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Abstract 
There have been many mathematical models aimed at analysing the in-vivo 
dynamics of HIV. However, in most cases the attention has been on the inte-
raction between the HIV virions and the CD4+ T-cells. This paper brings in 
the intervention of the CD8+ T-cells in seeking, destroying, and killing the in-
fected CD4+ T-cells during early stages of infection. The paper presents and 
analyses a five-component in-vivo model and applies the results in investigat-
ing the in-vivo dynamics of HIV in presence of the CD8+ T-cells. We prove 
the positivity and the boundedness of the model solutions. In addition, we 
show that the solutions are biologically meaningful. Both the endemic and vi-
rions-free equilibria are determined and their stability investigated. In addi-
tion, the basic reproductive number is derived by the next generation matrix 
method. We prove that the virions-free equilibrium state is locally asymptoti-
cally stable if and only if 0 1R <  and unstable otherwise. The results show 
that at acute infection the CD8+ T-cells play a paramount role in reducing 
HIV viral replication. We also observe that the model exhibits backward and 
trans-critical bifurcation for some set of parameters for 0 1R < . This is a clear 
indication that having 0 1R <  is not sufficient condition for virions deple-
tion. 
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1. Introduction 

One of the most threatening retrovirus in the world is the Human Immunodeficiency 
Virus (HIV) that leads to Acquired Immunodeficiency Syndrome (AIDS). 
Unlike other viruses, HIV is encoded in ribonucleic acid (RNA) rather than 
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deoxyribonucleic acid (DNA). HIV attacks the immune system, weakening it 
and eventually if not treated it makes the infected people highly vulnerable to 
various opportunistic infections. In absence of any HIV-management mechanism, 
infected people progresses to AIDS stage after 10 - 15 years [1]. HIV can be 
transmitted through various modes such as: Sharing sharp objects with infected 
people, having unprotected sex, transfusion using HIV-contaminated blood and 
mother to child transmission during either breast-feeding or via delivery. 

Since the first case of HIV was reported in the early 1980’s, HIV/AIDS has 
been associated to the deaths of more than 35 million people while over 36.9 
million are living with the virus worldwide, making it one of the worst menace 
in the recorded history [2] [3] [4]. However, HIV remains a major cause of 
mortality in the world, having severe consequences mainly in sub-Saharan 
Africa, with a prevalence range of between 12% to 42% [3]. The greatest burden 
of HIV/AIDS lies with the poor communities, who also have the least access to 
antiretroviral therapy (ARTs) and interventions against HIV. Management, 
control and prevention of HIV require an integrated approach, which include, 
awareness/education and treatment with the best ARTs combinations. Lack of 
awareness/education, in access to early diagnosis and effective treatment has 
delayed the success of the global HIV programme in reducing new infection and 
severe HIV/AIDS related deaths. Therefore, there is need for new and more 
advanced interventions for HIV prevention, management and care.  

According to [5], Kenya is among the six HIV high burden countries in the 
world having over 1.6 million individual living with the virus. Although Kenya 
had over 79,000 cases of new infection by 2015, she has however, made notable 
and outstanding strides in controlling and preventing HIV. For instance, the country 
has one of the world’s highest HIV testing rates with about 72% of the total 
population having been tested at least once and 900,000 of the infected persons 
are on ARTs. However, not all efforts are reaching those who need these services. 
Consequently, concentrated epidemics are emerging among vulnerable groups 
such as youths, women, truck drivers, sex workers, prisoners, injecting-drug 
users, men who have sex with men, persons living with disabilities, discordant 
couples, orphan and vulnerable children. Therefore, control and prevention 
approaches should be tailored towards the aforementioned HIV special 
populations as part of wider efforts to control and curb the HIV/AIDS in Kenya. 
In addition, even with all the interventions, there are still a big number of 
Kenyans who do not know their HIV status. Therefore, it is important to 
increase HIV testing in order for people to be aware of their HIV status and be 
referred onto the best treatment, support and care according to the test 
outcomes. Kenyans economy and development has been affected severely by this 
menace. The Kenyan Government therefore, need to come up with sustainable 
methods of funding to improve existing HIV management efforts and to reduce 
the country’s dependence on funding from donors and development partners. 

In-vivo study for HIV dynamics have been done over the years, aimed at 
understanding the interaction mechanism of the body cells and the HIV virus. 
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Such information has proved so valuable especially in the development of ARTs 
and in HIV management. In the recent years, mathematical models of various 
complexity level have been used to simulate and analyse such interactions unlike 
in the past where researches relied on clinical trials [6]. Consequently, many 
researchers [7] [8] [9] [10] in the field of epidiemiological modelling have 
embarked on the process of developing new models that could be used in the 
analysis of HIV dynamics. Many of the developed models describe and give 
insight on the various aspects that result from the interaction of HIV with healthy 
immune cells. The earliest mathematical models were based on the interaction 
between the CD4+ T-cells and the HIV virions. These basic non-linear models 
were developed and used in the analysis of HIV dynamics and consequently, in 
estimating fundamental parameters that brought in new concepts of the disease 
processes and its progression [11]. With the aim of providing the most 
fundamental information on controlling the viral progression, most of these basic 
models include atleast three state variables, which include: the susceptible CD4+ 
T-cells, free HIV virions and the already infected CD4+ T-cells. For instance, 
[12], formulated and analyzed an HIV model with three state variables, that is, 
the susceptible CD4+ T-cells, the already infected CD4+ T-cells and the free HIV 
virions. The model for instance, predicts adequately the disease progression 
from the early infection stage, asymptomatic stage, to full blown-AIDs and the 
viral load at the asymptomatic stage. However, great improvement on the model 
has been done and many other advanced models developed. [13] formulated a 
mathematical model representing a complete dynamic of HIV infection. The 
model aimed at analyzing the interaction between the CD4+ T-cells, macrophage 
cells and the viral load. The results indicate that the CD4+ T-cells play a very 
vital role as far as HIV virions replication is concerned. Similarly [6] analyzed a 
three component model for HIV. The model was aimed at analyzing the HIV 
dynamics during the initial stages of infection. The results showed that viral 
persistence was very high during initial stage of HIV infection. 

