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( )
( )

1 1

1 2

2 2

,
0 1,

Q Q
v uQ Q u vJ v

Q Qu v
u v

∂ ∂
∂ ∂ ∂= = = =

∂ ∂∂
∂ ∂               

(9) 

Therefore, using the transformation technique (Theorem B), the joint proba-
bility density function of 1Q  and 2Q  is: 

( ) ( ) ( )( )1 1
12 1 2, , , , ;uvf u v f g u v g u v J u v− −= −∞ < < ∞ −∞ < < ∞

     
(10) 

Using integration by parts, the probability density function of U is given by 
Equation (11): 

( ) ( ) ( )
( )

2 21 1
2

2

1, d e d ,
π 1

v u

u uvf u f u v v v v u
u

∞ ∞ − +

−∞ −∞

= = = −∞ < < ∞
+∫ ∫

    
(11) 

which is the joint probability density function of random particles of the sub-
stance that varies with temperature variations. This joint distribution behaves as 
Cauchy distribution, which has flatter tails, making it is easier to escape from 
local minima. Now if we let iQ  assumes a Cauchy distribution, μ be any real 
number and σ > 0, then Q uµ σ= +  [25] [26]. Then Equation (11) can be 
re-written using the real-valued parameters μ and σ as;  

( )
( )

2

2 2

1, , ,
π

f Q Q
Q

σ
µ σ

µ σ

 
 = −∞ < < ∞
 − +             

(12) 

where σ and μ are the standard deviation and mean, respectively. From Equation 
(12), we let 

( )
( )

122

2 22

1 1 1
π π

Q

Q

µσ
σµ σ

−
   −
   = +
   − +                  

(13) 

Then by using Equation (13) and Theorem A, we have Equation (14):  

( ) ( )
1 12 2

2 2

1 1 1
π

Q Qµ µ
σ σ

− −
   − −
   + < +
   
                  

(14) 

Let the number of variables (size) of the cost function be v, where 2v ≥ . 
Then putting  

( )
( )

2

2
1

1

Q

k v v

µ
σ

  −    =
   + +   

,                 (15) 

where ( )1k ν +  is the total number of iterations in the system, we obtain the 
Equation (16):  

( )
( )

2 1
1

Q
k

µ
ν ν

 
 − =
 + +                   

 (16) 

for 1σ = ; 1,2, , ,k N=   the number of cycle counts in the system; and 
( )1v + , the fixed number of iterations in each transition state before the tem-
perature is updated. That is, for 1σ = , the square of deviations are inversely 
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proportional to the square root of sum of the number of variables in the cost 
function and number of iterations at each transition [27]. Now combining Equa-
tions (14) and (16) yields Equation (17):  

( )

1

11
1

k
k ν ν

−
 
 Φ = +
 + + 

,                  (17) 

which is the rule by which the random particles of a substance loose energy to 
the surroundings. Hence, the new cooling scheme for the annealing process is 
given by Equation (17) and the temperature-update formula is by Equation (18):  

1k k kT T+ = Φ                          (18) 

where [ ]0.60,0.99kΦ ∈  is the variable cooling factor, which depends on the 
number of transition states k. 

2.3. Test of VCF Model 

A simulated annealing cooling scheme that is relatively slow has the ability to 
avoid premature convergence of local minima and thus provides good solution of 
optimization problem. The VCF model as developed in Equation (17) will be 
tested for this property against the various known cooling schemes in literature. 
Three of these cooling schemes, namely, Lundy and Mees (L & M), geometric and 
linear (or arithmetic) as represented by Equations (19), (20) and (21), respectively, 
were chosen and compared their relative cooling rates with the VCF in Equation 
(17): 

( )
max min

1
max min

, where , 1
1 1

j
j

j

T T TT n
T n T T

β
β+

−
= = >

+ −
           (19) 

( )
1

1
min

1
max

, where , 1
n

j
j j

TT T n
T

α α
−

+

 
= = > 

 
              (20) 

( )
max min

1 , where , 1
1j j

T TT T n
n

γ γ+
−

= − = >
−

             (21) 

where the parameter n is the number of iterations in each transition state 
1,2, , .k N=   In each of the three cooling schemes in Equations (19)-(21), the 

temperature is updated at each iteration. Hence, for each temperature ;jT j =  
1, 2, , ,n  1 max ,T T=  and min ,nT T=  the parameters ,β α  and γ  are the 
fixed cooling factors associated with the Lundy and Mess, geometric and linear 
cooling schemes, respectively. Three main settings were made by putting 

max 1000,T =  min 25T =  and number of iterations = 25 ( )24ν =  and applied to 
Equations (17), (19)-(21). The temperature declination of each cooling scheme is 
obtained as illustrated in Figure 1.  

