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Abstract 
Detecting occluded objects is a crucial exercise in many spheres of application. 
For example in Strafing (attacking ground targets from low flying aircrafts) or 
vehicular tracking, continuous detection of the object even when it is occluded 
by another object is essential. Failing to track the occluded object may result 
in completely losing its location or another object to be mistakenly tracked. 
Both of which will result in disastrous consequences. There are various me-
thods to handle occlusions. In a previous research which was done by the au-
thor, a novel noise filtration mechanism based on the corrector equation of 
the Kalman filter which can be used with greater accuracy to handle lengthy 
occlusions was made. In this presentation, a further analysis of the error of the 
algorithm will be presented. The algorithm when compared with existing al-
gorithms under the same test conditions gives promising results.  
 

Keywords 
Kalman Filter, Computer Vision Based Tracking, Occlusion  

 

1. Introduction 

Occlusion has been a topic of interest in the arena of computer vision for many 
years [1] [2] [3] [4]. Occlusion is defined as a situation in which an object gets 
covered partially or fully by another object. For Computer Vision based tracking 
if the object is partially or fully covered by another object, the tacking algorithm 
can fail. Therefore, it cannot be re-tracked once it reappears after the occlusion 
period. The reason for this failure is that the motion algorithms are developed 
for short displacement tracking of objects. Hence when an object disappears 
from the tracker and reappears, especially after a long duration, the tracking 
algorithm more or less fails with the existing methods. For the purpose of this 
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research, full occlusion is when the entire object is covered for a duration of time 
and partial occlusion is when only part of the object is covered during the entire 
occlusion period.  

It is important to understand the reason to handle an occlusion. When an 
object which is tracked gets occluded, the tracker will no longer be able to locate 
the object. As a result, either the tracking will fail and the object location will be 
lost or a similar kind of object could be mistakenly tracked instead. Both of 
which can have disastrous consequences depending on the application. As an 
example, a UAV (unman aerial vehicle) which tracks a mobile target moving on 
the ground from the sky is considered. The task of the UAV is to engage the 
target. While tracking, if the target goes inside a tunnel, the vision-based 
tracking mechanism will be unable to detect the target. Even if the target appears 
from the other side of the tunnel, depending on the occlusion duration, the UAV 
will be unable to track the object. On the other hand, if there was a similar kind 
of an object at the starting point of occlusion (starting point of the tunnel), that 
object will be mistakenly tracked instead of the original target. If the UAV 
engages, it will be the wrong target. However, if there had been a mechanism to 
track the target during the occlusion period, the correct target would have been 
engaged despite the occlusion. 

