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Abstract 
In this study, a modeling method to analyze multidimensional time series 
based on complex networks is proposed. The rate of return sequence of the 
closing price and the trading volume fluctuation sequence of the Shanghai 
Composite Index, the Shenzhen Component Index, the S & P 500 index, and 
the Dow Jones Industrial Average are analyzed. The two-dimensional time se-
ries is transformed into a complex network. We analyze the spatial distribu-
tion characteristics of the network to determine the relationship between vo-
lume and price. It is found that the interaction of stock return and volume in 
China’ stock market is more obvious than that in the American market.  
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1. Introduction 

Most scholars apply econometric or variance models to analyze time series of fi-
nancial markets. However, the relationships between various factors are not easy 
to determine because of the complexity of the financial markets. Therefore, it is 
difficult to develop models that accurately describe relationships in complex fi-
nancial systems using traditional time series analysis. 

Recently, many scholars have applied complex scientific methods to the anal-
ysis of time series, and have discussed the relationship between the dynamic 
characteristics of time series and complex network topology, which is especially 
suitable for complex systems research where a precise mathematical model can-
not be established. The internal variation law and evolution mechanism of com-
plex systems in various financial markets are obtained by analyzing the time se-
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ries for each complex system. However, these studies are limited to the analysis 
of one-dimensional time series data, and rarely observe the structural features 
and evolution mechanism of the entire financial market from the viewpoint of 
multidimensional time series. 

In this study, we use price time series, and trading volume time series as the 
objects of our multidimensional analysis. There have been numerous studies of 
the relationship between volume and price that have found a positive correlation 
between the rate of return and trading volume volatility. 

Here, we study the quantity-price relationship in the stock market using the 
complex network methodology and develop a method to analyze multidimen-
sional time series data. We use closing price index series data from the Shanghai 
Composite Index, the Shenzhen stock index, the S & P 500 index, and the Dow 
Jones Industrial Average to study the relationship between volume and price in 
different markets, as well as differences between securities markets in China and 
the United States. 

2. Related Studies 

The relationship between stock price and trading volume has always been the 
focus of scholars in this field. 

Clark (1973) concluded that stock returns were positively correlated with 
trading volume using a mixed distribution hypothesis and correlation analysis 
[1]. Starks and Smirlock (1985) [2] found that there is linear causality between 
price and trading volume using the Granger method. Bessembinder (1993) [3] 
studied conditional volatility between stock price and volume. He divided trad-
ing volume into two components, expected trading volume and unexpected 
trading volume, and found that unexpected trading volume led to greater vola-
tility among stock prices. Podobnik and Horvatic (2009) [4] studied the rela-
tionship between price return and trading volume volatility and found a pow-
er-law relationship between the absolute value of the price return and the abso-
lute value of the trading volume volatility. However, they also found no correla-
tion between the non-absolute values.  

Zhang and Run (1998) [5] studied the relationship between price return and 
trading volume on the Shanghai stock market using the Grainger causality me-
thod. Their results showed that price has a significant positive correlation with 
trading volume Chen and Song (2000) [6] randomly selected 31 stocks for analy-
sis and found that the absolute price change was positively related to the trading 
volume, and that there was a positive correlation between daily price fluctua-
tions and trading volume and an asymmetric quantity-price relationship. He 
and Liu (2005) [7] added the transaction volume to the GARCH model and 
EGARCH as an alternative to the information flow. Wang et al. (2012) [8] tested 
the quantity-price relationship with regard to China’s stock market using the 
stochastic volatility model and the Bayesian estimation method based on Mar-
kov chain Monte Carlo (MCMC) and found a positive correlation between 
trading volume and price fluctuations. 
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In recent years, various scholars have proposed a geometric approach based 
on time series. Zhang and Small (2006) [9] proposed a ring-cut method for 
mapping pseudo periodic time series { }1