From the settings, the values of cooling factors selected for L&M, geometric, 
and linear cooling schemes were 0.001α = , 0.833β =  and 39.58γ = , re-
spectively and kept constant, whilst that for VCF was varied gradually from 
0.875 to 0.890 during the cooling process.  
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Figure 1. Temperature decline by the linear, geometric, Lundy and Mees (L&M) and 
VCF cooling schemes.  

 
As it can be seen from Figure 1, during the first 15 iterations, L&M and geo-

metric cooling curves decline faster in the initial high temperatures than the 
VCF and linear cooling curves. Between iterations 14 and 25, the cooling curves 
of the L&M and geometric slow down more gently to the minimum temperature, 
with the geometric having better cooling rate than the L&M and linear. However, 
the temperature declination of VCF curve is found to be gentle and smooth right  
from the initial temperatures to the minimum temperature. Its rate of cooling is 
more preferred to the other three cooling schedules, which presupposes that the 
VCF will fit well into the SA algorithm.  

3. SA Algorithm and Powell’s Method 

As indicated in Section 1, SA is a random search optimization technique that is 
very useful for solving global optimization problems involving several variables 
without calculating derivatives and also ensures convergence to a global opti-
mum [1]. One advantage of SA algorithm is that it is able to avoid getting 
trapped at local solutions while the principal drawback of SA is its intensive 
computational time requirements. The Powell’s algorithm, however, is a method 
used to search for minima of n-dimensional quadratic functions whose partial 
derivatives are assumed to be unavailable. This method depends on the proper-
ties of conjugate directions, denoted by quadratic functions and linearly inde-
pendent directions, 1 2, , , ,ne e e  being columns of unity identity matrix. It 
converges to the required solutions in ( )1n +  transitions. The drawback of the 
Powell’s method is that, for non-quadratic problems, as the algorithm progresses, 
the “conjugacy” of the direction vectors tend to deteriorate, making the algo-
rithm difficult to converge to the required solution.  

In this study some steps of the Powell’s method will be modified and com-
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bined with the simulated annealing algorithm to produce a new algorithm as 
presented in the next section. It is expected that the new algorithm can be used 
to search for global solutions of combinatorial optimization problems in a very 
good time.  

The SA algorithm and Powell’s method are summarized and presented in 
Table 1. 

 
Table 1. The SA algorithm and Powell’s method. 

SA ALGORITHM: POWELL’S METHOD: 

1) Select an initial solution S. 
2) Select an initial temperature 0T >  
3) While T >  lower bound, do the 

following:  
3.1) Perform the following L times: 
(i) Select a random neighbour S1 of S 

(ii) ( ) ( )1E E S E S∆ = −  

(iii) If 0E∆ ≤  (downhill move); set 1S S= .  
(iv) If 0E∆ >  (uphill move), set 1S S=  

with probability, ( ) ( )expP E E T= −∆   

3.2) Set 1 ; 0,1, ,i iT T i nβ+ = = 
 (reduce 

temperature by cooling factor β ). 
4) Return to S in step 1. 

1) Select a starting point p0 (in N-dimension) 
and set 0i = . 

2) Minimize the function f in each of the N 
search directions. The function value at the 
end of each search is ,i jp . Note: 1 ,i i Np p+ =   

3) Set ( )1 ,2i i N ip p p+ = −  and compute 

( )1if p +  

4) If ( ) ( )1i if p f p+ >  then replace the search 

direction of maximum change to 1i ip p+ > .  
5) Repeat steps 2 - 4 until the algorithm 

converges to the required global  
optimum [28]. 

4. PSA Algorithm for Global Minimum 

Some of the parameters of the Powell’s algorithm were modified and incorpo-
rated into the annealing algorithm to form a new SA algorithm called Pow-
ell-simulated annealing (PSA) algorithm. These parameters included the direc-
tion vectors, initial guess, and cycle count techniques. The proposed PSA algo-
rithm template for finding global minimum of function of several variables is 
presented below. 