Other researches have sought to study the role played by the killer T-cells in 
preventing virions replication in the body. In particular, [14] acknowledged the 
importance of the immune system in HIV infection dynamics by incorporating the 
CD8+ T-cells in HIV dynamic model. The study developed a three-dimensional 
ordinary differential equations of the untreated model. The model showed the 
interaction between the non-infected CD4+ T-cells, infected CD4+ T-cells and 
the immune response. The model had a major shortcoming for its failure to 
incorporate the HIV virions. On other hand, [9], used a five-dimensional 
nonlinear ordinary differential equations (ODEs) model in showing the 
relationship between CD4+ T-cells, virions, defense cells and ARTs. The results 
emphasized the importance of the CD8+ T-cells in fighting the HIV virions 
during acute infection. It has been established that the disease become more 
endemic due to exponential virions replication and the failure of the ARTs to 
reach all the cells. Therefore, the focus on how to reduce virions replication by 
targeting the defense cell is inevitable and it will play a big role in ensuring that 
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the endemicity of the infection is reduced.  
In this paper, we shall mainly focus on HIV dynamics at acute HIV infection 

stage without any focus on the disease progression to AIDS stage which may 
come as a result of not using ARTs. The motivation behind this simple initial 
infection model is the fact that most of the new strategies for HIV management in 
Kenya such as the pre-exposure antiviral treatment and post-exposure antiviral 
treatment targets the HIV virions at the early stages of HIV-infection. For this 
study to be successful we develop a non-linear, five-dimensional deterministic 
model for in-vivo dynamics of HIV with inclusion of the CD8+ T-cells. 

HIV Life Cycle 

HIV, like most viruses lacks the ability to replicate on its own and therefore, 
relies on a host for replication. Although, unlike all other viruses HIV is a 
retrovirus and hence carries the copies of its own RNA [2]. Once the virus gets 
in the body it mainly targets the CD4+ T cells by attaching itself on the 
membrane of the cell. After the infection of the cells by the virus, it is important 
to note that the symptoms do not show immediately until their level reduces to 
about 200 cells per mm3, and the viral load increases to 500 copies per ml [12]. 
The process of HIV replication is outlined in the following steps: First HIV 
virion joins the membrane of the CD4+ T-cell. Then it fuses with the harbour cell 
and releases an enzyme known as reverse transcriptase. Reverse transcriptase 
enzyme transform the genome of the HIV virus to a double-stranded HIV DNA 
from a single-stranded HIV RNA. The transcription process ensures that 
integration of the HIV virion into the host DNA. Once HIV is integrated in the 
cells DNA, it starts to manufacture long chains of HIV protein using their DNA. 
The HIV proteins are the support system for more HIV virions. These long 
chains of HIV proteins (immature and non-infectious) assembles closer the 
membrane of the CD4+ cells and bud out. The immature virions then release an 
enzyme called the protease, which cut the long HIV proteins RNA into smaller 
individual proteins. As the smaller HIV proteins come together with copies of 
HIV’s RNA genetic material, they form a new mature virus particle. Other cells 
can now be infected by the new HIV copies. This clearly shows that a single 
virion lead to the production of many other virions [15]. 

After infection the CD4+ T-cells sends a signal to the CD8+ T-cells. The CD8+ 
T-cells are aimed at destroying and killing the virions [9]. Unfortunately, despite 
immense effort from the mathematician in the field of mathematical modeling 
on HIV/AIDS analysis, the intervention of CD8+ T-cells need to be analyzed 
further. Although researchers suggest that CD8+ T-cells play a paramount role in 
host defense against the HIV virions nothing much has been done to show it 
especially during AIDS stage. One of the objectives of this paper is to present a 
realistic model that will analyze the importance of the CD8+ T-cells in destroying 
the HIV virions. The CD4+ T-cells play critical roles in controlling viral 
infections by prompting CD8+ T-cells to eliminate the free HIV virions. The 
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Source: HIV Basics Course for Nurses. 

Figure 1. HIV Life Cycle. 
 

HIV virus life cycle is presented in Figure 1. 

2. Mathematical Model for HIV Dynamics in-Vivo 
2.1. Introduction 

An in-host HIV dynamics model with the inclusion of the immune cells is 
formulated. We show the model is positively invariant. The basic reproduction 
number expression is derived using the next generation matrix method. We also 
do the analyses on the stability of the steady points of the model.  

2.1.1. HIV Model Formulation 
We shall put into consideration a mathematical model for the in-vivo interaction 
of the HIV virions and the immune system cells. The model is classified into five 
compartments. The following are the variables used in the model (1) the healthy 
CD4+ T-cells ( T ), the infectious HIV virions (V ), the already infected CD4+ 
T-cells ( I ), the immune cells ( Z ), that is, CD8+ T-cells and the activated 
immune cells ( aZ ).  

The healthy CD4+ T-cells are recruited at a constant rate Tλ  from the bone 
marrow and die naturally at a constant rate Tµ . The healthy CD4+ T-cells are as 
a result of the interaction between the uninfected CD4+ T-cells and the virus at a 
rate χ . They die naturally at a rate Iµ , they are also eliminated by the activated 
CD4+ T-cells at the rate α . In addition, the infected healthy CD4+ T-cells 
produces an average of V  viral particles. The new mature virions produced 
will infect other CD4+ T-cells. The HIV virions population increases due to the 
budding of the infected CD4+ T-cells at a rate V  and die at the rate Vµ . The 
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CD8+ T-cells, are generated from the thymus at a constant rate Zλ , and die 
naturally at a constant rate Zµ . Due to the presence of the HIV virions the 
CD8+ T-cells become activated at the rate β . The activated CD8+ T-cells are 
produced from the CD8+ T-cells the in the presence of the HIV virions, at rate β  
and die naturally at rate 

aZµ . The interaction description can be summarized in 
Table 1 and Table 2 which represent the Variables and parameters respectively. 

We present the model diagram in Figure 2. The diagram represent visually a 
mechanisms which govern the system of differential equations for system (1).  

From Figure 2, we derive the following system of initial value non-linear 
differential equation for the in-vivo HIV dynamics model;  

d ,
d
d ,
d
d ,
d
d ,
d
d
d

T T

I a

V I V

Z Z

a
Z aa

T T TV
t
I TV I IZ
t
V I V
t
Z Z ZI
t
Z ZI Z
t

λ µ χ

χ µ α

µ µ

λ µ β

β µ

= − − 

= − − 

= − 



= − − 

= − 



                    

(1) 

 
Table 1. Variables for HIV in-vivo model. 

Variable Description 

( )T t  The concentration of the susceptible CD4+ T cells at any time t 

( )I t  The concentration of the infected CD4+ T cells at any time t 

( )V t  The concentration of infectious HIV virions at any time t 

( )Z t  The concentration of the CD8+ T-cells at any time t 

( )aZ t  The population of the activated CD8+ T-cells at any time t 

 
Table 2. Parameters for HIV in-vivo model.  