n
ix  into network models. The advan-

tage of this method is that phase space reconstruction does not depend on the 
sequence, and can avoid the loss of space dynamic information, which is caused 
by inaccurate reconstruction of selected dimensions. However, the network con-
struction method is dependent on the selection of parameter thresholds. If these 
are too large or too small, they will affect the characteristics of the network 
structure. Yang et al. (2008) [10] proposed a fixed window length method to 
map time series into complex networks. This method of constructing networks 
also depends on the parameter thresholds. Its advantage is that by adjusting the 
phase space dimension and correlation coefficient threshold, the degree distri-
bution of the network is kept unchanged over a wide range of parameters. Lacasa 
et al. (2008) [11] proposed another method of constructing complex networks 
from time series, i.e. the view method. The network that is constructed using this 
method is an undirected graph, and has the limitation that it can only be used 
for time series analysis with one variable. Li et al. (2011, 2014) [12] [13] [14] 
proposed a space-distance method based on phase space reconstruction to con-
struct complex networks. This method can divide chaotic and random sequences 
by controlling the reconstructed phase dimension m. Thus, it is possible to re-
veal the dynamic law contained in time series data. Although this method relies 
on phase space reconstruction, it reveals the characteristics of the sequence by 
observing the changes in the spatial topological structure of the corresponding 
mapping network with increasing m values. 

3. Method 

The method for mapping time series into complex networks that is proposed in 
this paper is based on expanding the space-distance method proposed in the li-
terature [12] [13] [14]. 

The mapping algorithm [12] includes a definition of a node, a definition of 
distance, and a connecting rule. 

Algorithm Definition 
1) Definition of a node 
A node is defined as a point in an m-dimensional reconstructed phase space. 

For a time series, 1 2, , , , , ; 1, 2, , ,t nx x x x t n=    in a reconstructed phase space 
( ) ( ) ( ) ( ) ( )( ), 1 , 2 , , 1X t x t x t x t x t m = − − − −  . 

Here, m denotes the dimension of the embedding space. The total number of 
nodes k is calculated by – 1k n m= + . 

2) Definition of distance 
The Euclidean distance between two nodes i and j is given by 

1 1 2 2

22 2

m mij i j i j i jd x x x x x x= − + − + + −             (1) 

3) Connecting rule 
We define the connecting rule as follows. Let maxd  denote the maximum 
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phase space distance. ( )max 1d k∆ = −  is called the judgment distance (or the 
equipartition of the maximum distance in the phase space). Two nodes i and j 
will only be connected if ijd ≤ ∆ .  

However, this method is mainly aimed at one-dimensional time series. Thus, 
for multidimensional time series, we propose the following methods. 

1) First, we define the price change rate, the trading volume change rate, and 
the indices, which represent the quantity-price relationship. 

R is the rate of change of prices, namely the rate of return: 

( )
( )

1
ln

S t
R

S t
 +

=   
 

 

R  is the fluctuation (rate of change) of the trading volume: 

( )
( )

1
ln

V t
R

V t
 +

=   
 

  

Let R  be a measure of the relationship between the rate of change of prices 
and the volatility of the trading volume. According to previous studies, there is a 
regular relationship between the stock market’s return and the fluctuation in its 
trading volume. The product of the return rate and trading volume volatility can 
enlarge (or shrink) stock market fluctuations, but if there is no inherent rela-
tionship between the return and the volatility of the corresponding trading vo-
lume, the continuous fluctuation over the period of observation is likely to be a 
random and irregular sequence. Thus, we study the randomness of the conti-
nuous fluctuation series over the whole period to determine the corresponding 
relationship between the return rate and trading volume volatility. At the same 
time, we reduce the two-dimensional data to one-dimensional data by multiply-
ing R and R . 

Because the product of R and R  contains information regarding the mutual 
influence between price and trading volume, its regular distribution can indi-
rectly indicate that price and trading volume affect each other. Formula (2) 
represents the influence of the yield on the volatility of the trading volume, while 
Formula (3) represents the impact of trading volume volatility on returns. 

R R R= ×                           (2) 

R R R= ×                          (3) 

2) The method used to analyze two-dimensional time series is presented. 
The first step is to obtain the time series data for the stock, including the daily 

closing price series and the corresponding trading volume sequence (daily bar). 
By calculation, two time series can be obtained: the variable rate of the price in-
dex ( ) ( ) ( )( )1 2, , , nR R t R t R t=  , and the variable rate of the trading volume. 
Both of these time series are normalized. 