PSA ALGORITHM: 
Step 1:  
a) Select a starting point 0Q  (in N dimensions) and calculate ( )0 0f f Q=  

[need stopping criteria].  
Set 0i = .  
b) Choose a random point on the surface of a unit N-dimensional hyper- 

sphere to establish a search direction, S.  
c) Select an initial temperature T > 0 
Step 2: 
While T > lower bound, do the following:  
a) Minimize f in each of N-normalized search directions. The function value 

at and at each search is ijQ . Note: 1i iNQ Q+ =  
b) Compute ( ) ( )1i if f Q f Q+∆ = − ; 
c) If 0f∆ ≤  (downhill move); Set 1i iQ Q+ =  
d) If 0f∆ >  (uphill move); Set 1i iQ Q+ =  with probability, ( )exp kf−∆ Φ  
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Step 3:  
a) Compute the average direction vector ( )1i iQ Q+ −  and minimize f in the 

direction 

( )1

1

i i

i i

Q Q
Q Q

+

+

−

−
 

Set 1i iQ Q+ =  
b) Set 1k k kT T+ = Φ  (reduce temperature by cooling factor kΦ ) and go to step 

(4). 
Step 4: 
Repeat steps 2 and 3 until the algorithm converges.  
The steps 3 and 4 of the Powell’s method were not included in the PSA algo-

rithm. The detailed description of PSA algorithm is presented under the imple-
mentation in Section 4.2. 

4.1. Move Generation Model 

The move generation model for minimizing function of single variable problems 
is presented. Let the new solution ( )0iQ N Q∈  and [ ]0,1α ∈ , then compute the 
α-value using the formula in Equation (22): 

 
( )

1
11

1k j
α

−
 

= +  +                        
(22) 

where 0Q  is the initial solution; ( )0N Q  is the neighbourhood of the current 
solution kQ ; 1, 2, ,k n=   are the transition states, ( )2,3, , 1j n= +

 and the 
current solution ( ) ( ){ }arg min , ,kQ f fφ ω =    where ( ) 01 ;b Qω α α= + −  

( ) 01 ;a Qφ α α= + −  and a and b are the lower and upper of the domain, respec-
tively. Thus, in our SA algorithm, instead of selecting a random number, α-value 
from tables, we estimate it using Equation (22). The random move generation 
strategy in the SA algorithm is replaced by the α-model in the proposed PSA al-
gorithm. 

4.2. Implementation of PSA Algorithm 

The PSA algorithm is aimed at searching for global minimum of multi-dimensional 
functions in combinatorial optimization problems. The proposed PSA algorithm 
is implemented via the VCF model to speed up the annealing process and also to 
find the global minima of given cost functions of several variables. The cost 
function f  is defined over an N-dimensional continuous variable space, where  

( ) ( )1 2, , , Nf Q f Q Q Q=                     (23) 

The problem is how to use the PSA to find the global minimize optQ , satisfy-
ing the condition in Equation (24), called the global minima. 

( ) ( ) [ ]{ }min on ,n
optf Q f Q a b= ∈                (24) 

A detailed implementation of the PSA algorithm for finding global minimize 

optQ  followed by the following steps:  
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Step 1:  
The initial data (or parameters) of the function and PSA are stated together 

with the floating point representation of the data, 1.0 05lf E= − . A random 
starting point 0

nQ ∈Ω  (domain) is selected and ( )0 0f f Q=  computed. The 
domain nΩ  is defined by { }1 1: , , ; ,n n n

n nx a Q a a Q b a bΩ = ∈ ≤ ≤ ≤ ≤ ≤ ∈   . 
The nΩ  is a rectangular subdomain of  , centered at the origin and whose 
width, along each coordinate direction is determined by the corresponding 
component of the vector a. The value of ( )0f Q  is checked to be feasible or ex-
its within the tolerance level of 1.0 05E −  (stopping criterion). This is repeated 
several times till the feasible value of ( )0f Q  is obtained. Set { }1 2, , , nS s s s= 

 
to be linearly independent coordinate directions (in n-dimensions) and assume 
that the directions are normalized to unit length so that 1, 1,2, , ,is i n= = 

 
where .  denotes the Euclidean norm. The initial temperature 0 0.6T L=  to-
gether with the temperature decrement formula, 1k k kT T+ = Φ  are stated, where 
L b a= − .  

