

ISSN Online: 2160-6927 ISSN Print: 2160-6919

Crystal Growth of Cu₆(Ge,Si)₆O₁₈·6H₂O and Assignment of UV-VIS Spectra in Comparison to Dehydrated Dioptase and Selected Cu(II) Oxo-Compounds Including Cuprates

Hans Hermann Otto

Materialwissenschaftliche Kristallographie, Clausthal University of Technology, Clausthal-Zellerfeld, Germany Email: hhermann.otto@web.de

How to cite this paper: Otto, H.H. (2017) Crystal Growth of Cu₆(Ge,Si)₆O₁₈•GH₂O and Assignment of UV-VIS Spectra in Comparison to Dehydrated Dioptase and Selected Cu(II) Oxo-Compounds Including Cuprates. World Journal of Condensed Matter Physics, 7, 57-79.

https://doi.org/10.4236/wjcmp.2017.73006

Received: July 1, 2017 Accepted: August 18, 2017 Published: August 21, 2017

Copyright © 2017 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

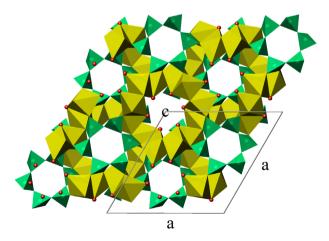
http://creativecommons.org/licenses/by/4.0/

Abstract

Low-dimensional quantum spin systems with the Cu²⁺ central ion are still in the focus of experimental and theoretical research. Here is reported on growth of mm-sized single-crystals of the low-dimensional S = 1/2 spin compound Cu₆(Ge,Si)₆O₁₈·6H₂O by a diffusion technique in aqueous solution. A route to form Si-rich crystals down to possible dioptase, the pure silicate, is discussed. Motivated by previously reported incorrect assignments of UV-VIS spectra, the assignment of dd excitations from such spectra of the hexahydrate and the fully dehydrated compound is proposed in comparison to dioptase and selected Cu(II) oxo-compounds using bond strength considerations. Non-doped cuprates as layer compounds show higher excitation energies than the title compound. However, when the antiferromagnetic interaction energy as $J_z \cdot \ln(2)$ is taken into account for cuprates, a single linear relationship between the D_{q_e} excitation energy and equatorial Cu(II)-O bond strength is confirmed for all compounds. A linear representation is also confirmed between ${}^{2}A_{1g}$ energies and a function of axial and equatorial Cu-O bond distances if auxiliary axial bonds are used for four-coordinated compounds. The quotient Dt/Ds of experimental orbital energies deviating from the general trend to smaller values indicates the existence of H₂O respectively Cl⁻ axial ligands in comparison to oxo-ligands, whereas larger Dt/Dqe values indicate missing axial bonds. The quotient of the excitation energy ${}^{2}A_{1g}$ by $2\cdot{}^{2}E_{g}$ ${}^{2}B_{2g}$ allows checking for correctness of the assignment and to distinguish between axial oxo-ligands and others like H₂O or Cl⁻.

Keywords

Dioptase, Ge-Dioptase, Copper(II) Compounds, Cuprates, Crystal Growth,


UV-VIS Spectroscopy, *EPR*, Color, d-d Excitations, Bond Strength, Super-Exchange Interaction

1. Introduction

Low-dimensional quantum spin systems are of considerable theoretical and experimental interests together with some applications to which they may lead. In spite of the ability of the d^9 transition metal ion Cu^{2+} to form, apart from 3D networks, chains, ladders and small clusters, copper compounds are among the most interesting phases. With equal electronegativity compared to silicon, but in contrast to its tetrahedral networks, Cu(II) mainly forms oxo-compounds with chains and networks of connected "octahedra".

For instance, copper polygermanate, $CuGeO_3$, has a rather simple crystal structure of "einer" single chains of GeO_4 tetrahedra alongside S = 1/2 spin single chains of edge-sharing CuO_{4+2} octahedra [1] [2]. It was the unique inorganic compound showing the *Spin-Peierls*-transition [3] [4]. As a quasi-one-dimensional system, it has been the subject of an intensive experimental and theoretical work for the past years. It was a great surprise, when *Otto and Meibohm* [5] [6] succeeded in the synthesis of pure copper polysilicate, $CuSiO_3$, by thermal decomposition of the mineral dioptase, $Cu_6Si_6O_{18}\cdot 6H_2O$. $CuSiO_3$ represents the example of a fully stretched silicate chain structure. It is isotypic to $CuGeO_3$, but does not show the spin-Peierls transition, instead an antiferromagnetic ordering below $T_N = 7.9$ K [7] [8].

The rhombohedral title compound Cu₆(Ge,Si)₆O₁₈·6H₂O represents a hexacyclo-germanate (silicate) that contains copper-oxygen spiral chains along the *c*-axis, which are connected (intra-chain) by edge-sharing dimers (**Figure 1**).

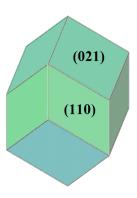
Figure 1. Crystal structure of dioptase projected down [001]. A framework of copper oxide octahedra (yellow) screws around the *c*-axis with non-bonding axial water ligands (red) pointing towards empty channels. Six-membered silicate single rings are depicted in green.

This structure is interesting because it allows for a quantum phase transition between an anti-ferromagnetically ordered state and a quantum spin liquid [9]. Large quantum fluctuations in green dioptase have been described [10]. Recently, also the germanate analogue, Cu₆Ge₆O₁₈·6H₂O [11], has been the object of detailed magnetic and structural investigations [12] [13].

If near the empty structural channels located water molecules are removed, a screwed framework of edge-sharing disphenoids rather than flat CuO_4 plaquettes remains in the dehydrated compound.

As part of a systematic study of transition metal germanates, silicates and arsenates we have undertaken syntheses of rare copper minerals and new copper compounds in view of its power as low dimensional S = 1/2 spin compounds allowing for interesting physical and physicochemical properties. First, the synthesis serves not to waste rare mineral specimens for research. There is also the possibility to study an improvement in the crystal growth by replacement of copper by other elements, apart from the chance of doping with electronically or magnetically interesting ones. For example, the replacement of copper by manganese was observed in natural samples of dioptase by *EPR* measurements [14] [15].

Because the assignment of the dd excitations derived from the UV-VIS spectra of copper-bearing compounds are often found to be incorrect, this work contributed some simple tools that could lead to the right assignment. It is not the intent of this paper to review UV-VIS spectroscopy of Cu^{2+} compounds in general.


2. Experimental

2.1. Crystal Growth and Dehydration of the Samples

The method described below was used by the author many years earlier for the synthesis of rare minerals, for instance, the synthesis of Pb₃Ge(OH)₆(SO₄)₂·3H₂O, the piezoelectric *Tsumeb* mineral fleischerite [16]. For the synthesis of the title compound freshly precipitated gels of GeO₂ and Cu(OH)₂ were separately filled in 200 ml beaker glasses and thoroughly filled up with distilled water. Then a U-shaped glass pipe of 6 mm inner diameter, well annealed before use to reduce crystal nucleation frequency, was filled free of air bubbles with distilled water. This pipe is then used to connect the distinct solutions in the beakers. Finally, the water surface in the beakers is covered with a film of liquid paraffin to prevent water evaporation and entry of CO₂, respectively.

The desired slow diffusion of the distinct solutions into one another leads to the formation of $Cu_6(Ge,Si)_6O_{18}\cdot 6H_2O$ seeds that grow up to 1 mm size of light blue crystals within 8 weeks. Interestingly, most individual crystals form double-crystals. The symmetry situation of this finding must be investigated further. The crystals of stocky prismatic, nearly spherical habit developed {110} and {021} forms (**Figure 2**).

One can extrapolate the time scale to get a crystal of about 2 mm diameter and calculate about 1 year of growing time. Trying to exchange Ge by Si by this method

Figure 2. The stocky prismatic habit of the as-grown $Cu_6(Ge,Si)_6O_{18}\cdot 6H_2O$ crystals, showing a combination of the $\{110\}$ prism and the $\{021\}$ rhombohedron.

seems to be less efficient, only a slightly greenish sheen shows that a small exchange occurred.

The other method of co-precipitation of GeO_2 , SiO_2 and $Cu(OH)_2$ gel and longer time vigorous stirring resulted in a vivid green colored polycrystalline material of about 12 at-% Si determined from lattice parameter changes [14] [17]. Also, the substitution of some B^{3+} for Ge^{4+} is possible, leading to a beautiful green color [17]. Stirring a longer period and in addition changing the pH to more acidic milieu gives at least about 15 at-% Si (a = 14.640 Å, c = 7.806 Å, this work). The effect is based on the different solubility of the Ge-compound in comparison to dioptase. $Cu_6Ge_6O_{18}\cdot 6H_2O$ is easily decomposed by a dilute acetic acid, but dioptase does not dissolve. Recently we observed a deepening of color to dioptase green, when the Si-rich solution was exposed to ultrasonic waves, in this way superseding vigorous stirring. The energy that is released when voids implodes (super-cavitation) may be able to assemble more easily and faster the six-membered silicate rings within the cuprate framework of dioptase.

A proposed approach for a possible synthesis of pure polycrystalline dioptase results as follows. The first step will be the spontaneous formation of pure germanate and exchange of maximum Ge by Si through stirring or sonochemical treatment. Then *pH*, as well as temperature, is altered to increase the solubility of the still Ge-rich compound combined with a simultaneous offer of more Si to form a dioptase layer. A new core of silico-germanate can be grown epitaxially and subsequently transformed to dioptase. Repetition of this process may finally form pure dioptase in mm-sized crystals. An automated process would make sense. Nature has similar tools in the quiver such as rhythmic property changes (concentration, pH, temperature) of metal bearing ascending or descending solutions, apart from a lot of time.