There are various algorithms and techniques developed for occlusion 
handling. One famous way which is applied in occlusion handling of pedestrians 
is by tracking different body parts of the pedestrian separately by using separate 
contours [1] [2] [3] [4]. If one of the parts is occluded and cannot be tracked, 
using the other visible trackers, the object will be located. The downfall of this 
method is that it only works for partial occlusions. If the object is fully occluded, 
non of the trackers will be able to locate it. The second, not so famous method is 
by using multiple cameras to handle occlusions [5] [6] [7] [8]. The benefit of 
having multiple cameras is that if an object is occluded for one camera angle, it 
might not be so for another camera angle. By analyzing the images from all the 
cameras, the position of the object could be identified. However, the usage of 
multiple cameras has the ability to even track multiple occlusions and it could 
only be used in one specific environment and the cameras should be focused on 
one particular area. This method will fail in applications such as aerial view 
based occlusion handling (UAV) because the geographical area covered is large 
by a camera in an UAV. Moreover, this algorithm is not suitable for position 
prediction of a moving object which is occluded. This approach will be suitable 
for stereo vision related applications rather than in occlusion handling. 
Importantly, using multiple cameras and analyzing each output is highly a 
computationally expensive approach. Multi agent tracking or multi object 
tracking is another algorithm which is used to handle occlusions when tracking 
large crowds. In this algorithm, each and every object or person will be tracked 
individually. However, the occlusion this overlooks is different from the other 
types of occlusions. When an object in the crowd gets occluded to another object 
in the same crowd, the individual tracking will fail. In this scenario, the 
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algorithm will try to keep a track on both the objects together [9] [10] [11] [12] 
[13]. This algorithm will work well for a moving object and a moving 
foreground object (the object which covers the interested moving object), but for 
a static foreground object, this technique will be inappropriate. As an example, if 
the foreground object is a wall (large static foreground object), the object might 
still be moving behind the wall but the trajectory of the object cannot be tracked 
with this technique. The final and the most suited method to handle an 
occlusion of a moving object is by using a type of a Recursive Bayesian Filter. 
They are used to estimate the future value of a certain property, given the 
current value of it. Therefore, if the position, velocity and acceleration of the 
object is known before occlusion, all three properties could be estimated during 
occlusion. The Kalman filter and the Particle filter are two algorithms which are 
developed based on the Recursive Bayesian filter. These two algorithms are 
strictly used for solving the occlusion problem of moving objects. The specialty 
of the Particle filter is due to the fact that it could be used in both linear and 
non-linear systems [14] [15] [16]. However, the Particle filter has its own 
limitations, such as Particle Depletion. Particle depletion happens when the 
required amount of samples are not enough to identify the measured signal. As a 
result of Particle depletion, an incorrect signal will be identified instead of the 
correct measured signal. Furthermore, if the measured signal has a lot of noise, 
due to lack of filtration of the Particle filter, an incorrect signal will be identified 
by the samples and as a result, the estimation will be incorrect. Therefore, the 
focus was dragged towards the Kalman filter, which is the other method that is 
used to handle occlusions of a moving object. There are two phases of the 
Kalman filter, one which estimates the next state and the other which does the 
actual filtering named as the Correction phase. Methods given in [17] [18] [19] 
uses the Estimation equation to predict the position during occlusion. However, 
these existing methods which are developed for occlusion handling carry an 
error due to lack of noise filtration. In fact, these methods are designed for a 
relatively small occlusion duration. When these methods are used to handle 
large occlusions, the error due to noise accumulates. As a result, the algorithm 
will not be able to re-track the object when it reappears after a large occlusion. 
This is due to the absence of the correction stage. 

In the paper which was previously published by the author [20], it was proved 
that the existing Kalman filter based estimation method’s noise filtration has not 
been adequately addressed and hence error accumulates for lengthy occlusions. 
Moreover, if the object is accelerating, the error is accumulated faster, com- 
pounding the problem. Therefore, a novel filtration mechanism based on the 
corrector equation of the Kalman filter was proposed in [20]. As opposed to the 
existing research which assumes the velocity is constant during the occlusion 
period, the proposed algorithm in [20] relaxes this assumption to handle 
occlusions with accelerations as well. Moreover, the proposed algorithm when 
compared with the existing algorithms under the same test conditions has given 
promising results. 
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In this presentation, an in-depth analysis which explains the reasons to get 
such promising results in [20] will bring forward. Moreover, the algorithm has 
been further tested by conducting experiments to further prove its accuracy. To 
estimate the position of an object during occlusion, an equation was proposed in 
[20]. Section 3 summarizes the work carried out in [20]. In Section 4, the 
filtering phase of the algorithm will be discussed with a detailed description 
given about the selection of the Kalman Gain. In Section 5, the results obtained 
by the proposed algorithm will be summarized. It will also be shown that the 
proposed algorithm is better than the existing methods. Finally, the next section 
concludes this work with few final remarks. 

2. The Proposed Algorithm Framework 

In the discussion done in [20], the existing occlusion handling method was 
named as the “Estimation method”. Firstly this method was investigated for 
errors when used to handle lengthy occlusions and it was found that the estima- 
tion method accumulates a large error. Further more, when acceleration is intro- 
duced to the system the error is magnified compounding the problem. Equation 
(1) shows the estimation when acceleration is introduced to the system and 
when it is used to handle lengthy occlusions: 

( ) ( ) ( ) ( ) ( )2 2
1 1 1 1 1

1 1
2 2t t t t t tz t z t z t n t n m− − − − −

  = ∆ + ∆ + ∆ + ∆ +    
 

          (1) 

In this equation 1tz −  signifies the actual displacement, 1tn −  is the error due 
to acceleration, 1tn −  is the error due to velocity. The process noise of the system 
is given by 1tm − . It was proved that due to these error components the 
estimation method was not suitable to handle a full and lengthy occlusion of an 
accelerating object. 