Step 2:  
In each kN  (transition states k), where 1,2, , ,k n=  , starting from the 

point 0Q , a random point iQ  is generated along a given n-normalized direc-
tion vectors, iu  from S such that 

0i i iQ Q uγ= +                         (25) 

where iγ  is the component of the step vector along the coordinate direction. 
Equation (25) is then used to transform or reduce ( )f Q  to a single variable 
problem as: 

( ) ( )0i i if f Q uγ γ= +                      (26) 

Equation (22), also known as the golden search method, can be applied to 
calculate the value of iγ  to minimize Equation (26) along the n-unidirectional 
search directions. That is, at each iteration, the factor i iuγ  is used to perturb 
the present configuration iQ  into a new configuration 1iQ +  such that:  

1i i i iQ Q uγ+ = +                         (27) 

The probability that the current solution 1iQ +  will be accepted or rejected is 
given by the Metropolis criterion: 

( ) ( ) ( )( ){ } ( )1 1 1min 1,exp expp i i i i k kM P Q Q f Q f Q T f+ + + = = − − = −Φ ∆   (28), 

where ( ) ( )1i if f Q f Q+∆ = − . If 0f∆ ≤ , then 1pM =  and 1iQ +  is accepted, 
return to Step 3.  

Else, compute ( )expp kM f= −Φ ∆  and generate a random number [ ]0,1ρ ∈ . 
If pMρ < , then the iteration step is accepted and the next direction vector in the 
cycle is selected. Else, no change is made to the vector. Go to Step 1. 

Step 3: 
This step completes the iterations in a transition by computing the average 

direction vector 1d i iu Q Q+= − , normalized to d du u u=  and 1iλ +  determined 
as before to minimize ( )1i if Q uλ ++ . The current solution is set to 1 1i i iQ Q uλ+ += +  
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and the temperature is updated using 1k k kT T+ = Φ . This completes the iterations 
in the first transition state 1k =  and number of iterations at this state is given 
by 1I v= + .  

Step 4:  
Steps 2 and 3 are repeated until the algorithm converges to the global solution 

(minimum).  
Unlike the Powell’s iterations, the direction vectors are not replaced one after 

the other, in this case. The worse solutions or vectors are accepted or rejected 
based on the Metropolis criterion (Step 2). The normalized average direction 
vector is computed to preserve the linear independence of the directions vectors 
at each iteration and termination of a transition. 

To examine the performance of the PSA algorithm, it was tested against the 
NMS method and SA algorithm with the geometric cooling scheme. The pro-
posed test functions included the Rosenrock functions of 2 dimensions in Equa-
tion (29), the Powell quartic function of 4-D in Equation (30) and other mul-
ti-minima functions of N dimensions in Equation (31):  

( ) ( ) ( )
2 22

1 2 2 1 1, 100 1f x x x x x= − + −                (29) 

( ) ( ) ( ) ( ) ( )2 42 4
1 2 3 4 1 2 3 4 2 3 1 4, , , 10 5 2 10f x x x x x x x x x x x x= − + − + − + −   (30) 

( ) ( )1 2
1 1

, , ,
i

j

n
N N

m
N i i j j

i j
f x x x k A C x

= =

 
= + 

 
∑ ∑              (31) 

These methods have been reported to be simple, reliable, and efficient global 
optimizers [12] [29]. They are sometimes able to follow the gross behaviour of 
the test functions, despite their many local minima. The selected test functions 
are among the classical NP-complete combinatorial optimization problems and 
are indeed a hard test for every minimization algorithm. The PSA method was 
tested on the Rosenbrock functions in 2-D followed by Powell quartic function 
in 4-D. The admissible domain of the 2-D function was (−200, 200) and Powell’s 
quartic function was used on (−50, 50). The PSA algorithm and the other me-
thods it is being compared with were started from the same points randomly 
chosen from the domains, quite far from the origin. The starting temperature of 
each test was chosen by the design to be in the range 60˚C - 240˚C. The β-value 
in the PSA algorithm was made to vary while in the other algorithms, the β-value 
was kept fixed. The PSA web program was used to run each test 20 times and the 
best solution in each case recorded as shown in Tables 2-4, respectively in Section 5. 