A single-phase crystalline powder of synthetic Ge-dioptase for the *UV-VIS* spectroscopic investigation is best obtained from an aqueous solution of pH 5.5 at room temperature, formed by mixing and stirring equal amounts of 0.02 M cupric acetate with freshly produced 0.02 M GeO₂ solution. The initially formed gel settles as fully crystalline precipitate after an induction period of two days

[10].

Complete dehydration of synthetic Ge-dioptase was performed by annealing of the polycrystalline sample up to 920 K for 6 h, followed by cooling down to room temperature with a moderate cooling rate of 20 K/h. The chosen annealing temperature lies about 53 K below the temperature of decomposition to the orthorhombic spin-*Peierls* phase CuGeO₃ [10].

A natural dioptase samples from the locality *Altyn Tyube*, Kazakhstan, was used as pure silicate sample. Its complete dehydration to "black" dioptase occurs at 660 K and should be controlled by *X*-ray powder diffraction analysis because decomposition into CuO (tenorite) and SiO₂ (partly quartz and cristobalite) starts only a few degrees higher at 673 K.

2.2. UV-VIS Spectroscopic Investigation

First results of *UV-VIS* spectroscopy on Cu₆(Ge,Si)₆O₁₈·6H₂O are given in the doctoral theses of my coworkers *Brandt* [17] and *Meibohm* [14], respectively, whereas dioptase itself has been investigated earlier by different researchers [18] [19] [20] [21].

Brandt [17] reported a color change from turquoise-green to blue on dehydration of dioptase-type copper germanate. In addition, the dehydrated compound showed thermochromic behavior on heating up to 500°C with a reversible color change to vivid green similar to that of annealed CuGeO₃. The color persists when Cu₆Ge₆O₁₈ is rapidly cooled down to room temperature. A possible interpretation for this effect is according to [17] the low relaxation rate of the four oxygen ligands around copper. Remember that the equatorial coordination in dioptase is not planar but disphenoidic, and a change to a stiffer, more tetrahedral one may occur with raising the temperature.

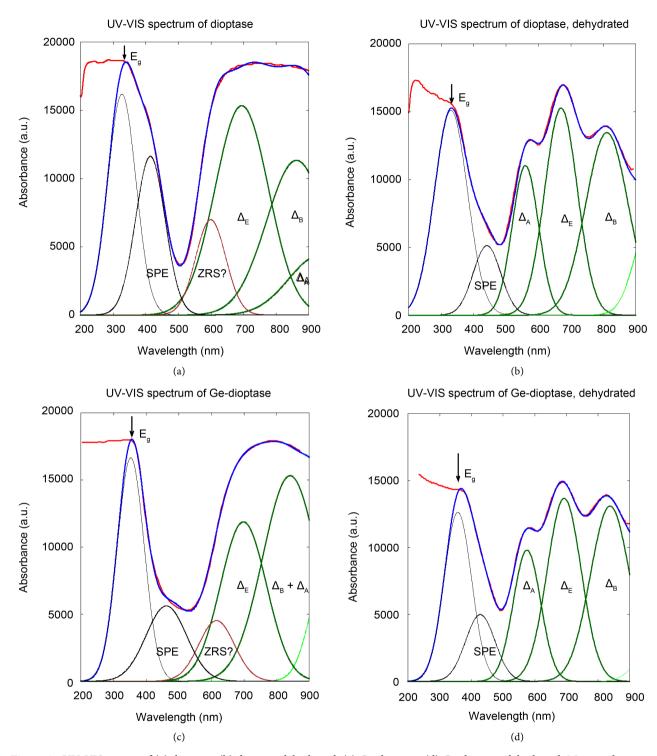
A reinvestigation of the fully hydrated and dehydrated compounds is primarily undertaken in order to deconvolute and understand the broad *UV-VIS* spectrum of the synthetic color pigment litidionite, KNaCuSi₄O₁₀ [22] [23], which shows similarity to that of dioptase.

The room temperature *UV-VIS* spectra of the samples were taken with the double-beam light scanning *UV-*2501*PC CE* spectrometer from *Shimazu* with selectable light sources (50W halogen lamp and D2 lamp). The powder sample was coated on a polished aluminum disk and measured in the reflection modus against a BaSO₄ standard in the wavelength range between 190 and 900 nm with a spectral bandwidth of 0.1 nm using a 50 nm/min scan and choosing 0.5 nm intervals. From the less structured absorbance profile, recalculated from the measured reflectance, the energy bands were fitted with *Gaussian* profile functions. The better resolved spectra of the dehydrated compounds were fitted first and then the results used as start parameters for the broad spectra of the hydrated compounds.

2.3. EPR Data

Electron paramagnetic resonance spectroscopy (EPR) provides information

about the electronic structure of transition metal ion complexes. For $d^{1,9}$ systems such as Cu^{2+} centered complexes with no fine structure the principal values of the g-tensor of the spin Hamiltonian $H = \beta_e B \cdot g \cdot S$, reflecting the symmetry of the ligand field, can be derived from the EPR spectrum, where B is the external magnetic field, S is the spin vector, and $\beta_e = g_e \cdot \mu_B$ ($Land\acute{e}$ g-factor for the free electron, $g_e = 2.0023$, Bohr magneton μ_B). In this contribution g values for dioptase, $Cu_6Si_6O_{18} \cdot 6H_2O$, determined by Reddy et al. [19], and data measured by Meibohm [14] for synthetic $Cu_6Ge_6O_{18} \cdot 6H_2O$ were used as expressed in its principal axes system.


3. Results and Discussion

The *Gaussian* peak analysis of the *UV-VIS* spectra was performed with the aid of own *Turbo-Basic* programs using recast software modules once developed for X-ray powder profile analysis, supplemented by a program to provide an illustration of single *Gaussian* peaks besides the cumulative curve. Fortunately, the spectra of the dehydrated compounds are well-resolved and their reliably fitted profile data could serve as input for the less-resolved spectra of the as-grown respectively hydrated natural compounds, thereby applying variable constraints to parameters (mainly the band width) during successive refinement cycles. Results of a *Gaussian* deconvolution of the *UV-VIS* spectra for the hydrated and dehydrated compounds, respectively, are given in **Table 1** and depicted in **Figures 3(a)-(d)**. λ (nm) and Γ (nm) represent wavelength and the full width of the excitation peaks, and the wavenumber E(cm⁻¹) denotes the excitation energy. The

Table 1. Results of the *Gaussian* profile deconvolution of the *UV-VIS* spectra of the dioptase family.

	Cu ₆ S	dioptase)			Cu ₆ Ge	5O ₁₈ ·6H ₂ O (C	Ge-dioptase)		
<i>P</i>	λ(nm)	Γ(nm)	<i>E</i> (cm ⁻¹)	Assignment	P	λ(nm)	Γ(nm)	<i>E</i> (cm ⁻¹)	Assignment
329	935 ± 37	208	10,700	Δ_A	1000	842 ± 30	100	11,884	Λ . Λ
815	869 ± 12	208	11,507	Δ_B	1000		198		$\Delta_B + \Delta_A$
1000	695 ± 7	194	14,400	Δ_E	645	698 ± 24	166	14,321	Δ_E
256	600	109	16,670	ZRS?	185	616	129	16,230	ZRS?
421	414	108	24,160	SPE?	271	462	147	21,650	SPE?
(554)	326	102	30,660	$E_{\!\scriptscriptstyle \mathcal{G}}$	(531)	353	97	28,350	E_g
	Cu ₆ Si ₆ C	O ₁₈ (dioptase	dehydrated)			Cu ₆ Ge ₆ O ₁	8 (Ge-diopta	se dehydrated)	
P	λ (nm)	Γ(nm)	$E(cm^{-1})$	Assignment	P	λ (nm)	Γ(nm)	<i>E</i> (cm ⁻¹)	Assignment
1000	811 ± 14	158	12,330	Δ_B	1000	827 ± 14	155	12,100	Δ_B
866	668 ± 12	120	14,960	Δ_E	843	679 ± 12	127	14,723	Δ_E
492	558 ± 11	96	17,930	Δ_A	450	565 ± 12	97	17,700	Δ_A
235	441	100	22,680	SPE?	355	437	108	22,880	SPE?
(869)	330	120	30,300	E_{g}	(630)	357	102	28,000	$E_{\!m{ ilde{g}}}$

P integrated band intensity (arbitrary units), I(nm) full band width at half f, $E(cm^{-1})$ band energy, SPE assumed simultaneous pair excitation, ZRS less intense band observed only in the hydrated compounds around 2 eV could correspond to a Zhang-Rice singlet excitation, E_g large energy gap.

Figure 3. *UV-VIS* spectra of (a) dioptase; (b) dioptase dehydrated; (c) Ge-dioptase; (d) Ge-dioptase dehydrated. Measured spectra red, calculated spectra blue. A mineral sample of dioptase from *Altyn Tyube*, Kazakhstan was used besides synthetic Ge-dioptase.

remarkable integrated band intensity P (given in arbitrary units) is the consequence of non-zero dd transition probabilities due to the absence of symmetry elements on the Cu position with C_1 site symmetry and the disphenoidic (stocky tetrahedral) oxygen environment with 4 distinct equatorial bond lengths indi-

cating Cu_{3d} - O_{2p} hybridization. The relative width Γ/λ of the bands of the dehydrated compounds is about 18%, whereas that of the hydrated ones suffer additional broadening to about 23% caused by a vibronic contribution of the water molecule rings and due to assumed peak overlapping according to the below presented assignment.