With the aid of the equations of the correction stage of the Kalman Filter, [20] 
proposes a noise filtering mechanism as a solution for the error accumulation. 
The equation of this mechanism has been given in (2): 

( )ˆ ˆ ˆt t t t tz z k z n z− −= + + −                        (2) 

The above found ˆtz  is a corrected or a filtered value, which is used to 
estimate the next state:  

( ) ( )( )2
1

1ˆ ˆ ˆ
2t t tz z t z t−

+ = ∆ + ∆                       (3) 

By considering Equations (2) and (3) the following equation has been 
constructed. Where, ˆt t t tz z n z−∆ = + − , ˆtz−  is the estimated velocity, ˆtz  is the 
corrected velocity, k  is the Kalman gain:  

( ) ( )( ) [ ] [ ]( )2 2
1

1 1ˆ ˆ ˆ
2 2t t t t tz z t z t k z t z t− − −

+
 = ∆ + ∆ + ∆ ∆ + ∆ ∆ 
 

 

        (4) 

The Block Diagram in Figure 1 summarizes the entire algorithm which was 
presented in [20]. 

To use the algorithm for an application, the Kalman Gain parameter should  
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Figure 1. Block diagram. 
 
be analyzed in depth. Therefore, we will perform a further analysis of “Kalman 
Gain” in section four. 

3. Analysis of the Kalman Gain and the  
Pre-Occlusion Tracking Time 

The Kalman Gain brings a major importance for the correction stage of the 
Kalman filter. Therefore it is important to make an investigation about the 
Kalman Gain, its minimum and maximum values and the effect it makes to the 
proposed equation. An expression will be derived from the first basics in order 
to find the minimum and the maximum values of the Kalman Gain. 

3.1. Maximum and Minimum Values of the Kalman Gain 

The difference between an actual value and an observed value is known as an 
error. For the proposed algorithm two kinds of errors could be identified. Firstly 
the error between the actual displacement and the corrected displacement. 
Secondly, the error between the actual displacement and the estimated displace- 
ment. The error between the actual displacement and the corrected displacement 
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could be given as in Equation (5):  

ˆt t te z z= −                            (5) 

The error could be positive or negative. It could be squared in order to elimi- 
nate the sign of the error. Even though squaring is possible for the proposed 
algorithm because there is only one state variable, in general Kalman filters have 
two or three state variables (which means there will be two or three elements in 
the Kalman gain vector). As a result the error will become a vector. In [21], the 
error vector is multiplied by its transpose and a squared matrix is made. To 
increase the accuracy, this multiplication could be done for a number of times 
and the mean value is taken (this is similar to the expected value). 

Due to all the above reasons we will now look at the expected value of the 
squared error and it will be called tp : 

( )2
t tp E e=                           (6) 

By substituting from Equation (5):  

( )2ˆt t tp E z z = −                          (7) 

Equation (7) could be expanded by substituting from Equation (2):  

( )( )( )2
ˆ ˆt t t t t tp E z z k z n z− − = − + + −  

                 (8) 

The difference (error) between the actual displacement and the estimated 
displacement could be given as Equation (9): 

ˆt t te z z− −= −                           (9) 

By substituting from Equation (9), Equation (8) could be further shortened as 
follows: 

( )( )2

t t t tp E e k e n− − = − +  
                  (10) 

Equation (10) could be re-arranged to the following form: 

( )( )2
1t t tp E e k kn− = − −  

                  (11) 

By only considering the Corelated terms(unrelated terms will not have a 
meaning, they are just bi-products of the multiplication) Equation (11) could be 
re-arranged as follows: 

( ) ( ) ( )
2 22 21t t tb E e k E n k−   = − +    

              (12) 