Parameter Description 

Tλ  The recruitment rate of the susceptible CD4+ T-cells per unit time. 

Tµ  The decay rate of the susceptible CD4+ T-cells. 

χ  The infection rate of the CD4+ T-cells by the virus. 

Iµ  The natural death rate of the infected CD4+ T-cells. 

V  The HIV virions generation rate from the infected CD4+ T-cells. 

Vµ  The death rate of the infectious virus. 

α  The rate at which the infected cells are eliminated by the activated CD8+ T-cells. 

Zλ  The recruitment rate of the CD8+ T-cells per unit time. 

Zµ  The death rate of the CD8+ T-cells. 

β  The activation rate of the CD8+ T-cells due to the presence the infected CD4+ T-cells. 

aZµ  The decay rate at of the activated defence cells decay per unit time. 
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Figure 2. A compartmental representation of the in-vivo HIV Dynamics. 

3. Basic Properties of the Model 

Before commencing the steady-states analysis of the model (1), it is important to 
look at some properties to ensure existence of biologically meaningful solutions. 

3.1. Boundedness and the Positivity of the Model Solutions 

Before we analyze the model (1) it is paramount to prove that the key variables 
are non-negative implying that the model solutions will be positive for all 0t >  
and must be bounded for all 0t >  in an invariant region. Invariant region is the 
area in which the model is well posed mathematically and has biological meaning. 

Theorem 1. Let the initial values of the state variables be ( )0 0T ≥ , ( )0 0V ≥ , 
( )0 0I ≥ , ( )0 0Z ≥ , ( )0 0aZ ≥ . Then show that, for every 0t >  the solution 

set ( ) ( ) ( ) ( ) ( ){ }, , , ,T t V t I t Z t Za tΓ =  of the model (1) is non-negative and Γ  
is the invariant region.  

Proof. Taking the first part of Equation (1) we have,  

( )

( ) ( ) ( )d

d
d

0 e ,T

T

V t

T t
T TV

t
T t T µ χ

µ χ

− +∫

≥ − −

≥                      

(2) 

Hence T is non-negative for all 0t > . 
Similarly for the infected CD4+ T-cells we have,  

( )d
d I a I a
I TV I IZ Z I
t

χ µ α µ α= − − ≥ − −
              

(3) 

By integration and separation of variables Equation (3) gives,  

( ) ( )d0 e I aZ tI I µ α− +∫≥                        (4) 

Hence I is non-negative for all 0t > . 
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Similarly for the HIV virions we have,  
d
d V I V V
V I V
t

µ µ µ= − ≥ −
                    

(5) 

By integration and separation variables Equation (3) gives,  

( ) ( )d0 e V tV V µ−∫≥  

Hence V is non-negative for all 0t > . 
For the CD8+, part four of model (1) gives  

( )

( )

d
d
d
d

Z Z Z

Z

Z Z ZI I Z
t
Z I Z
t

λ µ β µ β

µ β

= − − ≥ − +

≥ − +
               

(6) 

We separate variables and integrate both sides with respect to the 
corresponding variables as follow,  

( ) ( )d0 e Z I tZ Z µ β− +∫≥                        (7) 

Hence Z is non-negative for all 0t > . 
Finally for the activated immune cells we have;  

( )

( )

d
d

d
d

a
za a za a

a
za a

Z
ZI Z Z

t
Z

Z
t

β µ µ

µ

= − ≥ −

≥ −
                  

(8) 

By integration and separation of variables we get;  

( ) ( )d0 e za t
a aZ Z µ−∫≥                        (9) 

Hence aZ  is non-negative for all 0t > .                             

3.2. Invariant Region 

Notably, all the state variables of system (1) have been proved to be non-negative. 
In addition, parameters of model (1) monitors cell population, hence they are 
also non-negative for all, 0t > . Consequently the model (1) analysis is done in 
the region Γ  that is biologically meaningful.  

Theorem 2. Let ( ) 0T t ≥ , ( ) 0V t ≥ , ( ) 0I t ≥ , ( ) 0Z t ≥ , ( ) 0aZ t ≥ . Then 
the solutions of ( )T t , ( )V t , ( )I t , ( )Z t , ( )aZ t  are bounded and the region 
Γ  is positively invariant for all 0t ≥ .  

( ) ( ) ( ) ( ) ( )( ) 5
0, , , , , , , V I TT Z

a a
T Z T V

T t I t V t Z t Z t T I Z Z V Vε µ λλ λ
µ µ µ µ

 
Γ = ∈ + ≤ + ≤ ≤ + 

 
 (10) 

Proof. The total population of the CD4+ T-cells, ( )4T I N t+ = , is clearly 
non-constant value. Hence the evolution equation representing the change in the 
population of the CD4+ T-cells is;  

( )

( ) ( )

4

4
4

d
,

d
d

d

T T I a

T T

N t
T I IZ

t
N t

N t
t

λ µ µ α

λ µ

= − − −

≤ −
                

(11) 
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By separation of variables method for solving differential inequality, Equation 
(11) becomes;  

( )
( )

( )( )

4

4

4

d
d ,

1ln ln

T T

T T
T

N t
t

N t

N t C t

λ µ

λ µ
µ

−

≤
−

− ≥ +
                 

(12) 

Thus, Equation (12) reduces to;  

( )( )
1

4ln e TT
t

T T N t C µµλ µ
−

− ≥
                  

(13) 

But  

0T TC Nλ µ= −                        (14) 

Therefore, Equation (12) becomes;  

( ) ( )0
4

e Tt
T TT

T T

N
N t

µλ µλ
µ µ

−−
≤ −

                 
(15) 

Thus at any time 0t >  we have;  

( )4 0max , T

T

N t N λ
µ

 
≤  

                      
(16) 

Hence, all feasible solutions set for the CD4+ T-cells of the model (1) enters 
the region:  

( ) ( )( ) 2
4 0, , max , T

T
T

T t I t N N λ
µ

   Γ = ∈ ≤  
   



           
(17) 

Similarly the total number of the CD8+ T-cells, ( )8aZ Z N t+ = , at disease 
free equilibrium are given by;  

( ) ( )8
8

d
d Z Z

N t
N t

t
λ µ= −

                    
(18) 

By separation of variables method for solving differential inequality Equation 
(18) becomes;  

( )
( )

8

8

d
d

Z Z

N t
t

N tλ µ
≤

−                       
(19) 