The steep increase of absorption at the badly resolved high energy limit of the *UV-VIS* spectra has been simulated by a Gaussian curve, too, and may be interpreted as absorption edge, the large gap between valence and conduction band of isolator compounds. The gap is determined around 3.80 eV for dioptase and shifts to 3.76 eV for Ge-dioptase, respectively. It is slightly lower for the dehydrated compounds, giving 3.52 and 3.47 eV, respectively (**Table 1**). For comparison, *Rudko* [24] observed an absorption edge near 3.5 eV for the charge transfer insulator CuGeO₃. The absorption structures at high energy just before the energy gap may be attributed to simultaneous ligand field transitions, involving both metal centers of the dimer at twice the monomer transition energy (*SPE*), because their oscillator strengths are too weak for charge transfer (*CT*) transitions. The position of a less intense absorption band observed only for the hydrated compounds around 2 eV (16,670 cm⁻¹, 16,230 cm⁻¹) would correspond to *Zhang-Rice* singlet excitations (*ZRS*), for instance, measured at this energy on CuO (tenorite) [25] and CuGeO₃, respectively [26].

The color of Cu^{2+} compounds with their *Jahn-Teller* distorted coordination polyhedra [27] is the conspicuously recognized property of this transition metal ion and is attributed to electronic excitations between its d-orbitals. The coordination polyhedron of copper in the d^9 state with the unpaired electron in the $x^2 - y^2$ orbital is an elongated octahedron leading to splitting of formerly degenerated d-states. A recently found impressive example for a *Jahn-Teller* elongated octahedron is the new prototypic crystal structure of tetragonal CuO with a c > a rock salt structure [28].

The transition energies Δ_n (cm⁻¹), derived from broad Gaussian-shaped absorption bands of UV-VIS spectra, are the energy differences between the ${}^2B_{1g}\left(x^2-y^2\right)$ ground state and the ${}^2B_{2g}\left(xy\right)$, ${}^2A_{1g}\left(z^2\right)$ and ${}^2E_g\left(xz,yz\right)$ ex- cited states and can be connected with crystal field splitting parameters representing orbital energies. Bearing in mind the Cu^{2+} site symmetry of D_{4h} or lower, we are faced with an equatorial Dq_e splitting parameter and two radial Ds and Dt ones (Gerloch and Slade, [29]). The crystal field theory (CFT) allows for the following relations:

$$\Delta_B = B_{2g}(xy) - B_{1g}(x^2 - y^2) = 10Dq_e$$
 (1)

$$\Delta_E = E_g(xz, yz) - B_{1g}(x^2 - y^2) = 3Ds + 10Dq_e - 5Dt$$
 (2)

$$\Delta_A = A_{1g}(z^2) - B_{1g}(x^2 - y^2) = 4Ds + 5Dt \tag{3}$$

Conversely, the D parameters can be recalculated as

$$Dq_e = \Delta_B/10 \tag{4}$$

$$Ds = \left(\Delta_A + \Delta_E - \Delta_B\right) / 7 \tag{5}$$

$$Dt = (3\Delta_A + 4(\Delta_B - \Delta_E))/35$$
 (6)

Whereas Δ_E is always moderately larger than Δ_B , Δ_A ranges from about 8500 cm⁻¹ ($<\Delta_B$) for shortest axial bonds to at least 21,500 cm⁻¹ ($>\Delta_E$) for axially non-existent bonds (squared-planar coordination).

A more quantitative description of ligand field parameters using effective charges and bond lengths results in the following relations [29]:

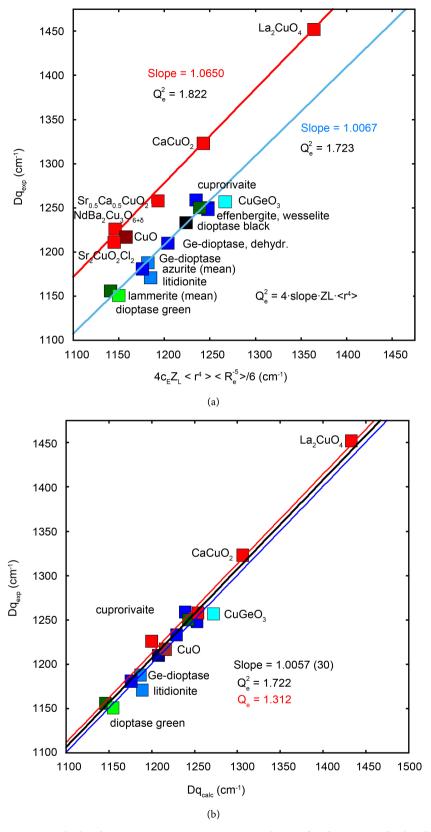
$$Dq_e = \eta_e \cdot Z_L \cdot e^2 \left\langle r^4 \right\rangle / \left(6 \cdot R_e^5 \right), \quad Dq_a = \eta_a \cdot Z_L \cdot e^2 \left\langle r^4 \right\rangle / \left(6 \cdot R_a^5 \right) \tag{7}$$

$$Cp_{e} = 2\eta_{s} \cdot Z_{L} \cdot e^{2} \left\langle r^{2} \right\rangle / \left(7 \cdot R_{e}^{3}\right), \quad Cp_{a} = 2\eta_{s} \cdot Z_{L} \cdot e^{2} \left\langle r^{2} \right\rangle / \left(7 \cdot R_{a}^{3}\right)$$
(8)

$$Ds = Cp_e - Cp_a \tag{9}$$

$$Dt = 4/7 \cdot \eta_t \left(Dq_e - \eta_t \cdot Dq_a \right) \tag{10}$$

where $\eta \cdot Z_L$ represents an effective ligand charge, R_e and R_a are equatorial and axial bond lengths in Å, and $\langle r^4 \rangle = 0.214 \text{ Å}^4$ is the mean value of the fourth power of a 3d orbital radial distance from the nucleus, respectively $\langle r^2 \rangle = 0.294 \text{ Å}^2$ the mean of the second power of the radial distance. For $\langle r^n \rangle$ the values calculated by *Haverkort* within the *Hartree-Foc*k approximation are used [30]. Because $\langle r^4 \rangle$ is a measure proportional to the Cu(II) effective nuclear charge, one should multiply this value by a factor of 4 to give a realistic value of about 0.85 for the *Scott* charge, which would represent 42.5% ionicity of the Cu-O bond.


Quoting Gerloch and Slade [29] ones more, in the crystal-field theory with its point-charge formalism charges as well as bond lengths have to be considered as effective parameters that are not independent of each other. Therefore, cationic and ligand charges should be combined to common adaptable factors $Q_e^2 = \eta_e \cdot Z_L \langle r^4 \rangle$ respectively $Q_s^2 = \eta_s \cdot Z_L \langle r^2 \rangle$.

For comparison of calculated band energies with experimental ones given in cm⁻¹ an energy conversion factor $c_E = e^2/(4\pi\varepsilon_o \cdot 1(\text{Å})) = 1.1608 \times 10^5$ is applied.

Lebernegg et al. [31] found no general theoretical justification for R^{-5} dependence of ligand-field splitting. Nevertheless, one can use the inverse fifth power relationship $Dq_e \propto R^{-5}$ in order to calculate a linear regression curve of Dq_e (or Δ_B) values against the mean of the four equatorial copper-oxygen distances $R_e(\mathring{A})$ according to Equation (7) for selected compounds with a reduced connectedness with respect to equatorial sharing, at the beginning excluding sheet structures as exemplified by cuprates.

The plot is depicted in **Figure 4** and extrapolates well through the origin with $Q_e^2 = 1.723$, giving effective charge numbers of $Q_e = \pm 1.313$ assumed to be evenly distributed over Cu²⁺ and ligands. The calculated Dq_e values deviate less than 1.6% from the experimental ones.

We chose compounds of the *Egyptian Blue* family (cuprorivaite, wesselite, effenbergite,) with isolated D_{4h} plaquettes, the dehydrated dioptase compounds with equatorially edge-shared dimers, further connected via water oxygen to

Figure 4. Calculated Dq energies versus experimental ones for dioptase and related compounds. In the right plot, an additional magnetic contribution of Dq_{calc} for cuprates was considered.

corner-shared spiral chains in the fully hydrated compounds, litidionite as characterized by pyramid-edge-shared dimers (cis-arrangement), in contrast to lammerite with infinite chains of such units and with two distinct Cu sites, further azurite with "octahedral" chains (two distinct sites), and finally conichalcite and CuGeO₃ showing infinite single chains with equatorially edge-shared "octahedra". One may learn more about the structural hierarchy of special copper oxy-salt minerals from *Eby and Hawthorne* [32]. Selected crystal data as well as *UV-VIS* data were summarized in the **Table 2** and **Table 3** with references.

Table 2. Coordination numbers CN, bond length and bond valence sums s for selected Cu(II) compounds. s_e equatorial sum, s_a axial sum, Σs overall sum (particularly striking values in red).

