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Abstract 
In this paper, wavelet transform and entropy are evaluated using the mathe-
matical analysis concepts of reflexibility, regularity and series obtention, these 
concepts remark the reason to make a selective reference framework for pow-
er quality applications. With this idea the paper used the same treatment for 
the two algorithms (Multiresolution and Multiscale Entropy). The wavelet is 
denoted to have the most power full consistence to the light off the reflexibili-
ty, regularity and series obtention. The paper proposes a power quality tech-
nique namely MpqAT. 
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1. Introduction 

The natural harmony of Fourier’s analysis in the Hilbert space is demonstrated 
by Riesz-Fischer’s [1] and Plancherel’s [2] theorems. In this harmony, three 
concepts are summarized: reflexibility, regularity and series obtention. 

These three concepts are intended to be shown in two ways, firstly, using 
wavelet transformation, and secondly, through numerical entropy. 

In [1] an approximation of the n-dimensional wavelet transform was shown 
through heuristic treatment. Following the same methodology, this article aims 
to show coincidences between the two methods (in wavelets and entropy) hig-
hlighting the following three basic concepts: reflexibility, regularity and series 
obtention. The orientation of these three concepts determines the way that en-
gineers approach definitions for quality concepts. 

In particular, power quality allows identifying the health state of a power sys-
tem by means of applying processes signal techniques to current and voltage 
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waveforms. Therefore, power quality is used as the concept with which the 
achieved definition will be tested. 

2. Wavelet Transform 
Definition 1 

Function ( )2L Rϕ ∈  is called an orthogonal wavelet, if the family  

( ){ }22 2 , ,j j
jk x k j k Zϕ ϕ= − ∈  is an orthonormal basis of L2(R), this is if 

0 si or
,

1 si andjk em j km

j k m
j k m

φ φ δ δ
≠ ≠

= =  = =






             (1) 

So, if φ it is an orthonormal wavelet, and if ( ) ( )2f x L R∈  consequently the 
wavelet series is: 
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               (4) 

Then: wavelet transform relative to basic wavelet φ, like the function: 

( ) ( )1 2, df
x bCWT a b a f x x

a
φ

∞−

−∞

− =  
 ∫               (5) 

And thus the Cjk parts of the wavelet series are obtained from the wavelet 
transform for: 

1,   
2 2j j

kb a= =                         (6) 

The demonstration can be seen in [3]. 

3. Entropy 

From the point of view of physical, entropy is the concept that measures the 
tendency towards disorder in nature. This concept has had an important devel-
opment in the applications derived from it, for example: evaluation of the effi-
ciency in electric motors or power systems. Philosophically, the concept has 
been used, given the implications for understanding of natural elements and 
their interaction with life. 
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With regard to information, entropy has made information visible as a mes-
sage, which must generate a link between sender and receiver by means of 
propagation or transmission (whether physical or abstract). This characterizes 
the degree of difficulty in nature as the goal of entropy. That is, these difficulties 
are noise, interruptions, etc. 

They are disturbances in the message during transmission, and can represent 
loss of information as a result of system conditions, conformed by the source, 
transmitter and receiver. 

In this particular case, the tendency to decrease information can be visualized 
as loss or disorder, and so, it is visualized as a form of entropy [4]. 

Information Entropy 

Information Entropy is also known as “Shannon’s entropy”. The coding theorem 
focuses its attention on random behavior of nature, such as disturbing elements 
or noise [5]. 

It is said that an extensive property is one that we can define through the 
analysis of systems composed by other subsystems; the properties of large sys-
tems require varying slopes. 

Entropy is an extensive property. The information contained in two informa-
tion channels should equal the sum of the information carried by the two chan-
nels individually [6]. 

Entropy is defined as a measure of uncertainty for a random variable [5]. 
Shannon’s entropy H(X) is defined as: 

( ) ( ) ( )logb i b i
x

H X p x p x
∈Θ

= −∑                   (7) 

where X represents the random variable with Θ  set of values, and probability 
density function ( ) { }i ip x P X x= = , ix ∈Θ . The equation is generally calculated 
in binary logarithm. In this case, entropy is expressed in (for example, the entropy of 
throwing a die is 0.1870 bits). Note that ( )– log 0p p ≥  because 0 1p≤ ≤ , 
therefore, entropy is strictly positive, as observed in reference [4]. If we change 
the base of the Neperian logarithm i.e.: e, the entropy is measured in nats [7]. 

For a time series representing the output of a stochastic process, which is an 
ordered sequence of n random variables { } { }1, ,i nX X X=  , with a set of val-
ues 1, , nΘ Θ  respectively, n- dimensional entropy is defined as: 

( ) ( )
1 1

1 1, , log , ,
n n

n n n
x x

H p x x p x x
∈Θ ∈Θ

= − ∑ ∑               (8) 

where ( )1, , np x x  is the joint probability for n variables 1, , nX X . 
The state of a system at a certain moment Xn, is partly determined by its his-

tory, Xn, 2 1, , nX X − . However, each new state of the system brings a certain 
amount of new information with it. 