Equation (12) could be further shortened by substituting ( )2

t tp E e− − =   
 and 

( )2
tR E n =   : 

2 22t t t tb p kp p k Rk− − −= − + +                  (13) 

As briefed earlier, Kalman gain should be selected to minimize the error 
between the actual displacement and the corrected displacement. Undoubtedly 



M. Gnanasekera, H. K. Abeynanda 
 

167 

tb  is a squared error term between the actual value and the corrected value. 
Therefore k  could also be selected in order to minimize tb . The accepted way 
of finding an optimum value (maximum or minimum) is by taking the 
derivative. Thereby the optimum k  could be found by: 

d
2 2 2

d
t

t t
b p kp kR
k

− −= − + +                      (14) 

The derivative becomes zero at the optimum value:  

0 2 2 2t tp kp kR− −= − + +                       (15) 

k  could be give by:  

t

t

pk
p R

−

−=
+

                          (16) 

By expanding tp−  and R  the following equation could be obtained: 

( )
( ) ( )

2

2 2

t

t t

E e
k

E e E n

−

−

 
  =

   +    

                   (17) 

The term ( )2
tE n 

   cannot be negative because this term includes a squared 

term of tn . If the measurement noise is zero, tn  will be zero. Therefore the 

minimum value term ( )2
tE n 

   could get is 0. When the term ( )2
tE n 

   gets 

zero, k  will get the maximum value. The reason is due to the term ( )2

tE e− 
  

 

which is common in both numerator and denominator. Therefore the maximum 

value will depend on the ( )2
tE n 

   term only: 

( )
( )

2

2

t

t

E e
k

E e

−

−

 
  =
 
  

                        (18) 

The maximum value of k  could be given as:  

max 1k =                             (19) 

The minimum value the term ( )2

tE e− 
  

 could get is zero (due to the squared  

terms a negative value could not be obtained). Therefore it is obvious that k  
cannot be a negative value. As a result the minimum value of k  will depend on 
the numerator (the minimum value of the numerator is 0):  

( )2

0

0 t

k
E n

=
 +  

                       (20) 

The minimum value of k  could be given as:  

min 0k =                            (21) 

The value of the Kalman gain will decide whether an update should be done to 
the previously estimated value or to use it for the estimation of the next state 
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parameters. The maxk  value will be applied if there is a zero noise condition and 
for the rest of the cases the mink  value will be used. The reason for this is that 
we will try to eliminate noise completely when updating the estimation. 

Now that the minimum and the maximum Kalman Gain values are known, 
next, the method of selecting the appropriate Kalman Gain value will be 
discussed. 

At a given state we have two displacement values. One is the measured value 
and the other is the displacement value estimated in the previous state. The only 
factor which differs these two values is noise. If not the two values should be the 
same. At first, we divide the measurement value tc  from the estimated value 
ˆtz−  as in Equation (22): 

ˆ
t

t

cs
z−

=                            (22) 

Ideally if tc  and ˆtz−  has no noise, s  should be equal to 1. If the values are 
largely different from each other the s  value will be either smaller or larger 
than 1. In this situation either one of the variables or both are having noise. 
Generally, with more and more samples the estimated value will be getting more 
closer to expected value (a detailed discussion will be done in the next section). 
Therefore, it is the measured value we need to control using the Kalman Gain. 

When s  is larger than a given threshold value, which means there is noise in 
the signal, the mink  will be used to eliminate the measurement. If the value is 
smaller than the threshold value, we could update the estimate using the 
maximum Kalman Gain. 

As in Equation (23), a  is the selected threshold which depends on the en- 
vironment. Any s  value which is lesser than the threshold will be obtaining the 
maximum Kalman Gain. Therefore, a correction for the estimated value could 
be made. For all the other cases the minimum Kalman Gain value will be app- 
lied: 

max

min

if ,
otherwise

k s a a
k

k
 ≤ ∈ℜ= 


                   (23) 

Next, the above found Kalman Gain values will be applied to Equation (4). 
The following equation shows the result when 0k =  is applied: 

( ) ( )( )2
1

1ˆ ˆ ˆ
2t t tz z t z t− − −

+ = ∆ + ∆                     (24) 

According to the above equation the output depends on the estimated value 
only. The correction term is totally ignored. The value 0 for k will be specifically 
taken if only the measurement has a large noise and when a proper correction 
cannot be made. A large measurement noise will make the correction incorrect. 
In this sort of a situation it is always better to ignore the correction stage of the 
Kalman filter and only rely on the estimated value of the estimation equation. 