4.3. PSA Android Mobile Application 

The SA algorithm is, so far, commonly available in FORTRAN, PASCAL, 
MATLAB, C and C++ programs. This makes the SA algorithm inaccessible by 
most of the mobile phones due to the incompatible operating systems. One 
achievement of this work is the development of an optimal SA cooling schedule 
model which can portably be programmed to make running of the SA algorithm 
on android smartphone systems possible. The running proceeds as follows: 
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• Accessing PSA on Android Platform and Internet:  
There are two options to access the App, by mobile application and Web 

access. The mobile application will download and install the application (Scudd 
PSA) from Google Play Store while the Web access follows the link:  
http://www.scudd-psa.byethost7.com. 
• Running PSA Pseudo Code on ASS:  

Given the optimization problem in Equation (32):  

( )
1 1

Minimize Min
i

j

n
N N

m
i i j j

i j
F k A C x

= =

 
= + 

 
∑ ∑

            
(32) 

(i) Input the parameters: , , , ,i i i i jk A C x m  and in .  
(ii) Press the run key for the output (results). 

5. Test Results and Analysis 
5.1. PSA Accounting for Cooling Schemes 

The first test was performed using six different cooling schemes one after the 
other on the Rosenbrock function in 2 dimensions (Equation (29)) to find the 
computational time of the PSA algorithm. The standard cooling factors of the 
five search schemes were selected for the test while the VCF was made to vary 
gradually from 0.875 to 0.890. The schemes were all started from the same point 
(24, 20), randomly chosen from the domain. Each test was run 25 times over the 
interval [−200, 200]. The mean optimal results obtained for the six test schemes 
are reported in the Table 2. 

In the 2 dimensions with a tolerance level of 510− , the geometric, exponential 
and VCF schemes slightly deviated from the global minimum at the origin (see 
Table 2). The average distance from the optimal value ( )0optf =  was found to 
be 1.00E−05, 1.33E−05 and 1.00E−05 for the geometric, exponential and VCF 
schemes, respectively. The cost of running each scheme was estimated in terms 
of the total number of transitions per second. This was very high for the geome-
tric with 20 transitions in 1.300 seconds, low for exponential scheme with 5 
transitions in 0.910 second and lower in VCF with 3 transitions in 0.600 second.  

 
Table 2. Comparison of mean optimal parameters’ values of the six cooling schemes on 
Rosenbrock function in 2-dimensional space. 

Cooling Scheme 
Mean Parameters: 

No. of transition states Min value of cost function CPU 

Lundry & Mees ( )0.001α =  25 9.60383 1.976 

Geometric ( )0.833β =  20 1.000E−05 1.300 

Linear ( )39.58γ =  10 2.250E−04 1.410 

Exponential ( )0.90δ =  5 1.330E−05 0.910 

VCF ( )0.875 0.890≤ Φ ≤  3 1.000E−05 0.600 

Arts et al. ( )0.014ω =  21 2.103E−03 1.830 
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Thus, on Rosenbrock function in 2 dimensions, the PSA algorithm performed 
better than the geometric and exponential schemes. The speeds of the Lundy & 
Mess, linear and Aart et al. schemes were relatively slow and found not too ideal 
for use in temperature-dependent perturbation schemes. 

5.2. Testing Algorithms on Powell Quartile Function in 4 Dimensions 

A second test was performed on the Powell quartic function (PQF) in 4 dimensions 
(Equation (30)). The PSA, SA and NMS algorithms were started from the same 
points randomly chosen from the domain. Each test was run 20 times, starting 
from the points located at a distance from the origin. The mean optimal results 
on the test function for each algorithm are reported in Table 3. 

The results in 4 dimensions show that SA algorithm and NMS method never 
fail to find the global minimum within the tolerance level of 1.00E−05 and the 
cost of running the PSA algorithm is the cheapest with just 22 iterations, com-
pared with 2781 and 185 iterations for the SA and NMS algorithms, respectively 
(see Table 3). The PSA found a minimum value of 6.8371E−05 in 0.1672 second, 
which is a point on the Powell quartic function in 4 dimensions closet to the 
global minimum. Thus, the total running time for PSA algorithm was compara-
tively better than the other two optimization searching algorithms on PQF in 4 
dimensions. 

5.3. Test Run of PSA on ASS 

Further tests were made using the parabolic multi-minima functions in 3, 4 and 
8 dimensions in Equation (31). In this case, the PSA web program using a pseu-
do code on ASS was again used to search for global minimum of the selected 
functions as solution to the problem in Equation (30) and the best results are as 
presented in Table 4.  