Integrating Equation (19) we have  

( ) ( )0
8

e Zt
Z ZZ

Z Z

N c
N t

µλ µλ
µ µ

−−
≤ −

                
(20) 

Thus at any time 0t >  we have;  

( )8 0max , Z

Z

N t N c λ
µ

 
≤  

                      
(21) 

Hence, all feasible solutions set for the CD8+ T-cells of the model (1) enters 
the region;  
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( ) ( )( ) ( )2
8 0, , max , Z

Z a
Z

Z t Z t N t N c λ
µ

   Γ = ∈ ≤  
   



         
(22) 

Considering the V  population of the model (1) we have’  

( )d
, since

d
T T

V I V
T T

V t
V I

t
λ λ

ε µ µ
µ µ

≤ − ≤
              

(23) 

Integration gives  

0

d
d

T
V V I

T

V I T

T V

V V
t

V V

λ
µ ε µ

µ
ε µ λ
µ µ

+ ≤

≤ +
                     

(24) 

Hence V  is bounded. Consequently the feasible solution for the model (1) is;  

( ) ( ) ( ) ( ) ( )( ) 5
0, , , , , , , V I TT Z

a a
T Z T V

T t V t I t Z t Z t T I Z Z V Vε µ λλ λ
µ µ µ µ

 
Γ = ∈ + ≤ + ≤ ≤ + 

 
 (25) 

All the state variables are positive and bounded. Consequently, from Equation 
(25), Γ  is positively invariant of model (1). Hence, it is possible to study the 
dynamics of the HIV model (1) in Γ .                                 

With theorem 2 we conclude that the model is valid and will remain so during 
the whole course of study if and only if the initial data are biologically meaningful. 
In addition it is evident that with time the number of virions will reduce to non- 
detectable level.  

Remark 1. Suppose ( ) ( ) ( ) ( ) ( )0 , 0 , 0 , 0 , 0 0aT I V Z Z >  be given. Then there 
exist a differentiable continuous function , , , , : 0,a fT I V Z Z T    R  such that 
( ), , , , aT I V Z Z  is bounded and  
( )( ) ( ) ( ) ( ) ( ) ( )( ), , , , 0 0 , 0 , 0 , 0 , 0a aT I V Z Z T I V Z Z= .  

Therefore, the model solutions will always be positive if the initial values for 
the state variables are non-negative for all 0t >  in the closed interval 0, fT   . 

4. Equilibria and Reproductive Number 

For us to fully understand the dynamics of the five component HIV model we 
study its stability. In this model there exist two critical points. The critical points 
represent the case before the virions get to the body, that is virions-free 
equilibrium point that is, 0aV I Z= = = , and when the virus persist in the body, 
that is, 0, 0V I≠ ≠  and 0aZ ≠ . 

Before infection by HIV virions, the model as represented by Equation (1), has a 
unique feasible HIV-free steady state solution to be referred to as the virions-free 
equilibrium (VFE). The virions-free equilibrium of the model (1) is given by:  

( )0 , , , , ,0,0, ,0T Z
a

T Z

E T I V Z Z λ λ
µ µ
 

=  
                 

(26) 

4.1. Basic Reproductive Number 

Researchers in the field of in-vivo HIV modelling aims at finding the optimal 
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conditions that determine the spread of the HIV virions in the susceptible CD4+ 
T-cells. In order to do this, researchers consider the basic reproductive number 
( 0R ). According to [16], the basic reproductive number represent the number of 
secondary infection that result from single infected T-cell. 0R  measures the 
potential of HIV spread in the host and probably attacking a large number of the 
T-cells. The 0R  obtained for the virions-free equilibrium by the next 
generation matrix guarantee local stability of the model (1). 0R  is used in 
stability analysis of the critical points. If 0 1R <  the virions-free equilibrium is 
locally asymptotically stable and if 0 1R >  it is said to be unstable. Notably, a 
large value of 0R  indicates disease epidemic. Consequently, in order to control 
viral replication it is important to ensure that 00 1R< < .  

Computation of R0 
In this paper we shall adopt the next generation matrix method for the 
derivation of 0R  [16]. Mathematically, 0R  is given by ( )1

0R FVρ −=  where 
ρ  is the spectral radius of the next generation matrix [17] and F  is the 
matrix of the infections while V  is the transfer of individuals out of 
compartment [18]. The expression of 0R  is the dominant eigenvalue of the 
next generation matrix. In model (1) we have two infection classes, therefore, the 
matrix of new infection at the virions-free equilibrium is given by;  

0

0 0

T

TF
χλ
µ

 
 =  
                           

(27) 

The matrix that represent the transfer between compartments at the 
disease-free equilibrium given respectively by,  

0I

V I V

V
µ
ε µ µ

 
=  −                        

(28) 

The inverse of V  is given by;  

1

1 0

1
I

V

V V

V
µ
ε
µ µ

−

 
 
 =
 
 
                        

(29) 

The next generation matrix 1FV −  is given by;  

1

0 0

V T T

V T T VFV
χε λ χλ
µ µ µ µ−

 
 =  
                      

(30) 

The eigenvalues of the matrix above are; V T

V T

χε λ
µ µ

 and 0, therefore, the 

reproductive number (which is the largest eigenvalue) is given by;  

0
V T

V T

χε λ
µ µ

=
                        

(31) 
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Figure 3. Basic Reproductive number increases with the infection rate. 

 
Figure 3 illustrates how 0R  is affected by the change of χ .  
Increasing the infection rate would lead to a rise in the number of secondary 

infection this is clearly depicted from the reproductive number given in 
Equation (31). The only way of reducing this is by introducing ARTs that target 
the HIV lifecycle at the entry level of the HIV virions to the CD4+ T-cells, that is, 
during fusion stage and hence the recommended drugs are the Fusion Inhibitors. 
Similarly, increasing the rate at which free HIV virions are generated from the 
infected cells would lead to an increase in the reproductive number. This means 
that it is paramount to bring in treatment at the budding level or to introduce 
ARTs drugs that would help in ensuring that the HIV virions generated from the 
infected CD4+ T-cells are defective and non-infectious. The ARTs that can play 
that role are the protease inhibitors. The protease inhibitors (PIs) inhibits the 
release of the viral protease enzyme that ensures the maturity of HIV virions 
upon budding from the host membrane. Consequently, the virions produced by 
the infected cells after the introduction of PIs are defective and non-infectious 
[19]. Conversely, if the rate at which the virus dies increases the rate of 
secondary infection would be at the minimum level. The HIV virions can die 
naturally or triggered by the CD8+ T-cells. According to [9], the CD8+ T-cells 
seek, destroy, and kill the cells infected by the HIV virions. This means that if 
the CD8+ T-cells are able to fight the virions by killing the infected CD+ T-cells 
the number of secondary infection would reduce and eventually the virions 
maybe eliminated from the body. This shows that during the initial HIV 
infection stage CD8+ T-cells are very important as far as fighting and reducing 
HIV virions replication is concerned. The most fundamental thing would for 
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researcher to establish what happens to CD8+ T-cells at the chronic level. Do 
they still fight the virus? Or probably are the CD4+ T-cells so worn out that they 
are not able to alert the CD8+ T-cells? 