When using the Kalman filter, an assumption should be made such that all the 
noises are zero mean white Gaussian noises. The term zero Mean Gaussian has a 
specific meaning. There is a higher probability of states that has no noise and a 
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very low probability which has the highest noise. 
The maximum value of k  ( 1k = ) could be only used if the state’s measure- 

ment noise is zero. If there is no measurement noise a better correction could be 
made at the correction stage. This is the best time to make a correction and this 
corrected value will be much more closer to the actual value in comparison to 
the state’s estimated value. In the following set of equations the maximum value 
of k  is applied ( 1k = ): 

( ) ( )( ) [ ] [ ]( )2 2
1

1 1ˆ ˆ ˆ
2 2t t t t tz z t z t z t z t− − −

+
 = ∆ + ∆ + ∆ ∆ + ∆ ∆ 
 

 

          (25) 

By expanding the terms tz∆  and tz∆  Equation (25) could be remade as 
follows: 

( ) ( )( ) ( )2 2
1

1 1ˆ ˆ ˆ ˆ ˆ
2 2t t t t t t t t tz z t z t z n z t z n z t− − − − −

+
    = ∆ + ∆ + + − ∆ + + − ∆     

   
 

    (26) 

Due to zero noise at the state, tn  and tn  terms could be considered as zero: 

( ) ( )( ) ( )2 2
1

1 1ˆ ˆ ˆ ˆ ˆ
2 2t t t t t t tz z t z t z z t z z t− − − − −

+
    = ∆ + ∆ + − ∆ + − ∆     

   
 

       (27) 

The final result will be as follows: 

( )2
1

1ˆ
2t t tz tz z t−

+ = ∆ + ∆ 

                       (28) 

When there is no measurement noise the displacement will be equal to the 
actual value according to (28). This result could be obtained quite often because 
there will be more occasions where there will be zero noise (due to the Gaussian 
assumption of the noise distribution). 

In general before applying a Kalman filter the behavior of the process noise 
and the measurement noise should be assumed. Since Gaussian noises with a 
mean value of zero are allowed in Kalman filters the variance of the Gaussian 
model should be decided. 

It is obvious that there is control over the measurement noise through the 
thresholding technique in the filtration process. Then, the process noise and the 
external parameters which make changes to its variance will be discussed in the 
next section. 

3.2. Pre-Occlusion Length and the Process Noise 

The process noise is a continuous random variable and we assumed it to have a 
zero mean Gaussian distribution. As per this reason, in the algorithm proposed 
in [20] the expected value of the process noise has been taken. According to the 
Classical Central Limit theorem, the expected value of a set of independent 
random variables tend towards a normal distribution. As the number of samples 
increases the variance decreases and the distribution will gain a zero mean value. 
The theorem further states that the variance of t  number of samples would  

have a value of 
2

t
σ  (σ  is the population variance). Moreover, this result  
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could be further proved by the Law of large numbers, which says the average 
number of trials should be close to the expected value. In our situation the 
expected value is the mean value which is zero. 

In summary, when the traveling distance prior to the occlusion increases more 
and more samples could be obtained for the algorithm. In other words this 
means that there is a direct proportion between the number of samples and the  

distance traveled before the occlusion. Finally, from the expression 
2

t
σ  we 

could get the variance when the distance before the occlusion increases. 