The second step is to reduce the dimension of the price return series and the 
trading volume fluctuation sequence. First, the two sequences are transformed 
into the distance relationship matrix, and each element of the price index change 
rate sequence and the trading volume change rate sequence is regarded as a node. 
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The distance between nodes is calculated as ij i jd R R= − , and two distance re-
lationship matrices are obtained, matrix Dis_R and matrix Dis_R . Dis_R is as 
follows: 

11 12 1

21 22 2

1 2

n

n

n n nn

D D D
D D D

D D D

 
 
 
 
 
 





   



 

The first line of the Dis_R represents the distance between R(t1) and all the 
other elements ( ) ( ) ( )2 3, , , nR t R t R t . That is, the first line in matrix Dis_R 
contains the spatial location information for R(t1), and can be represented as D1. 

11 21 1

12 22 2

1 2

n

n

n n nn

D D D
D D D

D D D

 
 
 
 
 
  

  



  



   

  



 

The first line of matrix Dis_R  represents the distance between ( )1R t  and 
all the other elements ( ) ( ) ( )2 3, , , nR t R t R t  

 . That is, the first line of matrix 
Dis_R  contains the spatial location information for ( )1R t , and can be 
represented as 1D′ . 

3) In the third step, we calculate the influence of the yield rate on the change 
in trading volume in sliding window T. 

The method is as follows. Suppose the time window T = 5. In the first window, 
multiply the spatial location information R(t1), R(t2), R(t3), R(t4), R(t5) by the 
spatial location information ( )5R t . That is, rows one to five of matrix Dis_R are 
multiplied by the fifth column of matrix Dis_R  to obtain 1 5D D′×  , 2 5D D′×  , 

3 5D D′×  , 4 5D D′×  , and 5 5D D′×  , respectively. Then, in the second window, rows 
two to six of matrix Dis_R are multiplied by the sixth column of matrix Dis_R  
to obtain 2 6D D′×  , 3 6D D′×  , 4 6D D′×  , 5 6D D′×  , and 6 6D D′×  , respectively. This 
continues until the last window, i.e. 4n nD D− ′×  , 3n nD D− ′×  , 2n nD D− ′×  , 1n nD D− ′×  , 
and n nD D′×  , respectively. Thus, five time series are obtained. 

( )15 1 5 2 6 3 7 4, , , , n nR D D D D D D D D−′ ′ ′ ′= × × × ×   

  

( )25 2 5 3 6 4 7 3, , , , n nR D D D D D D D D−′ ′ ′ ′= × × × ×   

  

( )35 3 5 4 6 5 7 2, , , , n nR D D D D D D D D−′ ′ ′ ′= × × × ×   

  

( )45 4 5 5 6 6 7 1, , , , n nR D D D D D D D D−′ ′ ′ ′= × × × ×   

  

( )55 5 5 6 6 7 7, , , , n nR D D D D D D D D′ ′ ′ ′= × × × ×   

  

15R  represents the influence of the yield rate at the earliest point on the 
change rate of the volume at the last point in each time window. 25R  represents 
the influence of the yield rate at the second point on the change rate of the vo-
lume at the last point in each time window. 55R  represents the influence of the 
yield rate at the fifth point (current time) in each time window on the change 
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rate of the volume at the last point in each time window. 
4) The fourth step is to reconstruct the phase space for each time series se-

quence R and map it into a network model for analysis. Assuming that the re-
constructed phase space is m and the time delay is τ, the reconfiguration is given 
by: 

( ) ( ) ( ) ( ) ( )( )( ), , 2 , , 1R t R t R t R t R t mτ τ τ= − − − −  

The element ( )R t  is a vector. Each vector is considered as a node, and then 
the distance between the nodes is calculated and the connection edge between 
nodes is determined. As a result, the network model is established, and a de-
scription of the complex network characteristic can be derived. 

The two-dimensional time series analysis method can also be applied to mul-
tidimensional time series. 

If a complex system has sequence data with multiple attribute characteristics, 
the first step is to obtain time series data for n attributes of the system, such as 

( ) ( ) ( )( )1 1 1 1 2 1, , , nC C t C t C t=  , ( ) ( ) ( )( )2 2 1 2 2 2, , , nC C t C t C t=  ,  ,  
( ) ( ) ( )( )1 2, , ,n n n n nC C t C t C t=  . 

The second step is to obtain the respective distance relationship matrices for n 
sequences. Each element of each sequence is treated as a node. The distances 
between the nodes are calculated using the formula ij i jd R R= − , and three re-
lationship matrices consisting of distance data as elements are obtained, i.e., ma-
trix Dis_C1, matrix Dis_C2, and matrix Dis_Cn. 