From Table 4, it can be seen that the performance of PSA algorithm on all the 
three multi-minima functions was marginally different from the best optimal 
value found for all problem sizes. The optimal values of 3-D, 4-D and 8-D func-
tions are all almost equal to 0optf =  at the origin. This means that the PSA al-
gorithm performed creditably well on multi-minima functions in 3 dimensions 
with minimal number of 14 iterations and computation time of 0.021 second. 

 
Table 3. Comparison of PSA and two optimization searching algorithms (SA and NMS) 
on PQF in 4 dimensions.  

Mean Parameter 
Algorithm 

SA NMS PSA 

Number of Iterations 2781 185 22 

Optimal functional value 2.325E−05 1.391E−06 6.837E−05 

Total running time (CPU) 1.3572 1.0163 0.1672 

Distance from optimal value 2.324E−05 1.390E−06 6.837E−05 
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Table 4. PSA test results from android smart phone systems (ASS) on three multi-minima 
functions.  

Mean Parameter 
Test Functions 

Multi 3-D Multi 4-D Multi 8-D 

Number of Transitions 3 27 25 

Number of Iterations 14 135 219 

Final temperature 0.25540 1.73859 3.88080 

Optimal functional value 1.0323E−04 1.420E−03 2.746E−05 

Total running time (CPU) 0.0210 0.5802 0.8325 

 
Table 5. PSA cooling scheme and SA with geometric cooling scheme tested on parabolic 
multi-minima functions in 4 and 8 dimensions. 

Algorithm 
Parameters 

N Tmax Mean (Tmin) SD (Tmin) Fval. Mean (CPU) 

Multi 4-D: SA 288 24 2.65050 1.2536 2.16E−05 3.2117 

PSA 185 24 1.25434 1.0122 1.10E−05 2.0424 

Multi 8-D: SA 6202 54 8.1052 2.6234 0.0494 5.3053 

PSA 218 54 1.5461 1.2245 0.0021 4.9305 

Definitions of parameters in Table 5: N is number of iterations; Tmax denotes initial temperature; Tmin is the 
final temperature; Fval denotes the optimal value of objective function; CPU is the total execution time. 

5.4. PSA and SA Accounting for Geometric Cooling Scheme 

In Section 5.1, it was observed that the cooling rate of VCF compared favourably 
with that of the geometric than the Lundy and Mees. To ascertain this observa-
tion further, the geometric cooling scheme was incorporated into PSA and SA 
algorithms, and each tested 20 times on the multi-minima functions using dif-
ferent initial temperatures [30]. The mean and standard deviation as well as the 
other parameter values are reported in Table 5. The PSA produced the best av-
erage results in terms of temperature decrement and the corresponding optimal 
minimum. The standard deviations of the final temperature obtained by the PSA 
algorithm were generally lower than that by SA. The execution time required by 
both SA and PSA were slightly different with SA using a little more time. 

6. Conclusions 

In this paper, we have proposed a variable cooling factor (VCF) model for simu-
lated annealing schedule to speed up an annealing process and also determine its 
effectiveness by comparing with five other cooling schemes, being Lundy and 
Mees (L&M), geometric, linear, exponential, and Arts et al. The geometric and 
exponential cooling schemes produced the faster cooling rates (super cooling) 
than the VCF scheme, which showed reasonably slower cooling rate, suitable for 
the annealing process.  

For the first time in literature, the Powell’s method has been emerged with the 
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SA process to form a new SA algorithm called Powell-simulated annealing (PSA) 
algorithm via the variable cooling factor scheme. The PSA has successfully been 
used to find the global minima of test functions of several variables without calcu-
lating their derivatives. It was tested against the geometric SA algorithm and, 
Nelder and Mead Simplex (NMS) method on Rosenbrock valleys in 2 dimen-
sions and multiminima functions in 3, 4 and 8 dimensions. The PSA algorithm 
proves to be more reliable and always able to find the optimum solution or a point 
very close to it with a minimal number of iterations and computational time. 

The PSA algorithm has been programmed, which can be run on android 
smartphone systems and on the Web to facilitate the computation of combina-
torial optimization problems faced by computer and electrical engineering prac-
titioners. The scheme has only been tested on multiminima function problems. 
Therefore, further work is required to optimize the SA schedule parameters fur-
ther to make it more suitable to address all optimization problems which cannot 
be solved by the conventional algorithms.  
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