4. Results and Discussion 

In [20], both the algorithms, the proposed method and the estimation method 
was applied to an object moved in constant velocity and got occluded. Similarly, 
both the algorithms were applied to an object which moved in constant 
acceleration and got occluded. In both the experiments it was observed that the 
proposed algorithm got a low margin of error compared to the estimation 
method. Firstly, a proper analysis of the obtained result will be done. Secondly 
given the starting point and acceleration, both of these algorithms will be tested 
by using different sizes of foreground objects. In Section 4, it was theoretically 
proved that when the pre-occlusion length increases the error minimizes. 
Therefore finally the length of the pre-occlusion will be varied and the proposed 
algorithm will be applied to observe the performance. 

The results are categorized in three sections, namely, motion test, performan- 
ce with different sizes of foreground objects and performance in different 
starting points. 

4.1. Motion Test 

The Estimation equation was applied to an object which moves in constant 
velocity during occlusion. However, it is not practically possible to model an 
object which moves in constant velocity. There will be a resultant force applied 
on the object. Hence, the occlusion time was made very small for an object 
which moved in constant acceleration. 

By considering Equation (1), in order to have a very minor occlusion, the time 
of occlusion will be given as 0 1t< ∆ 

. When the term t∆  gets squared, it  

will be more closer to zero. As a result the entire term ( )21
2

t∆  will be closer to 

zero ( ( )21 0
2

t∆ ≈ ): 

( ) ( ) ( ) ( ) ( )2 2
1 1 1 1 1

1 10 0
2 2t t t t t tz t z z n t n m− − − − −

  ≈ ∆ + + + ∆ +    
 

           (29) 

( ) ( )1 1 1t t t tz t z t n m− − −≈ ∆ + ∆ +  

                    (30) 

There will not be any filtration in this equation and as a result the n  and m  
noise terms will be remaining. Moreover when the acceleration increases the 
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error starts increasing. According to the Figure 2 significant increase in error 
could be observed. Although the occlusion is made small and the acceleration 
term is eliminated from the equation, the error starts increasing for high 
accelerations. 

Now the same experiment will be conducted for the proposed equation 
(Equation (3)) and then the results will be observed. The same assumptions will 
be made as in the earlier case( 0 1t< ∆ 

):  

[ ]{ } ( ) [ ]{ }2
1

1ˆ ˆ ˆ0
2t t t t tz t z k z z k z− − −

+ = ∆ + ∆ + + ∆ 

               (31) 

[ ]{ }1ˆ ˆt t tz t z k z− −
+ = ∆ + ∆

                       (32) 

A very low error value has been observed and during very small accelerations 
the target point is very close to the actual point. Further reducing the time 
period will cause ( 0 1t< ∆ 

) 0tz ≈ . Which means there is no or there is very 
small displacement. When this happens the occlusion will be a partial occlusion 
and there won’t be a difference between the states. 

Next the Estimation Equation (1) was applied to an object which was con- 
stantly accelerating during the occlusion period and the observed results were as 
in Figure 3. A very large error has been observed in the above graph and it keeps 
increasing along with the increase of the acceleration. The 1tm −  and 1tn −  noise 
components are visible in the equation due to lack of filtration. Similarly the 
experiment was conducted to the proposed algorithm under the same conditions 
and results are given in Figure 3. According to the graph the error has reduced 
due to the filtration. 

4.2. Performance Analysis When Tested with Different  
Sizes of Foreground Objects  

The size of the foreground object which forms the occlusion is changed and the 
proposed algorithm and Estimation method (1) will be applied. 

As in the Figure 4 the size of the foreground object will be varied and the 
distance to the object’s starting point will be fixed. In addition the object will  
 

 
Figure 2. Object moving in constant velocity. 
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Figure 3. Object moving in constant acceleration. 
 

 
Figure 4. Different sizes of foreground objects. 
 
travel in one common acceleration. The results when the proposed algorithm 
and Estimation method were experimented could be given as in Figure 5. 

Equation (1) has the error term ( ) ( )2
1 1 1

1
2 t t tt n t n m− − −∆ + ∆ +   which will accu-  

mulate during the occlusion. This is the main reason for the Estimation method 
to up-serge the error when the foreground length increases as in the graph 
labeled as “Estimation method”. Previously it was understood for the proposed 
algorithm there is no 100% filtration and there will be some noise left. Obviously 
the noise will cause error and when the size of the foreground object increases, 
the error will be accumulated. However, the proposed algorithm has a low error 
in comparison. 