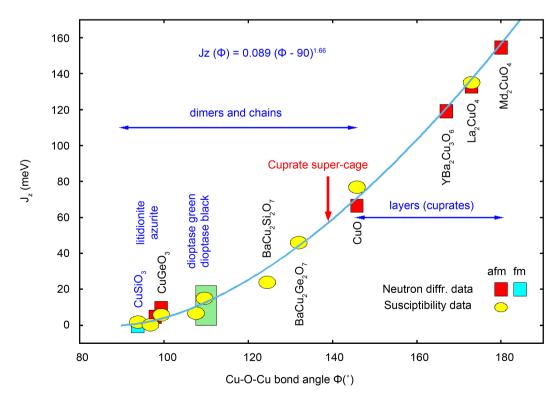
Compound	CN	₫(Cu-O) (Å)	В	ond streng	th	Reference
Compound	CAV	<i>a</i> (Cu-O) (A)	S _e	Sa.	Σs	Reference
$Ca_{0.5}Sr_{0.5}CuO_4$		1.945	1.913	-	1.913	[41]
$CaCuO_2$		1.928	2.004	-	2.004	[33]
BaCuSi ₄ O ₁₀ Effenbergite	4	1.925	2.022	-	2.022	[42]
SrCuSi ₄ O ₁₀ Wesselite		1.925	2.022	-	2.022	[43]
CaCuSi ₄ O ₁₀ Cuprorivaite		1.929	1.998	-	1.998	[44]
$Cu_6Si_6O_{18}$	4 . (1)	1.9250 1.9294 1.9354 1.9466 3.3153	1.969	0.023	1.992	[20]
Cu ₆ Ge ₆ O ₁₈	4 + (1)	1.9043 1.9284 1.9380 1.9979 3.3841	1.954	-	1.954	[17]
Y_2BaCuO_5	2 + 2 + 1	1.985 1.988 2.206	1.692	0.232	1.923	[45]
CuGeO ₃	4 + 2	1.941 2.926	1.941	0.093	2.022	[1] [2] [3]
Cu ₆ Si ₆ O ₁₈ ⋅6H ₂ O	6	1.952 1.952 1.959 1.983 2.502 2.648	1.818	0.195	2.014	[46]
$Cu_6Ge_{5.4}Si_{0.6}O_{18}\cdot 6H_2O$	6					[17]
$Cu_6Ge_6O_{18}{\cdot}6H_2O$	6	1.9037 1.9486 1.9547 1.9884 2.6364 2.6696	1.894	0.159	2.053	[11]
0 (00) (0 11) .	2 + 2 + 2 Cu(1) site	1.9387 1.9455 2.9840	1.953	0.083	2.036	
Cu ₃ (CO ₃) ₂ (OH) ₂ Azurite	6 Cu(2) site	1.9385 1.9388 1.9675 1.9947 2.3608 2.7578	1.830	0.223	2.053	[47]
CuSO₄ ·5H₂O Chalcanthite	2+2+2 Cu(1) site	1.9748 1.9770 2.3858	1.769	0.250	2.019	[48]
CusO4 -5112O Charcanume	2+2+2 Cu(2) site	1.9447 1.9696 2.4400	1.739	0.293	2.033	[10]
KNaCuSi ₄ O ₁₀ Litidionite	6	1.9220 1.9434 1.9683 1.9799 2.6238 3.4024	1.863	0.109	1.972	[22]; this work
Cu ₃ (AsO ₄) ₂	2 + 2 + 2 $Cu(1) site$	1.933 1.974 2.923	1.864	0.093	1.957	5.03
Lammerite	6 Cu(2) site	1.941 1.947 1.972 2.028 2.282 2.782	1.772	0.254	2.026	[49]
CaCuAsO4OH Conichalcite	6	1.8850 1.8855 2.0666 2.0688 2.2976 2.3882	1.811	0.332	2.143	[50]; this work
La_2CuO_4	4 + 2	1.9043 2.4145	2.151	0.278	2.439	[51]
$Sr_2CuO_2Cl_2$	4 + 2	1.9864 2.860	1.687	0.292	1.979	[52]

Table 3. Collection of some properties and data for selected Cu(II) oxo-compounds. $\Delta_B = {}^2B_{2g}\left(xy\right) - {}^2B_{1g}\left(x^2 - y^2\right)$, $\Delta_E = {}^2E_g\left(xz,yz\right) - {}^2B_{1g}\left(x^2 - y^2\right)$, $\Delta_A = {}^2A_{1g}\left(z^2\right) - {}^2B_{1g}\left(x^2 - y^2\right)$, energies in cm⁻¹. Other transitions: *CT* charge transfer, *SPE* simultaneous pair excitation, *ZRS*? Zhang Rice excitation, E_g energy gap.

Compound	Color	Cu site symmetry	Δ_{B}	$\Delta_{ ext{E}}$	Δ_{A}	Other Transition	Reference
CaCuO ₂ (infinite layer)	dark-grey	$\mathrm{D}_{4\mathrm{h}}$	13,230	15,730	21,370	-	[33]
Tenorite CuO	brownish	C_{i}	12,170	12,930 15,530	16,670	many	[53]**
Conichalcite synth. CaCuAsO ₄ OH	light green	C_1	10,575	12,500	8585	15,313 Z <i>RS?</i> 31,370 (<i>E_g</i>)	[54]
Lammerite synth. Cu ₃ (AsO ₄) ₂	dark green	$\begin{array}{c} C_1 \\ C_i \end{array}$	11,530	12,400 14,050	10,200 14,050	23,260 CuO 31,250 (<i>E</i> _g)	[22]; this work*
Y ₂ BaCuO ₅	vivid green	D_{4h}	12, 10,700	500 13,200	14,700	25,970 CT	[55]**
Azurite Cu ₃ (CO ₃) ₂ (OH) ₂	blue	$\begin{array}{c} C_i \\ C_1 \end{array}$	11,806 11,806	16,484 11,806	16,484 11,806	19,793 17,952	[56]** T= 80 K
Chalcanthite CuSO ₄ ·5H ₂ O	deep blue	C_1 C_1	11,407 11,860	13,308 13,488	9699 9735	15,234 <i>ZRS</i> ? 15,567	[57]
Litidionite synth. KNaCuSi ₄ O ₁₀	light blue	C_{i}	11,723	14,700	13,900	21,400 <i>SPE</i> 31,600 (<i>E</i> _g)	[22] [23]; this work
$Cu_6Ge_6O_{18}$	dirty blue	C_1	12,100	14,723	17,700	22,880 <i>SPE</i>	[17]; this work
$Cu_6Ge_6O_{18}\text{-}6H_2O$	bluish-green	C_1	11,880	14,320	11,880	16,230 ZRS? 21,650 CT 30,300 (E _g)	[17]; this work
$Cu_{6}Ge_{5.4}Si_{0.6}O_{18}\textbf{\cdot} 6H_{2}O$	dark green	C_1	13,	300	19,400	23,900 CT	[17]
CuGeO ₃	turquoise	$\mathrm{D}_{2\mathrm{h}}$	12,570	13,970	12,920	15,733 <i>ZRS</i> ? 15,800	[24]; this work
BaCuSi ₄ O ₁₀ synth. (Effenbergite)			12,200	15,950	18,520	-	[58]
SrCuSi ₄ O ₁₀ synth. (Wesselite)	deep blue	$\mathrm{D}_{4\mathrm{h}}$	12,480	16,050	18,520	-	[58]
CaCuSi ₄ O ₁₀ synth. (Cuprorivaite)			12,590 12,740	15760 16130	18,530 18,520	-	[44] [59]
Dioptase dehydrated Dioptase partly dehydrated	black dark blue	C_1	12,330 12,500	14,960 14,500	17,930 17,600	22,680 <i>SPE</i> -	This work; [19]
Dioptase	emerald		11,500 12,495	14,500 15,010	17,000 10,200		[18] [19]
Cu ₆ Si ₆ O ₁₈ ·6H ₂ O	green	C_1	11,507	14,400	10,700	16,670 ZRS? 24,160 CT 30,660 (Eg)	This work

^{*}synthetic lammerite with an amount of CuO; **for this work a different assignment as given in the reference was used.

Recently, the energy and symmetry of dd excitations of some undoped layered cuprates have been measured by CuL_3 resonant X-ray scattering [33]. The well-


assigned dd excitations of these compounds with high connectedness were found to be higher than the energies of the compounds described before. Multiferroic CuO as limiting case can be added to this group with due allowance. Applying Equation (a), a steeper slope with $Q_e^2 = 1.82$ results, representing higher excitation energies and effective charges ($Q_e \pm 1.35$) than for the dioptase group.

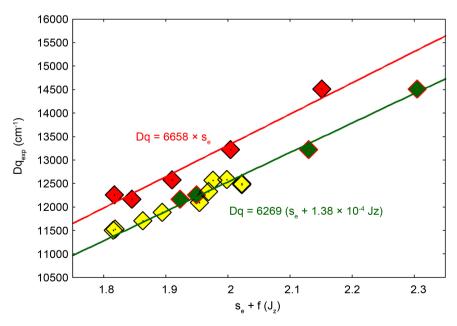
The different connectedness of cuprates in comparison to the dioptase group is manifested in a larger contribution of the principal magnetic super-exchange interaction J_z to the optical excitation energies. In **Figure 5**, this contribution is depicted versus the Cu-O-Cu bond angle Φ , a representation first used by *Rocquefelte et al.* [34], and here applied in an extended form, illustrating both dioptase group compounds and cuprate ones. A data fit resulted in the relation

$$J_{z}(\varnothing) = 0.091 \cdot (\varnothing - 90)^{1.652} (\text{meV}) = 0.734 \cdot (\varnothing - 90)^{1.652} \text{ cm}^{-1}.$$
 (11)

with an exponent near 5/3, explained by chemical pressure (*Rocquefelte et al.*, 2012) [34] [35]. Adding $J_z(\Phi) \cdot \ln(2)$ as bond angle dependent contribution to the bond length dependent one, a surprisingly good agreement is achieved between the two groups of compounds, now giving $Q_e^2 = 1.722$, respectively $Q_e = 1.312$. It should be noticed that for the dioptase group an antiferromagnetic contribution is not included because T_N is lower than room temperature, at which the optical spectra are taken.