The third step is to calculate the product of the distance relationship matrix 
for unit t of attribute C1, attribute C2, attribute C3, ∙∙∙ attribute Cn in the sliding 
window T to obtain the correlation matrix between all attributes. Then, the time 
series of T correlations between attributes can be obtained.  

The fourth step is to reconstruct the phase space for T time series sequences 
and map them into a network model for analysis. Through the description of the 
complex network characteristics of the R  sequence, we can obtain the stochas-
tic characteristics of the sequence, and thus we can obtain the distribution law 
for the quantity-price relationship. 

4. Empirical Study 

The data used in this study were obtained from the Shanghai Composite Index 
(SHCI), the Shenzhen Component Index (SZCI), and the Standard & Poor’s 500 
Index (S & P 500) for the period 2nd January 1993 to 31 December 2012, and the 
Dow Jones Industrial Average (DJIA) for the period 2nd January 1992 to 31 De-
cember 2011. 

We first analyzed the impact of yield rate on the rate of trading volume vola-
tility. Table 1 shows the number of nodes and edges of the network for the 
Shanghai Composite Index and the Shenzhen Component Index for different 
reconstructed m values. 

As can be seen from Figure 1 and Figure 2, in each time window, the Shang-
hai and Shenzhen price-volume relationship 55R  sequences show certain dy- 
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Figure 1. Degree distribution in network mapped from the Shanghai Composite Index 

and the Shenzhen Component Index for R  sequences in R R×   when m = 2. 
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Table 1. Number of nodes and connections for each R  sequence in R R×   for different m values for the Shanghai composite 
index and the Shenzhen component index. 

SH 

m = 2 m = 3 m = 4 m = 5 

The number  
of nodes 

The number  
of connections 

The number 
of nodes 

The number 
of connections 

The number 
of nodes 

The number 
of connections 

The number 
of nodes 

The number  
of connections 

15R  4873 4439 4872 93 4871 3 4870 0 

25R  4873 6429 4872 157 4871 6 4870 0 

35R  4873 2850 4872 51 4871 0 4870 0 

45R  4873 4439 4872 93 4871 3 4870 0 

55R  4873 130,292 4872 13534 4871 1415 4870 131 

SZ 
The number 

of nodes 
The number  

of connections 
The number 

of nodes 
The number  

of connections 
The number 

of nodes 
The number 

of connections 
The number 

of nodes 
The number  

of connections 

15R  4848 3287 4847 53 4846 2 4845 0 

25R  4848 1978 4847 31 4846 0 4845 0 

35R  4848 1905 4847 35 4846 1 4845 0 

45R  4848 3028 4847 98 4846 3 4845 0 

55R  4848 54387 4847 3673 4846 235 4845 20 

 

 
Figure 2. Degree distribution mapped from the Shanghai Composite Index and the 

Shenzhen Component Index for R  sequences in R R×   when m = 5. 
 
namic characteristics. The connectivity in the mapped network diagram de-
creases as m increases, and the decay rate is significantly smaller than at other 
points in the window, which shows that the yield rate at the end of each window, 
that is, in the current period, has a relatively stable relationship with the volatili-
ty of the current trading volume. At other points in the window, the randomness 
of 15R , 25R , 35R , and 45R  is stronger and the number of connected edges in 
the mapped network graph decays rapidly as m increases. When m = 4, there are 
very few or no connections in the network diagram, which shows that the influ-
ence of yield rate on trading volume volatility is not sufficiently stable, and thus 
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there is no relationship between them. 
Similarly, we analyze 15R , 25R , 35R , 45R , and 55R  for the S & P 500 index 

and the Dow Jones Industrial Average and obtain the sequences in different re-
construction dimensions. Table 2 shows the number of nodes and the number 
of edges in each network from the S & P 500 Index and the Dow Jones Industrial 
Average at various spatially reconstructed m values. 

As seen from Figure 3 and Figure 4, within each time window, the number of 
connections in the network diagram mapped by the S & P 500 index and the  

Dow Jones Industrial Average declines rapidly as m increases. The random-
ness of each R  sequence is very strong, and the 55R  sequence does not show 
the same characteristics as it does in the corresponding Shanghai and Shenzhen 
sequence mapping network, which indicates that the two indices have no influ-
ence on trading volume volatility at any point in the time window. 