4.2. Local Stability of the Virions-Free Equilibrium (VFE) 

Theorem 3. The virions-free equilibrium 0E  of the model (1) is locally 
asymptotically stable if 0 1R <  and unstable if 0 1R >   

Proof. In this study we have a non-linear differential equations model hence 
we shall use linearization method by [20] to study and prove the local stability of 
the virions-free equilibrium. The Jacobian matrix of the DFE for the model (1) is 
given by:  

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

T

I

V I V

Z

Za

T
T

J
Z

Z

µ χ
µ χ

ε µ µ
β µ
β µ

− −
−

= −
− −

−                

(32) 

Substituting Equation (26) into Equation (32) we have;  

( )0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

T
T

T

T
I

T

V I V

Z
Z

Z

Z
Za

Z

J E

λ
µ χ

µ
λ

µ χ
µ

ε µ µ
λ

β µ
µ
λ

β µ
µ

− −

−

= −

− −

−
           

(33) 

The characteristic equation in Λ  for Equation (33) is given by  
5 4 3 2

4 3 2 1 0 0b b b b bΛ − Λ − Λ − Λ − Λ + =               (34) 

where, 

4 Za Z V I Tb µ µ µ µ µ= − − + − +  

3
T

V I T Za T Z T I T V Za Z
T

Za I Za V Z I Z V I V

b λ
χ ε µ λ µ λ µ λ µ λ µ µ µ
µ
µ µ µ µ µ µ µ µ µ µ

= − − − − −

− − − − −
 

2
T T T

T V I Za V I Z V I T Za Z
T T T

T Za I T Za V T Z I T Z V T I V

Za Z I Za Z V Za I V Z I V

b λ λ λ
λ χ ε µ χ µ ε µ µ ε µ χ λ µ µ

µ µ µ
λ µ µ λ µ µ λ µ µ λ µ µ λ µ µ
µ µ µ µ µ µ µ µ µ µ µ µ

= + + −

− − − − −

− − − −
 

1
T T T

T Za V I T Z V I Za Z V I T Za Z I
T T T

T Za Z V T Za I V T Z I V Za Z I V

b Tλ λ λ
λ µ ε µ χ λ µ ε µ χ µ µ ε µ χ λ µ µ µ

µ µ µ
λ µ µ µ λ µ µ µ λ µ µ µ µ µ µ µ

= + + +

− − − −
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0
T

Za Z I T V V
V

b λ
µ µ µ λ ε µ

µ
 

= − 
 

 

The eigenvalues for the Jacobian matrix are given by; 1 TµΛ = − , 2 ZµΛ = − , 

3 ZaµΛ = − , 

2 2 2 2 2

4

4 2
2

I T V T T I T V I T I T V T V

T

µ µ µ µ χλ µ µ ε µ µ µ µ µ µ µ
µ

− − + + − +
Λ = , 

2 2 2 2 2

5

4 2
2

I T V T T I T V I T I T V T V

T

µ µ µ µ χλ µ µ ε µ µ µ µ µ µ µ
µ

+ + + − +
Λ = −  

It is evident that 1Λ , 2Λ , 3Λ  and 5Λ . However we need to determine the 
conditions that would guarantee that 4Λ  is also negative, since for local 
stability all the eigenvalues must be negative. 

Suppose 4 0Λ < , we have:  

( )

2 2 2 2 2

2 2 2 2 2 2

4 2
0,

2

4 2 ,

I T V T T I T V I T I T V T V

T

I T V T T I T V I T I T V T V

V T T V

µ µ µ µ χλ µ µ ε µ µ µ µ µ µ µ
µ

µ µ µ µ χλ µ µ ε µ µ µ µ µ µ µ

µ µ χλ ε

− − + + − +
<

+ > + − +

>     

(35) 

Thus, from Equation (35) we have;  

1T V

V T

χλ ε
µ µ

<
                         

(36) 

From (36) we deduce that 0 1T V

V T

R χλ ε
µ µ

= < . Thus, the virions-free equilibrium 

is locally asymptotically stable.                                        

4.3. The Endemic Equilibrium 

To analyze the endemic equilibrium, this study adopt the assumption made by 
[14] that the free virus spread of infection and there is no cell-to-cell transfer of 
the HIV virions. The endemic equilibrium 1E  exist when, ( ) 0T t > , ( ) 0I t > , 
( ) 0V t > , ( ) 0Z t > , ( ) 0aZ t > . An endemic equilibrium ( )* * * * *

1 , , , , aE T I V Z Z= , 
satisfies;  

* * * *

* * * * *

* *

* * *

* * *

0,

0,

0,

0,

0

T T

I a

V I V

Z Z

za a

T T V

T V I I Z

I V

Z Z I

Z I Z

λ µ χ

χ µ α

µ µ

λ µ β

β µ

− − =


− − = 
− = 
− − = 
− = 



                  

(37) 

Hence, the endemic equilibria of the model (1) correspond to the non-negative 
solutions of the Equation (37). Therefore, we solve the system (37) in terms of 

*
aZ  and obtain the endemic equilibrium as;  
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( )
( )

( )

( )

*
*

* *

*
*

*

*
*

*

*
*

,

,

,

.

T v Z a za

T v Z a Za a v z Za T

a za Z

Z a Za

V Z Za I a

v Z a Za

Z a za

Z

Z
T

Z Z

ZI
Z

ZV
Z

ZZ

λ µ β λ µ

µ µ β λ µ µ χµ µ

µ µ
β λ µ

µ µ µ
βµ λ µ

λ µ
µ

−
=
− +



= 
− 




= 
− 


− = 





            

(38) 

We then obtain the following cubic polynomial that describes the existence of 
the possible equilibria.  

( ) ( )* * *2 *
2 1 0 0,a a a ap Z Z Z Z= Φ +Φ +Φ =

               
(39) 

where,  

( )
( ) ( )

( )

2

1 0

2 2 2 2
0 0 0

4 ,

4 ,

4 1 .