The R^{-5} inverse power of Cu-O bond lengths is nearly a measure for the bond strength. Therefore, the reliability of the fit can be enhanced applying the empirical Cu-O bond strength relation $s = \Sigma (R/R_0)^{-N}$ [36] by choosing only the

Figure 5. Principal superexchange interaction J_z versus Cu-O-Cu bond angle Φ [34] [35].


bond strength sum s_e of the four equatorial bonds. New values $R_0 = 1.713(9)$ Å, N = 5.76(16) were re-calculated for this work [37]. Results of a double-regression yielded for the cuprate group

$$\Delta_B \left(\text{cm}^{-1} \right) = \left(6658 \pm 38 \right) \cdot s_e$$
 (12a)

respectively
$$\Delta_B (\text{cm}^{-1}) = (6269 \pm 21) \cdot (s_e + 1.38 \times 10^{-4} J_z)$$
 (12b)

for both the dioptase group and cuprates. Δ_B of the last mentioned group is corrected by a bond angle dependent (magnetic) contribution (**Figure 6**). It is recommended to extend the analytic bond strength-bond length expression by a magnetic (angle dependent) contribution. In contrast to this result, the quoted authors [33] fitted their cuprate data with a lower slope of N=4.2. On the other hand, the selection of compounds for such fit is not convincing, because an influence of some equatorial O⁻ ions in La₂CuO₄ (high bond strength, see **Table 2**) on the excitation energies can be expected. In addition, the epitaxially grown infinite-layer structure of Ca_{0.5}Sr_{0.5}CuO₂ is obviously strained.

Turning now to the calculation of splitting parameters Ds (Equation (9)) and Dt (Equation (10)) involving axial ligands one has to distinguish according to the *Nephelauxetic Effect* between pure oxo-ligands and such ones as H_2O or Cl^- with increased cationic charge and assumed higher Dq_a values [29]. H_2O (as equatorial ligands) are found in chalcanthite, and hydroxyl groups in azurite and conichalcite. The last compound has the most distorted "octahedron" and should show a pronounced splitting of the 2E_g term, which is not considered here.

Figure 6. A linear relation between Dq (cm⁻¹) and the equatorial bond strength s_0 in case of cuprates (red curve) corrected by a bond angle dependent (magnetic) contribution to show a single linear plot (green curve) with dioptase group compounds (yellow) besides cuprates (now green).

In the case of square-planar environment it is useful to limit the extent of the d_{Z^2} orbital with "long" auxiliary axial bonds. Dehydrated dioptase and the germanate analogue already have some far distant oxygen ions (see **Table 2**) within the d_{Z^2} orbital sphere of influence. For the group of $M^{2+}CuO_2$ layered cuprates the limit is given by the layer separation down c of about 3.3 Å. Again the results differ somewhat for the two groups of compounds with slightly different effective charges. From the fitted values for Ds and Dt the Δ_E (Equation (2)) and Δ_A (Equation (3)) energies have been calculated as well as 2E_g and $^2A_{1g}$. Results are summarized in **Table 4**.

In order to check the correct assignment one can use a relation between experimental B_{2g} , E_g and A_{1g} values of form $f(\Delta) = \Delta_A/(2 \cdot \Delta_E - \Delta_B) = 2/3$, which results from Equations (1) to (3). Obviously, this relation holds only for shortest axial bonds and more octahedral ligand environment, such fulfilling the precondition for the underlying ionic model. For non-existent axial bonds the value for the quotient is close to unity. The values listed in **Table 4** indicate clearly bond length dependence. An empirical function $f(R) = \alpha_1 \cdot (R_a/R_e)$ may serve as a correction giving quotients $f(\Delta)/f(R)$ near unity when using $\alpha_1 = 0.59$ for dioptase group compounds respectively 0.70 for cuprates. Compounds with axial water ligands or Cl^- can clearly be identified by relatively small values. Another possibility here published the first time ever is to use the linear relation

$$\Delta_A = \alpha \cdot \left(\frac{\langle R_a \rangle}{\langle R_e \rangle} - \varepsilon \right), \text{ where } \alpha = (17892 \pm 60) \text{ cm}^{-1},$$
(13)

with a R_a/R_e ratio including well adapted auxiliary R_a bonds for compounds of coordination number 4, but different ε values for the dioptase group ($\varepsilon = 1/\sqrt{2}$) and cuprates ($\varepsilon = 1/2$) to guide the regression line well through the origin (**Figure 7** and **Table 5**).

It should be stressed with respect to the use of mean bond distances in Equation (13) that also in the Equations (7) to (10) the mean of corresponding bond distances is taken first and then their inverse fifth power is calculated to yield the convincing results of **Table 4**.

An additional scaling η_l between 1.7 and 2.0 (Equation (10)) is needed to fit the Dt values of compounds with H_2O respectively Cl^- as axial bonds. Also, La_2CuO_4 needs such correction ($\eta_l = 1.71$) possibly caused by some O^- expected as axial ligands. Applied scaling factors were summarized as supplemented material in the **Table 7**.

Indeed, the connectedness of copper-ligand units, representing the number of shared copper-oxygen polyhedra, should be important for the dd excitation energy. Therefore, besides the equatorial ligand sums that are calculated as fit coordinate, we used the bond valence sums to check for inconsistent structural details and signs for mixed valences. Copper polygermanate in the *Pbmm* prototypic structure [1] [2] shows too high a sum with $\Sigma s = 2.08$. There is evidence from *EPR* [38], *X*-ray diffraction [39] and *NQR* measurements [40] that copper is statistically out of center of the CuO₂ plaquette, in this way the copper bond

Table 4. Comparison of experimental and calculated excitation energies and orbital ones in cm⁻¹. $\Delta_{\rm B}$ is sorted from high values to low ones down the table; $f(\Delta) = \Delta_{\rm A}/(2 \cdot \Delta_{\rm E} - \Delta_{\rm B})$, $f(R) = \alpha_1 \cdot (R_a/R_e)$. Experimental and calculated Δ values are arranged one above the other.

_	Δ_B	Δ_B Δ_E						_	4.1)	44.	Ligands			
Phase			Δ_A	Δ_A Ds	Dq	Dt	Dt/Dq	Dt/Ds	$f(\Delta)$	$f(\Delta)/f(R)$	equat.	axial		
Cuprorivaite	12,590	15,760	18,530	3100	1259	1226	0.974	0.395	0.979	0.956	oxygen	no		
Cupronvanc	12,501	15,446	18,414	3051	1250	1241	0.571	0.373	0.575	0.230	Oxygen	110		
CuGeO ₃	12,570	13,970	13,970	2196	1257	1037	0.825	0.472	0.909	1.081	oxygen	oxyge		
Gudeo3	12,439	14,209	14,324	2299	1244	1026	0.023	0.1/2	0.505	1.001	Oxygen	Oxyge		
Effenbergite	12,500	15,950	18,520	3139	1250	1139	0.955	0.380	0.955	0.930	oxygen	no		
Literioeigne	12,566	15,895	18,591	3132	1257	1213	0.755	0.500	0.755	0.550	onygen	110		
Wesselite	12,480	16,050	18,520	3156	1248	1179	0.945	0.374	0.944	0.920	oxygen	no		
Wesselle	12,566	15,895	18,591	3132	1257	1213	0.743	0.374	0.711	0.720	Oxygen	110		
Dioptase black	12,330	14,960	17,930	2937	1233	1236	1.003	0.421	1.019	1.013	ovvaen	no		
Dioptase black	12,324	15,057	17,850	2940	1232	1218	1.003	0.421	1.019	1.013	oxygen	no		
Cu ₆ Ge ₆ O ₁₈	12,100	14,723	17,700	2903	1210	1217	1.006	0.419	1.020	1.017	owwan			
Cu6Ge6O18	12,123	14,845	17,606	2904	1212	1198	1.000	0.419	1.020	1.017	oxygen	no		
Ge-Dioptase	11,884	14,321	11,884	2046	1188	740	0.623	0.362	0.700	0.866	owwan	H ₂ O		
Ge-Dioptase	11,929	14,434	12,084	2084	1193	750	0.023	0.302	0.709	0.866	oxygen	1120		
A	11,806	16,484	16,484	_	1181	_	0.770	0.217	0.000	1.024	OH-/			
Azurite (1)	12,070	14,162	15,014	2444	1207	1048	0.770	0.317	0.809	1.024	oxygen	oxyge		
A : (2)	11,550	12,770	11,300	1789	1155	829	0.710	0.464	0.000	1007	OH-/			
Azurite (2)	e (2) 11,589 12,924 11,669 1858 1159 848	848	0.718	0.464	0.808	1.067	oxygen	oxyge						
T 1	11,723	14,700	13,900	2411	1172	851	0.50	0.050	0.504	0.015				
Litidionite	11,794	14,465	13,917	2397	1179	866	0.726	0.726 0.353	0.786	0.915	oxygen	oxyge		
	11,780	13,744	14,356	2331	1178	1006	0.854	0.432	0.914	0.914				
Lammerite (1)	11,735	13,744	14,357	2328	1174	1000					oxygen	oxyge		
	11,280	12,400	10,200	1617	1128	746	0.662	0.461		1.023				
Lammerite (2)	11,231	12,425	10,279	1639	1123	745			0.754		oxygen	oxyge		
	11,407	12,600	8900	1442	1141	627								
Chalcanthite (1)	11,135	12,302	8828	1428	1113	623	0.549	0.435	0.645	0.906	H_2O	oxyge		
	11,860	13,488	9735	1623	1186	648								
Chalcanthite (2)	11,678	13,369	98,108	1643	1168	648	0.547	0.399	0.644	0.875	H_2O	oxyge		
	11,508	14,398	10,700	1940	1151	588								
Dioptase green	11,491	14,094	10,325	1847	1149	587	0.511	0.303	0.619	<u>0.619</u> 0.801	oxygen	H_2O		
	11,400	12,195	8585	1340	1140	645								
Conichalcite	11,119	11,922	8449	1339	1141	658	0.566	0.481	0.661	0.940	OH-	oxyge		
Y ₂ BaCuO ₅	10,/00	13,200*)	14,700	2457	1070	974	0.911	0.397	0.936	0.904	oxygen	oxyge		
-2	10,732	13,205	14,571	2435	1073	966			0.730	0.704	/8	/8-		
	Cup	rates (und	oped): Cal	culation v	with $Q_e^2 =$	1.755, Q	$Q_s^2 = 0936$,	$\eta_s = 1.58$	7, $\eta_{t} = 2.1$	$8, \alpha_{1} = 0.70$				
Dl	Α.			D-	D -	D ₄	D# D -	D4D -	<i>(</i> (A))	A	Liga	ınds		
Phase	Δ_B	Δ_E	Δ_A	Ds	Dq	Dt	Dt/Dq	Dt/Ds	$f(\Delta)$	$f(\Delta)/f(R)$	equat.	axial		
La ₂ CuO ₄	14,516	17,097	13,710	2327	1452	880	0.606	0.378	0.697	0.788	OVUGOR	O-3		
La ₂ CuO ₄	14,308	16,833	13,664	2313	1431	883	0.606	0.378	0.097	0.788	oxygen	0 :		
0.0.0	13,226	15,726	21,370	3410	1323	1546	1.160	0.452	1 152	0.004				
CaCuO ₂	13,322	15,982	21,671	3476	1332	1554	1.169	0.453	1.173	0.994	oxygen	no		
	12,581	15,565	21,452	3491	1258	1498	1 100	0.420	1 1	0.075				
Sr _{0.5} Ca _{0.5} CuO ₂	12,744	15,494	21,026	3397	1274	1488	1.190	0.429	1.157	0.976	oxygen	no		
viln c c	12,258	14,113	15,968	2546	1226	1157	0.011	0.4-:	1 000	1.0==				
NdBa ₂ Cu ₃ O ₆	12,372	13,741	15,940	2473	1237	1210	0.944	0.454	1.000	1.072	oxygen	oxyge		
/	12,170	14,230	16,670	2676	1217	1193								
CuO (tenorite)		14,520	16,878	2735	1225	1188	0.981	0.446	1.023	1.027	oxygen	oxyge		
,							88	0.761	0.981					
Sr ₂ CuO ₂ Cl ₂	12,254 12,097	14,839	15,887	2661	1210	1048	0.867	0.394	0.904	0.897		Cl-		