We continue to analyze the impact of yield rate on trading volume volatility. 
Table 3 shows the number of nodes and edges connecting the Shanghai Compo-
site Index and the Shenzhen Component Index under different m values for each 
sequence of the network. Table 4 shows the number of nodes and the number of 
edges for each sequence network under different m values in the S & P 500 index 
and the Dow Jones Industrial Average. 

 
Table 2. Number of nodes and connections for each R  sequence in R R×   for different m values for the S & P 500 index and 
the Dow Jones industrial average. 

SP 

m = 2 m = 3 m = 4 m = 5 

The number  
of nodes 

The number 
of connections 

The number 
of nodes 

The number 
of connections 

The number  
of nodes 

The number  
of connections 

The number  
of nodes 

The number 
of connections 

15R  5031 2236 5030 33 5029 0 5028 0 

25R  5031 1586 5030 14 5029 0 5028 0 

35R  5031 3129 5030 71 5029 0 5028 0 

45R  5031 2849 5030 61 5029 0 5028 0 

55R  5031 4392 5030 84 5029 2 5028 131 

DJ 
The number  

of nodes 
The number  

of connections 
The number  

of nodes 
The number  

of connections 
The number  

of nodes 
The number  

of connections 
The number  

of nodes 
The number  

of connections 

15R  5089 3769 5088 105 5087 2 5086 0 

25R  5089 3650 5088 82 5087 1 5086 0 

35R  5089 8253 5088 456 5087 15 5086 0 

45R  5089 10506 5088 582 5087 20 5086 0 

55R  5089 4485 5088 140 5087 7 5086 20 
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Figure 3. Degree distribution in network mapped from the S & P 500 index and the Dow 

Jones Industrial Average for R  sequences in R R×   when m = 2. 
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Table 3. Number of nodes and connections for each R  sequence in R R×  for different m values for the Shanghai Composite 
Index and the Shenzhen Component Index. 

SH 

m = 2 m = 3 m = 4 m = 5 

The number  
of nodes 

The number  
of connections 

The number  
of nodes 

The number  
of connections 

The number 
of nodes 

The number  
of connections 

The number 
of nodes 

The number 
of connections 

15R  4873 12,830 4872 459 4871 16 4870 0 

25R  4873 57,059 4872 3700 4871 289 4870 25 

35R  4873 12,580 4872 407 4871 20 4870 0 

45R  4873 20,573 4872 1059 4871 48 4870 0 

55R  4873 130,292 4872 13,534 4871 1415 4870 131 

SZ 
The number 

of nodes 
The number  

of connections 
The number 

of nodes 
The number 

of connections 
The number  

of nodes 
The number 

of connections 
The number  

of nodes 
The number  

of connections 

15R  4848 4070 4847 65 4846 2 4845 0 

25R  4848 40,346 4847 2160 4846 119 4845 0 

35R  4848 4907 4847 98 4846 0 4845 0 

45R  4848 6196 4847 129 4846 11 4845 0 

55R  4848 54,387 4847 3673 4846 235 4845 20 

 

Table 4. Number of nodes and connections for each R  sequence in R R×  for different m values for the S & P 500 index and 
the dow jones industrial average. 

SP 

m = 2 m = 3 m = 4 m = 5 

The number  
of nodes 

The number  
of connections 

The number  
of nodes 

The number  
of connections 

The number  
of nodes 

The number  
of connections 

The number  
of nodes 

The number  
of connections 

15R  5031 1098 5030 8 5029 0 5028 0 

25R  5031 1822 5030 29 5029 1 5028 0 

35R  5031 1520 5030 24 5029 0 5028 0 

45R  5031 3668 5030 87 5029 1 5028 0 

55R  5031 4392 5030 84 5029 2 5028 0 

DJ 
The number  

of nodes 
The number  

of connections 
The number  

of nodes 
The number  

of connections 
The number 

of nodes 
The number  

of connections 
The number 

of nodes 
The number  

of connections 

15R  5089 11,132 5088 585 5087 28 5086 0 

25R  5089 4570 5088 136 5087 5 5086 0 

35R  5089 9949 5088 468 5087 14 5086 0 

45R  5089 7880 5088 390 5087 8 5086 0 

55R  5089 4485 5088 140 5087 7 5086 0 
 



Y. Li et al. 
 

745 

 

Figure 4. Degree distribution mapped from the S & P 500 index and the Dow Jones In-

dustrial Average for R  sequences in R R×   when m = 5. 
 