Za Z Za I Z

Za Z T I Za I Z T T I Za Z

Za Z T V

R

R R

βµ µ µ µ αλ

µ µ µ µ µ µ µ βλ λ β µ µ αλ

µ µ µ µ

Φ = − +
 Φ = − − − +  


Φ = −      

(40) 

We re-write Equation (40) to ensure that 2 0Φ >  as;  

( )
( ) ( )

( )

2

1 0

2 2 2 2
0 0 0

4 ,

4 ,

4 1 .

Za Z Za I Z

Za Z T I Za I Z T T I Za Z

Za Z T V

R

R R

βµ µ µ µ αλ

µ µ µ µ µ µ µ βλ λ β µ µ αλ

µ µ µ µ

Φ = +
 Φ = − − + +  


Φ = −      

(41) 

From Equation (39), if * 0aZ = , then we have disease-free equilibrium treated 
earlier in Equation (26). The solution to the following equation defines the 
existence of the possible endemic equilibrium.  

*2 *
2 1 0 0,a aZ ZΦ +Φ +Φ =                     (42) 

The two roots of the quadratic Equation (42) is given by;  
2

1 1 2 0*

0

4
2aZ

−Φ ± Φ − Φ Φ
=

Φ                    
(43) 

Consequently, depending on the signs of 2 1,Φ Φ  and 0Φ  the model (1) 
may have unique, two or no positive roots. We now analyze the three scenarios 
as follows. 

Case 1: 
If 0 1R =  then 0 0Φ = , 1 0Φ < , 2 0Φ > ,  

( )
*2 *

2 1

* *
2 1

0,

0
a a

a a

Z Z

Z Z

Φ −Φ =

Φ −Φ =
                      

(44) 

Therefore,  

* * 1
1 2

2

0,a aZ Z Φ
= =

Φ                       
(45) 
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*
1 0aZ =  represents the disease free case and * 1

2
2

aZ Φ
=
Φ

 represent a unique 

positive equilibrium point. This is the critical equilibrium point.  
Case 2: 
If 0 1R >  then 0 1 20, 0, 0Φ > Φ < Φ >  and using the signs rule Descartes, the 

sign of the coefficients of the quadratic Equation (39) changes once. So there is a 
unique positive equilibrium point, *

1 0aZ > . Consequently, there exist at least 
one endemic equilibrium point. 

Case 3: 
If 0 1R <  then 0 10, 0Φ > Φ <  and using the signs rule by Descartes, the sign 

of the coefficients of the quadratic Equation (31) changes twice. So there are two 
unique positive equilibria point. Consequently, aZ ∗  has two positive endemic 
turning points, implying that at 0 1R <  there is a possibility for the model to 
exhibit backward bifurcation. So the existence of the threshold cR  is assumed 
in the result. 

4.4. Bifurcation Analysis of the Endemic Equilibria 

Backward bifurcation plays a fundamental role in controlling and eradicating 
diseases. Backward bifurcation occurs in models that have multiple equilibria 
when 0 1R < . Consequently, having 0 1R <  is important but not a sufficient 
indicator for the control and elimination of the infection [21]. Therefore, there is 
need to reduce the basic reproductive to avoid endemic states and in turn 
guarantee viral elimination [22]. Various researchers [23], [24] have established 
that HIV dynamics models exhibit backward bifurcation phenomenon where the 
stable virions-free equilibrium co-exist with an endemic equilibrium, for 0 1R < . 
This section focuses on bifurcations of the model in order to analyze the stability 
of the endemic equilibrium point. In many epidemic models, the virions-free 
equilibrium loses the stability when 0 1R > , which results in a bifurcation. From 
the model (1) we have critical 0R  denoted by cR  as;  

( )
( )

T Za I Z
c

Za I Z I T

R
βλ µ µ αλ
µ µ µ µ βλ

+
=

−                    
(46) 

If 1cR >  in Equation (46) then we have a forward bifurcation and if 1cR <  
then the model exhibit backward bifurcation. It is important to note that 
existence of a backward bifurcation with endemic equilibrium when 1cR <  is 
very important in epidemiological applications. Notably, it has very important 
consequences in the strategies and control policies designed for HIV viral 
eradication. From the epidemiological point of view reducing 0R  below unity is 
no longer a guarantee that the HIV virions will be eliminated completely or 
reduced to non-detectable level. In addition, this affects HIV virus control since 
the disease progresses even when 0 1R < . Furthermore, existence of backward 
bifurcation may result to a model that is globally unstable. From Equation (46) 
backward bifurcation is only possible if the rate Iµ  at which the infected CD4+ 
T-cells dies increases. From model (1) the infected cells may either die naturally 
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or they can be destroyed and killed by the activated CD8+ T-cells. Another 
parameter of interest as far as backward bifurcation is concerned is the β , the 
rate at which the CD8+ T-cells are activated. Reducing β  would lead to 
backward bifurcation. Biologically, bi-stability may lead to unexpected adverse 
consequences for ARTs and backward bifurcation may provide an explanation 
for several phenomena observed clinically among HIV patients.  

Epidemiological Implication of Backward Bifurcation 
It is paramount to carry out a deep discussion under epidemiological point of 
view. From the results it is evident that the bifurcation depends mainly on 
immunity of the infected person and Treatment, that is, efficacy of the ARTs. 
Use of ARTs as a way of managing an HIV persons may help in reducing the 
transmission rate. However, this may only be possible if the person adhere to the 
drugs. In the model the transmission rate is presented by χ . For the immunity 
of the infected person it is important to analyze the role played by the CD8+ 
T-cells. From (46) it can be seen clearly the immune cells plays a very vital role. 
Therefore, it is fundamental, for HIV eradication, to find ways in which the 
immunity of the infected person may be boosted. This may be done through 
proper diet or through use of prescribed medication. Thus it is very important to 
education people living with HIV/AIDS (PLWHAs) on proper nutrition and the 
availability on the drugs to boost the immunity. 

From the point of HIV virions eradication public policy makers must work to 
ensure information education material (IEC) are available in all public places. 
They must also ensure that the drugs are accessible and available. This may play 
a major role in ensuring that the backward bifurcation scenario are avoided. 