^{*)} The broad band at 12,500 cm $^{-1}$ is proven to split into two bands at about 10,700 cm $^{-1}$ and 13,200 cm $^{-1}$, respectively.

Table 5. Experimental Δ_A energies versus calculated ones using the relation: $\Delta_A = 17,892 \cdot (\langle R_a \rangle / \langle R_e \rangle - \varepsilon)$ (cm⁻¹), $\varepsilon = 1/\sqrt{2}$ for dioptase group and $\varepsilon = 1/2$ for cuprates. Auxiliary bonds introduced in case of compounds with coordination number CN = [4] are underlined.

Phase	CN	$< R_e > (\text{Å})$	$< R_a > (\mathring{A})$	Δ_A (exp.)	Δ_A (calc.)
Cuprorivaite	[4]	1.9307	<u>3.35</u>	18,530	18,393
CuGeO ₃	[4 + 2]	1.9326	2.7549	12,920	12,854
Effenbergite	[4]	1.9265	<u>3.35</u>	18,520	18,460
Wesselite	[4]	1.9265	<u>3.35</u>	18,520	18,460
Dioptase black	[4]	1.9340	<u>3.30</u>	17,930	17,874
$Cu_6Ge_6O_{18}$	[4]	1.9404	<u>3.30</u>	17,700	17,777
Ge-Dioptase	[4 + 2]	1.9474	2.6622	11,884	11,808
Azurite (1)	[4 + 2]	1.9434	2.9840	16,488 (?)	14,821
Azurite (2)	[4 + 1 + 1]	1.9593	2.5143	11,806	10,309
Litidionite	[4 + 2]	1.9525	2.8434	13,900	13,404
Lammerite (1)	[4 + 2]	1.9529	2.9230	14,350	14,128
Lammerite (2)	[4 + 1 + 1]	1.9703	2.4609	10,200	9695
Chalcanthite (1)	[4 + 2]	1.9759	2.3858	8900	8952
Chalcanthite (2)	[4 + 2]	1.9569	2.4400	9735	9657
Dioptase green	[4 + 2]	1.9613	2.5688	10,700	10,735
Conichalcite	[2 + 2 + 2]	1.9640	2.3403	8585	8668
Y_2BaCuO_5	[4 + 1]	1.9899	2.196 + <u>3.90</u>	14,700	14,754
La_2CuO_4	[4 + 2]	1.9043	2.4045	13,710	13,646
$CaCuO_2$	[4]	1.9281	<u>3.26</u>	21,370	21,306
$Sr_{0.5}Ca_{0.5}CuO_2 \\$	[4]	1.9440	<u>3.30</u>	21,452	21,426
$NdBa_{2}Cu_{3}O_{7\text{-}\delta}$	[4 + 1]	1.9609	2.275 + <u>3.25</u>	15,968	16,260
CuO (tenorite)	[4 + 2]	1.9558	2.7842	16,670	16,524
$Sr_{2}CuO_{2}Cl_{2} \\$	[4 + 2]	1.9864	2.8600	15,887	16,841

strength is reduced towards the net charge of 2+. Even large thermal displacement ellipsoids indicate structural features that require a careful evaluation. Bond lengths should be corrected for "thermal" displacement because not less than their inverse fifth power is used in calculations (see for instance [51]).

4. EPR Analysis

Finally, the assignment of the dd excitations can be compared with results of EPR measurements. For $3d^9$ ions in (nearly) tetragonal ligand symmetry one can apply the following two formulas for the principal components g_{\parallel} and g_{\perp} , if the ground state is $^2B_{1g}$:

$$g_{\parallel} = g_e - \frac{8\lambda}{\Delta_B} - \frac{\lambda^2}{\Delta_E^2} - \frac{4\lambda^2}{\Delta_B \Delta_E}, \qquad (14)$$

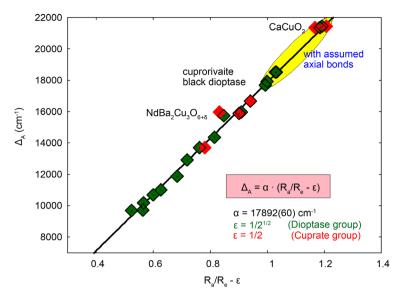


Figure 7. Δ_4 excitation energies (cm⁻¹) depicted versus a function of axial to equatorial bond distances. Again the cuprate group excitations (in red) must be corrected by a (magnetic) contribution to reliably represent all data in a single regression line. Auxiliary axial bonds (see the yellow field) were introduced in case of compounds with really missing axial bonds (coordination number 4).

$$g_{\perp} = g_e - \frac{2\lambda}{\Delta_E} - \frac{\lambda^2}{\Delta_E^2} \,, \tag{15}$$

where $g_c = 2.0023$ is the *g*-value for the free electron, and λ is the spin-orbital coupling parameter, which yields for the free Cu²⁺ ion $\lambda_o = 829$ cm⁻¹ [60].

The k values are the spin orbital reduction factors used to scale the coupling parameters to the free Cu²⁺ ion value, $k = \lambda/\lambda_o$. This parameter reduction is attributed to covalence effects. **Table 6** compares the results for dioptase and Gedioptase, respectively. Not surprisingly, the found covalence reduction effect is markedly smaller for the copper germanate than for the copper silicate, in accordance with crystal-chemical experience, confirming higher ionicity of the germanate (**Table 6**). Unfortunately, *EPR* data for the dehydrated compounds were not available.

Table 6. EPR analysis of dioptase related compounds.

Notation	Dioptase	Ge-Dioptase
Δ_B	11,508	11,884
Δ_E	14,395	14,321
Δ_A	10,700	11,884
gII	2.3601	2.3780
$g_{\!\scriptscriptstyle\perp}$	2.0511	2.0970
$\lambda_{ }$	-504.08	-545.53
$k_{ }$	0.608	0.658
$\lambda_{\scriptscriptstyle \perp}$	-346.91	-662.63
$k_{\!\scriptscriptstyle \perp}$	0.418	0.799

5. Conclusion

As shown, a comparative reappraisal of Cu²⁺ UV-VIS spectra benefits from a special consideration of crystal-chemically similar groups of compounds, comparing exemplarily the dioptase group, covering minerals as well as synthetic samples, with cuprates. The assignment of dd excitations and their representation each on a single curve is possible by attributing a magnetic (bond angle dependent) contribution to the cuprate group. It is recommended to extend the bond strength-bond length relation by a bond angle dependent (magnetic) contribution. Deviations of the linear representation of orbital excitation energies may be helpful to discriminate results of compounds with peculiar orbital features from those with normal behavior. Fortunately, the first done assignment of well-resolved spectra of dehydrated dioptase Cu₆(Ge,Si)₆O₁₈ served as input data to deconvolute the badly resolved spectra of as-grown Cu₆(Ge,Si)₆O₁₈·6H₂O samples. At present, the deconvolution of superposed spectra resulting from different Cu sites of a structure is inadequate. However, a pre-calculation of the expected energy levels can serve as input for fitting the experimental spectra. This has been successfully applied to lammerite. It is recommended to take a series of UV-VIS spectra step by step over the entire temperature range from hydrated to fully dehydrated dioptase as a didactic tool to follow the energy levels and their correct assignment, thereby simultaneously controlling the crystal water content by IR spectroscopy with a device that offers both analytical possibilities. Especially it should be investigated whether a Zhang-Rice excitation like that observed for CuGeO₃ can be confirmed for the hydrated compounds of the dioptase family, too. In addition, the proposed assignment of the dd excitations of the green phase YBa₂CuO₅ should be supported by a CuL₃ resonant X-ray scattering investigation.