As can be seen from Figure 5 and Figure 6, within each time window, the 

25R  sequence and the 55R  sequence from the Shanghai Composite Index and 
the 55R  sequence from the Shenzhen Component Index series show certain 
dynamic characteristics. The connectivity in the mapped network graph de-
creases as m increases and the decay rate is significantly smaller than at other 
points in the window, which indicates that at the last point in each window, i.e. 
at T = 5, the fluctuation of the trading volume in the current period has a rela-
tively stable relationship with the current rate of return. For the Shanghai Com-
posite Index, the three-period lagged volume fluctuation also has a significant 
impact on the current rate of return. 

As can be seen from Figure 7 and Figure 8, the S & P 500 index and the Dow 
Jones Industrial Average exhibit inconsistent features. The number of connected 
edges in the network graph mapped by each R  sequence decreases rapidly as 
m increases, which indicates that the randomness is very strong. The 55R  se-
quence does not show the same characteristics as the corresponding Shanghai 
and Shenzhen sequence mapping networks, which indicates that trading volume 
volatility has no influence on yield rate at any point in the time windows of the 
two indices. 

5. Conclusions 

In this paper, we present two-dimensional or multidimensional time series anal-
ysis methods based on complex networks. These are applied to stock market vo-
lume and price analysis by studying the relationship between prices and trading 
volume fluctuations for the Shanghai Composite Index, the Shenzhen Compo-
nent Index, the S & P 500 index and the Dow Jones Industrial Average. R  se-
quences showing the influence of yield rate on trading volume volatility are ob-
tained at different points in the time window and the stochastic characteristics of 
each sequence are studied. The following conclusions are drawn. 

1) Regarding the influence of the rate of return on trading volume volatility, 
the Shanghai Composite Index and the Shenzhen Component Index show that 
the rate of return has a relatively stable impact on trading volume volatility at 
the end of each window, but at other points in the window, the impact of yield  
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Figure 5. Degree distribution mapped from the Shanghai Composite Index and the 

Shenzhen Component Index for R  sequences in R R×  when m = 2. 
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Figure 6. Network distribution maps for the Shanghai Composite Index and the Shenz-

hen Component Index for R R× , R  sequences when m = 5. 
 
rate on trading volume volatility is unstable, and the correlation is very weak. 
Regarding the S & P 500 index and the Dow Jones Industrial Average, the yield 
rate has no impact on trading volume volatility at any point in the window. 

2) Regarding the impact of trading volume volatility on the rate of return, in 
each time window, the fluctuation in the trading volume of the Shanghai Com-
posite Index has a relatively stable impact on the rate of return. However, at the 
same time, for the Shanghai Composite Index, the three-period lagged volume 
fluctuation also has a significant impact on the current rate of return. For the 
Shenzhen Component Index, only the current fluctuation in the trading volume 
has a relatively stable influence on the rate of return. For the S & P 500 index 
and the Dow Jones Industrial Average, trading volume volatility has no impact 
on yield at any point in the window. 

In summary, after comparing the influence of yield on trading volume volatil-
ity and the influence of trading volume volatility on the rate of return, we find 
that the influence of trading volume volatility on yield rate has richer node con-
nectivity in each R  sequence network diagram, which indicates that the fluc-
tuation in trading volume has a stronger influence on yield rate. 

By analyzing data from the Shanghai Composite Index, the Shenzhen Com-
ponent Index, the S & P 500 index, and the Dow Jones Industrial Average, we 
find that the mutual influence between returns and trading volume volatility is 
more obvious in China’s stock market. The reason for this may be that China’s 
stock market is still in a relatively immature stage of development. Moreover, 
there are differences between investors’ trading preference levels and the market 
information level in Chinese markets and that in more mature markets in for-
eign countries. 
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Figure 7. Degree distribution mapped from the S & P 500 index and the Dow Jones In-

dustrial Average for R  sequences in R R×  when m = 2. 
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Figure 8. Degree distribution mapped from the S & P 500 index and the Dow Jones In-

dustrial Average for R  sequences in R R×  when m = 5. 
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