In summary if the backward bifurcation cannot be avoided, public policy 
makers have to particularly be careful since having 0 1R <  does not guarantee 
that the viral load may get to non-detectable level, the disease might eventually 
progress to AIDS. However, from the numerical values used in model (1) 
results to a forward bifurcation as shown in the Figure 4 From an 
epidemiological point of view, forward bifurcations means that when 0 1R <  
small perturbations from 0E  are unable to generate an endemic disease.in 
addition, when 0 1R > , such small perturbations move the system (1) away 
from VFE the epidemic outbreak takes place and the disease might stabilize in 
an endemic state.  

Remark 2. The existence of a backward bifurcation shows that even if 0 1R <  
by some control measures, HIV may still persist. The control of HIV becomes 
more difficult. 

4.5. Global Stability of the Virions-Free Equilibrium 

Using the approach of [25] we investigate the global stability of the virions-free 
equilibrium for the model (1). Using this approach we list two conditions that if 
met will guarantee the global asymptotic stability of the virions-free equilibrium.  

Theorem 4. Suppose we can express model (1) as;  
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Figure 4. Forward bifurcation (the blue lines denote stability while the red line denote 
instability). 

 

( )

( )

d ,
d
d ,
d

X H X W
t
Z G X W
t

=

=
                       

(47) 

such that,  

( ),0 0G X =                          (48) 

where the column vector components of MX R∈  denote the uninfected 
population and the components of nW R∈  denote the infected population. Let 

( )*
0 ,0E X=  be the virions-free equilibrium for the system. 
Then ( )*

0 ,0E X=  is globally asymptotically stable if and only if: 
1) The 0 1R < , that is, locally asymptotically stable. 

2) ( )d ,0
d
X H X
t
= , *X  is globally asymptotically stable. 

3) ( ) ( ) ( )ˆ ˆ, , , , 0G X W PG G X W G X W= − ≥  for ( ), HX Z ∈Ω . 
where ( )*,0WP D G X=  represents an M-matrix (the off diagonal elements of P 
are non negative) and HΩ  is the feasible reqion for the model.  

If model (1) satisfies the conditions mentioned above then the fixed point 

( )*
0 ,0E X=  is a globally asymptotic stable equilibrium of model system (1) 

provided that 0 cR R< . For model (1) the result is stated and proved in Theorem 
5. 

Theorem 5. The virions-free equilibrium point ( )*
0 ,0E X=  is a globally 

asymptotically stable equilibrium of system (1) provided that 0 cR R<  and the 
conditions (2) and (3) of Theorem 4 are satisfied.  

Proof. From the system (1) we let ( ), , aX T Z Z=  and ( ),W I V= , then we 
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have;  

( ),0
T T

Z Z

Za a

T
H X

Z

λ µ
λ µ
µ

− 
 = − 
 −                      

(49) 

( ) ( )ˆ, ,G X W PG G X W= −                   (50) 

where  

T
I

T

V I V

P
λ

µ χ
µ

ε µ µ

 − =  
 −                        

(51) 

and  

0ˆ
0 0

aZ I
G

α 
=  
                         

(52) 

Since 0aZ Iα ≥  then, ( )ˆ , 0G X W ≥ . In addition, the matrix P  is an 
M-Matrix since all its off-diagonal elements are non-negative. This therefore, 
proves the global stability of the virions-free Equilibrium ( )0E . That is,  

* ,0,0, ,0T Z

T Z

X λ λ
µ µ

 
=  
 

 is globally asymptotic stable equilibrium solution of 

( )d ,0
d
X H X
t
= . Consequently, by Theorem 5, the disease free equilibrium of the 

model (1) is globally asymptomatically stable.                            

Theorem 5 implies that when 0 cR R<  a small influx of free HIV virions into 
the body cells, will not lead to AIDS. The subsequent numbers of those infected 
cells will be less than that of their predecessors and eventually the disease maybe 
reduced to non-detectable level. 

5. Numerical Analysis 

In order to observe the variables on the HIV model given in Equation (1) over a 
period of time, the study applied Matlab programming language. The initial 
values of the model were set as; 0 1000T = , 0 10I = , 0 1V = , 0 500Z = , 

0 10aZ = . This section is aimed at investigating numerically the behaviour of 
each compartment on the onset of infection without any medical treatment. The 
values for the parameter are described in Table 3.  

Discussion 

Figure 5 shows that at initial infection stage the level of the susceptible CD4+ 
T-cells reduces for the first three months and later the body immunity stabilizes 
and the number of the susceptible CD4+ T-cells increases. However, it fails to go 
back to the pre-infection stage. Clinicians have established that the depletion of 
CD4+ T-cells is a indication of HIV infection. Clinicians have established that 
the first few weeks after infection the virus is characterized by inflammatory 
response including extreme flu like symptoms such as swollen nodes, fever, sore  
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Table 3. Parameters for in-vivo HIV model. 

Parameters Description Value Source 

Tλ  The recruitment rate of non-infected CD4+ T-cells produced per unit time 10 cell/mm3/day [26] 

Tµ  The rate at which the non-infected CD4+ T-cells decay 0.01 day−1 [27] 

χ  The rate at which the CD4+ T-cells are infected by the virus 
0.000024 mm3 

vir−1 day−1 
[8] 

Iµ  The death rate of the infected CD4+T-cells 0.5 day−1 [28] 

Vε  The rate in which HIV virions are generated from the infected CD4+T-cells 100 vir. cell−1 day−1 [2] 

Vµ  The death rate of the infectious virus 3 day−1 [2]. 

α  The rate at which the infected cells are eliminated by the activated CD8+T-cells 0.02 day−1 [9] 

Zλ  The rate at which the CD8+ T-cells are produced per unit time 20 cell/mm3/day [9] 

Zµ  The death rate of the CD8+ T-cells 0.06 day−1 [9] 

β  The rate at which the CD8+ T-cells are activated by the presence of the virus and the infected CD4+ T-cells 0.004 day−1 [9] 

aZµ  The rate at which the activated defence cells decay 0.004 day−1 [9] 

 

 
Figure 5. A Figure showing the number of the susceptible CD4+ T-cells with change. 