4.3. Performance Analysis When Tested with Different  
Starting Points 

The pre-occlusion time period or in other words the object will be kept in 
different positions as in the below diagram and the results will be explained in 
detail. For this test only the proposed algorithm will be used because the 
Estimation method is not a Markovian type model and has no pre-occlusion 
history (Figure 6). 

The results of the performed experiment could be given as in Figure 7. 
According to the figure when the pre-occlusion length increases the error de-  
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Figure 5. Error vs. length of the foreground objects. 

 

 
Figure 6. Various starting points. 

 

 
Figure 7. Error vs. various starting points. 
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creases significantly. When the length increases the number of states at the pre- 
occlusion period will increase and when the states increases more filtering could 
be done. When there is more filtration more noise cancellation could be done. 
This is the main reason for the error to reduce when the length increases. 

4.4. Effect of the Error 

The proposed framework estimates the position of an object (displacement) 
which is occluded. If one point of the object is tracked prior to the occlusion, the 
position of the point after occlusion should be same as the position before 
occlusion. For an example in a face tracking system if the interested point is the 
nose as in Figure 8(b) during pre-occlusion, the position of the tracker during 
the post occlusion should be pointing on top of the nose as well. If the tracker 
locates somewhere else other than the nose obviously there should be an error 
involved. Figure 8(a) shows the different positions where the location (position) 
could be miss tracked during the post occlusion. The red dot locates the correct 
position of the nose (Figure 8). The yellow dots around are the possibilities that 
the miss tracked locations might occur. 

The error is in the form of displacement and the maximum error could be 
drawn as in Figure 9. It will be a circle around the actual position and the 
maximum error will be the radius of the circle. If the point falls in front of the 
line as given in the Figure 9 the error could be taken as a positive value (+) and 
if it falls before the line the error could be taken as a negative (−) value. 
 

   
(a)                                       (b) 

Figure 8. Miss-tracked points due to error. (a) Miss-tracked position due to error; (b) 
Original position of the tracker point. 
 

 
Figure 9. Boundary and the sign of the error. 
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Due to this reason the error will have a direction and the error accumulation 
will occur if all the errors happen in one direction. 

5. Conclusions 

The work undertaken is an extension of the method proposed in [20] by the 
author. It has been proved that the maximum and the minimum values of the 
Kalman gain are 1 and 0. In a heavily noisy condition, the measurement will be 
incorrect, therefore the Kalman gain value was made zero and that particular 
measurement will be eliminated. The value 1 for the Kalman gain was assigned 
when the measurement had no noise. Since there were many states which had 
zero noise, there were many occasions where the estimated value could be 
corrected and taken closer to the actual value. The entire estimation procedure 
during occlusion will depend on the last measurement it takes during the state 
just before occlusion. Therefore the filtration mechanism will be planted during 
the pre-occlusion period in order to minimize the error at the last measurement. 

The main advantage of this algorithm is that this could be used to handle 
occlusions which happens for a long time (lengthy occlusion). Absence of filtra- 
tion will cause an error, which accumulates stage by stage and when the length 
increases, the output becomes largely erroneous. The effect of the error was 
explained with aid of a practical face tracking example. Later on, it was proved 
that the error could be further reduced by increasing the length of the pre- 
occlusion period. The reason is that when the pre-occlusion length increases, 
more filtration could be performed. 

Significant improvement over the Estimation method’s results were obtained 
by the proposed algorithm when tested under common conditions. 
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Nomenclature 

tz : Displacement of the object at state t  

tz : Actual displacement at state t 

tn : Measurement noise at state t 
ˆtz : Corrected displacement at state t 
ˆtz− : Estimated displacement at state t 
k : Kalman gain 

te : Error between the actual displacement and the measured displacement at 
state t 

te− : Error between the actual displacement and the estimated displacement at 
state t 

tm : Process noise at state t 
t∆ : The time difference between two states t 

tC : The measured value at state t 
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