Acknowledgements

The author would like to thank colleague *Prof. Bernd Lehmann* for supporting this work by the donation of wonderful dioptase pieces from *Altyn-Tyube*, Kazakhstan. Also my teacher, the late *Prof. Hugo Strunz*, donated dioptase pieces from the *Tsumeb* mine, Namibia.

Conflict of Interest

The author declares no conflict of interest.

References

- [1] Ginetti, Y. (1954) Structure cristalline du métagermanate de cuivre. *Bulletin des Sociétés Chimiques Belges*, **63**, 209-216. https://doi.org/10.1002/bscb.19540630501
- [2] Völlenkle, H., Wittmann, A. and Nowotny, H. (1967) Zur Kristallstruktur von CuGeO₃. Monatshefte für Chemie, 98, 1352-1357. https://doi.org/10.1007/BF00909002
- [3] Hase, M., Terasaki, I. and Uchinokura, K. (1993) Observation of the Spin-Peierls Transition in Linear Cu²⁺ (Spin-1/2) Chains in an Inorganic Compound CuGeO₃.

- Physical Review Letters, **70**, 3651-3654. https://doi.org/10.1103/PhysRevLett.70.3651
- [4] Boucher, J.P. and Regnault, L.P. (1996) The Inorganic Spin-Peierls Compound CuGeO₃. *Journal de Physique I*, **6**, 1939-1966. https://doi.org/10.1051/jp1:1996198
- [5] Otto, H.H., Brandt, H.J. and Meibohm, M. (1996) Über die Existenz des Kupferpolysilicats Cu{uB₁1∞¹}[¹SiO₃]. Beiheft zu European Journal of Mineralogy, **8**, 206.
- [6] Otto, H.H. and Meibohm, M. (1999) Crystal Structure of Copper Polysilicate, Cu[SiO₃]. Zeitschrift für Kristallographie, 214, 558-565. https://doi.org/10.1524/zkri.1999.214.9.558
- [7] Baenitz, M., Geibel, C., Dischner, M., Sparn, G., Steglich, F., Otto, H.H., Meibohm, M. and Gipius, A.A. (2000) CuSiO₃: A Quasi-One-Dimensional S = 1/2 Antiferromagnetic Chain System. *Physical Review B*, 62, 12201-12205. https://doi.org/10.1103/PhysRevB.62.12201
- [8] Wolfram, H., Otto, H.H., Cwik, M., Braden, M., André, G., Bourée, G.F., Baenitz, M. and Steglich, F. (2004) Neutron Diffraction Study of the Nuclear and Magnetic Structure of the Quasi-One-Dimensional Compound CuSiO₃ around T_N = 8 K. *Physical Review B*, 69, 144115-144127. https://doi.org/10.1103/PhysRevB.69.144115
- [9] Gros, C., Lemmens, P., Choi, K.Y., Güntherodt, G., Baenitz, M. and Otto, H.H. (2002) Quantum Phase Transition in the Dioptase Magnetic Lattice. *Europhysics Letters*, 60, 276-280. https://doi.org/10.1209/epl/i2002-00347-0
- [10] Janson, O., Tsirlin, A.A., Schmitt, M. and Rosner, H. (2010) Large Quantum Fluctuations in the Strongly Coupled Spin ½ Chains of Green Dioptase Cu₆Si₆O₁₈·6H₂O. *Physical ReviewB*, **82**, 14424, 1-8.
- [11] Brandt, H.J. and Otto, H.H. (1997) Synthesis and Crystal Structure of Cu₆[Ge₆O₁₈]·6H₂O: A Dioptase-Type Cyclo-Germanate. *Zeitschrift für Kristallographie*, **212**, 34-40.
- [12] Hase, M., Ozawa, K. and Shinya, N. (2003) Magnetism of Cu₆Ge₆O₁₈·xH₂O (x = 0 ~
 6), a Compound of the One-Dimensional Heisenberg S = ½ Model with Competing Antiferromagnetic Interactions. *Physical Review B*, 68, Article ID: 214421.
- [13] Law, J.M., Hoch, C., Kremer, R.K., Kang, J., Lee, C., Wangbo, M.H. and Otto, H.H. (2010) Quantum Critical Behavior in the Dioptase Lattice: Magnetic Properties of CuMO₃.yH₂O (M = Si, Ge, y = 1,0). *Conference on Highly Frustrated Magnetism*, Baltimoire.
- [14] Meibohm, M. (1999) Zur Kristallchemie und Kristallphysik von neuen Silikaten und Germanaten des Kupfers mit ketten-und ringförmigen Anionen. Doctoral Thesis, TU Clausthal.
- [15] Otto, H.H. (2000) Über natürliche und synthetische Silicate des Kupfers. *Aufschluss*, **51**, 47-55.
- [16] Otto, H.H. (1968) Zur Kristallchemie von Verbindungen $Me^{II}[Ge(OH)_6]$ (SO₄)₂]·3H₂O. Naturwiss, **55**, 387. <u>https://doi.org/10.1007/BF00593291</u>
- [17] Brandt, H.J. (1997) Synthese, Kristallstruktur und Eigenschaften neuer, mit Dioptas verwandter Hexacyclogermanate des Bleis und Kupfers. Clausthaler Geowissenschaftliche Dissertationen, H52, TU Clausthal.
- [18] Bakhtin, A.I. (1979) Optical Absorption Spectra of Cu²⁺ Ions in Dioptase. *Mineralogicheskii Zhurnal*, **13**, 73-78.
- [19] Reddy, K.M., Jacob, A.S. and Reddy, B.J. (1986) EPR and Optical Spectra of Cu²⁺ in Dioptase. Ferroelectrics Letters Section, 6, 103-112. https://doi.org/10.1080/07315178608200482

- [20] Breuer, K.H. and Eysel, W. (1988) Structural and Chemical Varieties of Dioptase, Cu₆[Si₆O₁₈]·6H₂O. Zeitschrift für Kristallographie, 184, 1-11. https://doi.org/10.1524/zkri.1988.184.1-2.1
- [21] Huang, Y.P., Jiang, M., Wang, L.J. and Feng, W.L. (2008) Theoretical Investigation of the Optical Spectra and g Factors for Cu²⁺ in Dioptase. *Philosophical Magazine*, **88**, 1701-1704. https://doi.org/10.1080/14786430802261149
- [22] Wolfram, H. (2004) Zur Kristallchemie und Kristallphysik niedrigdimensionales Silicate, Germanate und Arsenate des Kupfers. Dissertation, TU Clausthal.
- [23] Otto, H.H. and Wolfram, H. (2017) New Cost-Efficient Ambient Pressure Synthesis, Rietfeld Analysis and UV-VIS Spectrum of Litidionite, CuNaKSi₄O₁₀, a Weathering-Proof Ancient Pigmente. *Physics and Chemistry of Minerals*.
- [24] Rudko, G.Y., Long, V.C., Musfeldt, J.L., Koo, H.J., Whangbo, M.H., Revcolevschi, A., Dhalenne, G. and Bernholdt, D.E. (2001) Electronic Transition in Doped and Undoped Copper Germanate. *Chemistry of Materials*, 13, 939-944. https://doi.org/10.1021/cm000703f
- [25] Tjeng, L.H., Sincovic, B., Brookes, N.B., Goedkoop, J.B., Hesper, R., Pelegrin, E., de Groot, F.M.F., Altieri, S., Hulbert, S.L., Shekel, E. and Sawatzky, G.A. (1997) Spin-Resolved Photoemission on Anti-Ferromagnets: Direct Observation of Zhang-Rice Singlets in CuO. *Physical Review Letters*, 78, 1126-1129. https://doi.org/10.1103/PhysRevLett.78.1126
- [26] Duda, L.C., Downes, J., McGuiness, C., Schmitt, T., Augustsson, A., Smith, K.E., Dhalenne, G. and Revcolevschi, A. (2000) Bandlike and Excitonic States of Oxygen in CuGeO₃: Observation Using Polarized Resonant Soft-X-Ray Emission Spectroscopy. *Physical Review B*, 61, 4186-4189. https://doi.org/10.1103/PhysRevB.61.4186
- [27] Jahn, H.A. and Teller, E. (1937) Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy. *Proceedings of the Royal Society*, 161, 220-235. https://doi.org/10.1098/rspa.1937.0142
- [28] Siemons, W., Koster, G., Blank, D.H.A., Hammond, R.H., Geballe, T.H. and Beasley, M.R. (2008) Tetragonal CuO: A New End Member of the 3d Transition Metal Monoxides.
- [29] Gerloch, M. and Slade, R. (1973) Ligand-Field Parameters. Cambridge University Press, Cambridge.
- [30] Haverkort, M.W. (2005) Spin and Orbital Degrees of Freedom in the Transition Metal Oxides and Oxide Thin Films Studied by Soft X-Ray Absorption Spectroscopy. Doctoral Thesis, University of Köln.
- [31] Lebernegg, S., Amthauer, G. and Grodzicki, M. (2009) The D-Hamiltonian—A New Approach for Evaluating Optical Spectra of Transition Metal Complexes. *Journal of Molecular Structure*, **924-926**, 473-476.
- [32] Eby, R.K. and Hawthorne, F.C. (1993) Structural Relation in Copper Oxysalt Minerals. I. Structural Hierarchy. Acta Crystallographica Section B, 49, 28-56. https://doi.org/10.1107/S0108768192007274
- [33] Moretti Sala, M., Bisogni, V., Aruta, C., Balestrino, G., Berger, H., Brookes, N.B., DeLuca, G.M., Castro, D.D., Grioni, M., Guarise, M., Medaglia, P.G., Miletto Granozio, F., Minola, M., Perna, P., Radovic, M., Sallustro, M., Schmitt, T., Zhou, K.J., Braikovic, L. and Ghiringhelli, G. (2011) Energy and Symmetry of DD Excitations in Undoped Layered Cuprates Measured by Cu L₃ Resonant Inelastic X-Ray Scattering. *New Journal of Physics*, **13**, 1-25. https://doi.org/10.1088/1367-2630/13/4/043026
- [34] Rocquefelte, X., Schwarz, K. and Blaha, P. (2012) Theoretical Investigation of the