 
throat, rashes, muscles and joint pains and headache. This takes place up to the 
forth week. In this phase the natural immune response changes to “allergy-like” 
immune response replica of a mild anaphylactic reaction. Due to these changes 
the viral replication is high, infection of the CD4+ T-cells is high and the 
activation of the CD8+ T-cells and B-lymphocytes rises. As a result, the amount 
of CD4+ T-cells falls very drastically. Later, due to the immune response, new 
CD4+ T-cells are generated rapidly by the thymus to replace the already infected 
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ones and hence their level rise again as depicted by the Figure 5. 
In Figure 6, the person has just been infected with HIV virions, the acute 

infection takes place two to four weeks later. At this time, when the HIV virions 
infect a few number of the susceptible CD4+ T-cells, replications take place and 
new HIV virions are produced. The high number of infectious virions attaches 
themselves to the membrane of the CD4+ T-cells infecting them. The cycle 
continues and more virions are produced hence more CD4+ T-cells are infected. 
This explains why the number of the infected CD4+ T-cells increases rapidly for 
the first 2 months as depicted by the Figure 6. Meanwhile at this stage the body 
is relaying on the natural immune response while waiting for the CD4+ T-cells 
Adaptive Immune response. Consequently, the adaptive immune response sets 
in and kill most of the infected CD4+ T-cells causing a drastic fall on the number 
of infected CD4+ T-cells to almost nil as depicted in the Figure 6. Unfortunately, 
a few mutants develop. The new mutants start infecting the uninfected CD4+ 
T-cells. As a result to this the infected CD4+ T-cells count rises but at a slower 
rate. After 300 days the level start to rise again. 

Figure 7 shows that at early HIV infection stage the level of the HIV virions 
reduces to almost zero during. This is the phase in which the virions attaches 
themselves to the membrane of the CD4+ T-cells. However, after about three 
days the infected CD4+ T-cells burst releasing infectious HIV virus. This explain 
why at acute stage of infection, large number of HIV virions are produced in the  

 

 
Figure 6. A Figure showing the population of the infected CD4+T-cells with respect to 
time. 
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Figure 7. A Figure showing the number of the HIV virions with respect to time. 

 
patients body. With time the HIV virions continue to replicate and infecting 
more CD4+ T-cells. This explains the decline on the level of the susceptible CD4+ 
T-cells as depicted in Figure 5. However, after the immune response sets in it 
destroys the infected cells, suppresses viral replication and inhibits more 
production of the infectious virus since the cells available for infection are 
decimated. Furthermore, comparing Figure 5 and Figure 7 the number of HIV 
virions reduces as the number of the susceptible CD4+ T-cells this is contrarily to 
the work done by [29]. Their study, which has been criticized by many 
researches, established that the fall of the viral load was due to a decline in the 
target cells (CD4+ T-cells), a process called target cell limitation. Consequently, 
due to the incerase on the number of the infected CD4+ T-cells, a signal is sent to 
the CD8+ T-cell and consequently the cells are activated to kill the infected cells. 
This helps in reducing the level of the viral load in the body. The number of the 
CD4+ T-cells count begins to increase during this point, though it may never 
return to the pre-infection levels. It may be paramount for the patient to begin 
ARTs during this stage. The virus level cannot reduce to non-detectable level 
since it is very difficult to control the HIV virions free in circulation when not 
attached to the CD4+ T-cells. 

In Figure 8 we monitor the change in the number of CD8+ T-cells during 
initial infection stage. From Figure 8 the level of CD8+ T-cells reduces during for 
the first three months. This may be due to the fact that a big number of the CD8+ 
T-cells die within few weeks, leaving a reservoir of CD8+ memory T-cells which  

https://doi.org/10.4236/am.2017.88087


P. M. Ngina et al. 
 

 

DOI: 10.4236/am.2017.88087 1175 Applied Mathematics 
 

 
Figure 8. A Figure showing the number of CD8+ T-cells with respect to time. 

 
are HIV-specific which persist, irrespective of the presence of antigen or CD4+ 
T-cells. In addition, many of the cells get activated to fight the virus. However, 
after three months the number increases gradually, this is because of the 
reduction of the viral load and the infected CD4+ T-cells.  

In Figure 9, we monitor the number of the activated CD8+ T-cells. The 
number of the activated cells rises after the first 3 days. This correspond to the 
time in which the infected CD4+ T-cells start to increase. Most of the cells are 
activated to kill the infected T-cells and consequently control the viral replication. 
According to [30] CD4+ T-cells plays an important role in the initiation and 
persistence of CD8+ T-cells responses. The CD8+ T-cell activation can lead to a 
number of immune responses such as antibody production, activation of 
phagocytic cells and direct cell killing. Therefore, the best immune response for 
different types of diseases is implemented by natural mechanism. CD8+ T-cells 
have been shown to express CD4+ T-cells receptors on their surface after 
activation through the T-cell receptor, allowing infection by HIV. Some 
researchers such as [28] suggest this is a mechanism through which CD8+ T-cells 
get destroyed late in infection. From Figure 9 it is evident that during infection 
most of the CD8+T-cells get activated to fight the virus. This explain the 
exponential rise. 

6. Conclusion 

In this paper, we have presented an in-vivo HIV dynamics model with inclusion  
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Figure 9. A Figure showing the number of the activated CD8+ T-cells with respect to 
time. 

 
of the CD8+ T-cells. We first showed that the key variables of the model were 
non-negative and bounded to ensure that it is biologically relevant. We have 
computed the expression for the basic reproductive number 0R  and the 
equilibria of the model. It is evident that the rate of infection greatly influences 
the basic reproductive number. The mathematical analysis of the model showed 
the existence of virions-free equilibrium. In addition, the system exhibits 
backward and trans-critical bifurcation under some restriction on parameters. 
This shows that having 0 1R <  is not enough to eradicate the HIV-virions to 
non-detectable level. Numerical analysis were done to give more insight 
regarding the model. The results clearly show the introduction of HIV virions in 
the body without the use of ARTs does not mean that the disease is likely to 
persist in the body. The body have a way of reducing the HIV virions to very low 
level after three months of infection. This is in agreement with the biological 
mechanism of the HIV-cells interaction. However, as much as it is so in this 
study, the parameters were not varied; this means that the behavior might 
slightly be different between individuals. Furthermore, the simulations for the 
model have showed the importannce of the CD8+ T-cells in fighting the HIV 
virions. At the primary phase of HIV infection, there is an increase in the level 
viral load and a reduction in the population of the CD4+ T-cells, which reduces 
after three months due to the presence of the killer cells. However, as much as 
this study has only established the role played by the immune cells at the acute 
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infection other researches such as [31] has shown that patients who fail to 
develop HIV/AIDS after 15 years or longer have significantly higher levels of 
immune cells compared to a normal HIV-infected patients. Therefore, it is 
fundamental to maintain a high population of the immune cells which in turn 
will lead to low level of the viral load. In addition, due to the high increase of the 
virions during the first three months it is important to introduce ARTs to 
prevent HIV transmission. This will help in the reduction of new infection.  
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