- Magnetic Exchange Interaction in Copper (II) Oxides under Chemical and Physical Pressures. Scientific Reports, Article No. 759, 1-7.
- [35] Otto, H.H. (2015) Modeling of a Cubic Antiferromagnetic Cuprate Super-Cage. World Journal of Condensed Matter Physics, 5, 160-178. https://doi.org/10.4236/wjcmp.2015.53018
- [36] Brown, I.D. and Shannon, R.D. (1973) Empirical Bond-Strength Bond-Length Curves for Oxides. Acta Crystallographica Section A, 29, 266-282. https://doi.org/10.1107/S0567739473000689
- [37] Otto, H.H. (1980) Turbo-Basic Program Valence. University of Regensburg.
- [38] Yamada, M., Nishi, M. and Akimitsu, J. (1996) Electron Paramagnetic Resonance Governed by the Dzyaloshinsky-Moriya Antisymmetric Exchange Interaction in CuGeO₃. *Journal of Physics: Condensed Matter*, **8**, 2625-2640. https://doi.org/10.1088/0953-8984/8/15/012
- [39] Hidaka, M., Hatae, M., Yamada, I., Nishi, M. and Akimitsu, J. (1997) Re-Examination of the Room Temperature Crystal Structure of CuGeO₃ by X-Ray Diffraction Experiments: Observation of New Superlattice Reflections. *Journal of Physics: Condensed Matter*, **9**, 809-824. https://doi.org/10.1088/0953-8984/9/4/003
- [40] Gippius, A.A., Morozova, E.N., Khozeev, D.F., Vasil'ev, A.N., Baenitz, M., Dhalenne, G. and Revcolevschi, A. (2000) Non-Equivalence of Cu Crystal Sites in Cu-GeO₃ as Evidenced by NQR. *Journal of Physics. Condensed Matter*, **12**, L71-L75. https://doi.org/10.1088/0953-8984/12/6/101
- [41] Li, X., Kanai, M., Kawai, T. and Kawai, S. (1992) Epitaxial Growth and Properties of Ca_{1-x}Sr_xCuO₂ Thin Film (x = 0.18 to 1.0) Prepared by Co-Deposition and Atomic Layer Stacking. *Japanese Journal of Applied Physics*, **31**, L217-L220. https://doi.org/10.1143/JJAP.31.L217
- [42] Giester, G. and Rieck, B. (1994) Effenbergite, a New Mineral from the Kalahari Manganese Field, South Africa, Description and Crystal Structure. *Mining Magazine*, **58**, 663-670. https://doi.org/10.1180/minmag.1994.058.393.17
- [43] Chakoumakos, B.C., Fernandez-Baca, J.A. and Boatner, L.A. (1993) Refinement of the Structures of the Layer Silicates MCuSi₄O₁₀ (M = Ca,Sr,Ba) by Rietfeld Analysis of Neutron Powder Diffraction Data. *Journal of Solid State Chemistry*, **103**, 105-113. https://doi.org/10.1006/jssc.1993.1083
- [44] Steinberg, H., Meibohm, M., Hofmann, W. and Otto, H.H. (1999) Neue Synthese-methode und Rietfeld-Verfeinerung von CaCuSi₄O₁₀. *Beiheft zu European Journal of Mineralogy*, **11**, 219.
- [45] Sato, S. and Nakada, J. (2011) Structure of Y₂BaCuO₅: A Refinement by Single Crystal X-Ray Diffraction. *Acta Crystallographica Section C*, **45**, 523-525.
- [46] Ribbe, P.H., Gibbs, G.V. and Hamil, M.M. (1977) A Refinement of the Structure of Dioptase, Cu₆[Si₆O₁₈]·6H₂O. *American Mineralogist*, **62**, 807-811.
- [47] Belokoneva, E.L., Gubina, Y.K. and Forsyth, J.B. (2001) The Charge-Density Distribution and Antiferromagnetic Properties of Azurite Cu₃[CO₃]₂(OH)₂. *Physics and Chemistry of Minerals*, **28**, 498-507. https://doi.org/10.1007/s002690100176
- [48] Bacon, G.E. and Titterton, D.H. (1975) Neutron-Diffraction Studies of CuSO₄·5H₂O and CuSO₄·5D₂O. *Zeitschrift für Kristallographie*, **141**, 330-341. https://doi.org/10.1524/zkri.1975.141.5-6.330
- [49] Hawthorne, F.C. (1986) Lammerite, Cu₃(AsO₄)₂; A Modulated Close-Packed Structure. *American Mineralogist*, **71**, 206-209.

- [50] Henderson, R.R., Yang, H., Downs, R.T. and Jenkins, R.A. (2008) Redetermination of Conichalcite, CaCu(AsO₄)(OH). *Acta Crystallographica Section E*, **64**, i53-i54.
- [51] Häflinger, P.S., Gerber, S., Pramod, R., Schnells, V.I., dalla Plazza, B., Chati, R., Pomjakushin, V., Conder, K., Pomjakushina, E., Le Dreau, L., Christensen, N.B., Syljuasen, O.F., Normand, B. and Rønnow, H.M. (2014) Quantum and Thermal Motion, Oxygen Isotope Effect, and Superexchange Distribution in La₂CuO₄. *Physical Review B*, 89, Article ID: 085113.
- [52] Miller, L.L., Wang, X.L., Wang, S.X., Stassis, C., Johnston, D.C., Faber, J. and Loong, C.K. (1990) Synthesis, Structure, and Properties of Sr₂CuO₂Cl₂. *Physical Review B*, 41, 1921-1925. https://doi.org/10.1103/PhysRevB.41.1921
- [53] Reddy, R.R., Reddy, S.L., Rao, P.S. and Frost, R.L. (2010) Optical Absorption an EPR Studies on Tenorite Mineral. *Spectrochimica Acta Part A*, **75**, 28-31.
- [54] Reddy, B.J., Frost, R.L. and Martens, W.N. (2005) Characterization of Conichalcite by SEM, FTIR, Raman and Electronic Reflectance Spectroscopy. *Mining Magazine*, 69, 155-167. https://doi.org/10.1180/0026461056920243
- [55] Baran, E.J. and Cicileo, G.P. (1990) The Electronic Spectrum of Y₂BaCuO₅. *Journal of Materials Science Letters*, **9**, 1-2. https://doi.org/10.1007/BF00722849
- [56] Reddy, B.J. and Sarma, K.B.N. (1981) Absorption Spectra of Cu²⁺ in Azurite. *Solid State Communications*, **38**, 547-549.
- [57] Redhammer, G.J., Koll, L., Bernroider, M., Tippelt, G., Amthauer, G. and Roth, G. (2007) Co²+-Cu²+ Substitution in Bieberite Solid-Solution Series, (Co₁-xCux)SO₄-7H₂O, 0.00 ≤ x ≤ 0.46: Synthesis, Single-Crystal Structure Analysis, and Optical Spectroscopy. American Mineralogist, 192, 532-545. https://doi.org/10.2138/am.2007.2229
- [58] Kendrick, E., Kirk, C.J. and Dann, S.E. (2007) Structure and Colour Properties in the Egyptian Blue Family, $M_{1-x}M'_xCuSi_4O_{10}$ as a Function of M, M' where M, M' = Ca, Sr and Ba. *Dyes and Pigments*, **73**, 13-18.
- [59] Ford, R.J. and Hitchman, M.A. (1979) Single Crystal Electronic and EPR Spectra of CaCuSi₄O₁₀, a Synthetic Silicate Containing Copper (II) in a Four-Coordinate, Planar Ligand. *Inorganica Chimica Acta*, **33**, L167-L170.
- [60] The NIST Reference on Constants, Units, and Uncertainty. NIST, Gaithersburg, MD20899.

Supplemented Material

Table 7. Comparison of scaling factors used for Cuprates in comparison to dioptase group compounds.

Scaling factor notation	Cuprates	Dioptase group	Ra	tio
Q_e^2	1.755	1.733	1.0)13
Q_a^2	0.936	0.761	1.230	
$oldsymbol{\eta}_s$	1.587	1.276	1.244	1.243
$\eta_{_t}$	2.180	1.738	1.254	

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

 $Accepting \ pre-submission \ inquiries \ through \ Email, \ Facebook, \ Linked In, \ Twitter, \ etc.$

A wide selection of journals (inclusive of 9 subjects, more than 200 journals)

Providing 24-hour high-quality service

User-friendly online submission system

Fair and swift peer-review system

Efficient typesetting and proofreading procedure

Display of the result of downloads and visits, as well as the number of cited articles

Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/

Or contact wjcmp@scirp.org