4. Coexistence of Reflexibility 

Theorem 1: Reflexibility: 
Let E be a Hilbert space, with E' as its dual. Denoted by the duality between E’, 
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E and . ∗  the dual norm of . E
, then Riesz’s theorem, better known as the 

concept of reflexibility, says: 
If f ∈ E' a unique element, uf ∈ E, exists, such that: 
Part A: 

 
( )

*

, ,      f E

f E

f v v u v E

f u

 = ∀ ∈


=
                   (9) 

Similarly, each element of u ∈ E defines an element of fn ∈ E' such that: 
Part B: 

( )

*

, ,       u E

u E

f v v u v E

f u

 = ∀ ∈


=
                  (10) 

4.1. The Theorem for Wavelet Transform 

This is constituted by the following definition: 
Part A: 

( ) ( )1 2, df
x bCWT a b a f x x

a
φ

∞−

−∞

− =  
 ∫              (11) 

Part B:  
Involves demonstrating the existence of the inverse transform [2]. 

4.2. The Theorem for Information Entropy 

This is constituted by definition: 

( ) ( ) ( )logb i b i
x

H X p x p x
∈Θ

= −∑                  (12) 

But the sample is not recoverable; it cannot be obtained its inverse transfor-
mation, and there is no recoverable application. 

5. Characterization of Regularity 

The Parseval theorem and the central limit: by definition, regularity indicates the 
variation of a number, with respect to its mean. 

5.1. The Parseval Identity as It Relates to Wavelet Transform 

In wave transformation, it is used to characterize the regularity of f in L2, as 
measured by the Sobolev norm, which indicates the Parseval identity. 

In other words: 
Applying the Parseval identity: 

 

( ) ( )

( ) ( ) ( )
( )

2 2

2

2
2 2 2

d d 1 d, d
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2π 2π
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a b aCWT a b P

aa

aaa F F a
a a

ω ω

ω
ω ω ω ω ω

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

∞ ∞ ∞ ∞
∗

−∞ −∞ −∞ −∞
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⋅ =  

 

Ψ 
Ψ = 

 

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
  

(13) 

NOTE: The change in integration is performed in accordance with Fubini, 
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and the second integral on the right side is Cψ. 
Applying the Parseval equality again: 

( ) ( ) ( )2 2 21 d d 1 d d
2πf

Ca bCWT a F f t t
C a C

ψ

ψ ψ

ω ω ω
∞ ∞ ∞

−∞ −∞ −∞

= =∫ ∫ ∫
   

 (14) 

With the amount of energy from the signal as a function of the energy is de-
composed in each element or component in frequency bands (wavelets). 

5.2. Regularity Basis of Entropy 

The definition of entropy comes from the central limit theorem, that is: 
Suppose that m is a measure of probability in the data from the real signal, 
We have: 

( ) 2 2d 0   and    dxm x x m x σ= =∫ ∫                 (15) 

Then, for any interval of A: 

( )( )
2

2

2

1lim e d
2π

x

n
m m m m A n xσ

σ

−

∗ ∗ ∗ ∗ = ∫           (16) 

Convergence in (16) shows the definition of entropy. 
From this definition comes: 

5.3. Approximate Entropy Algorithms ApEn and Etropy Sampler  
(SamPEn) 

Derived from Shannon’s work, Pincus [8] proposed the approximate entropy 
algorithm (Approximate Entropy) ApEn, which measures regularity from the 
mathematical analysis [9] point of view. 

ApEn algorithm description: 
Given an N sample, time series { }1, , , ,N i NX x x x=   , two input parameters 

m and r, must be incorporated. These belong to parameters from the correlation 
dimension postulated by Grassberger and Procaccia [10]. Parameter m corres-
ponds to the length of vectors um(i), generated from the data, and which corres-
pond to the number of samples in the series. Parameter r is the tolerance, which 
is the distance to be defined, which evaluates the points immediately next to a 
reference point. 

According to length value m, vectors ( ) ( )1 , , 1m mu u N m− +  are created, 
where each vector is expressed as ( ) ( ) ( ) ( ), 1 , , 1mu i u i u i u i m= + + −   . These 
vectors represent m consecutive values of time series x, starting with the first 
event-tracking element, as shown in Figure 1. 

The distance between vectors um(i) and um(j) is defined as the maximum of 
the absolute value of the difference between vector components: 

( ) ( ) ( ) ( )( )
1, ,

, maxm m k m
d u i u j u i k u j k

=
≤ + − +  



           (17) 

If ( )m
iC r  it is the probability that vector um(j) is close to vector um(i), i.e. the 

number of j(1 1j N m≤ ≤ − + ) such that ( ) ( ),m md u i u j r≤    divided by the  
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Figure 1. Calculation for m = 2. 

 
number of vectors extracted from the time series. For (1 1i N m≤ ≤ − + ), the 
probability of being within the range is given by: 

( )
( ) ( )( )Number of  such that ,

1
m mm

i

j d u i u j r
C r

N m

≤  =
− +

        (18) 

Each element of ( )m
iC r  then measures the regularity, or frequency, of simi-

lar values, within length m with r tolerance [11]. 
( )m

iC r  is constructed by (19): 

 ( ) ( )
1

1

1
1

N m
m m

i
i

C r C r
N m

− +

=

=
− + ∑                  (19) 

 ( )m rΦ  is defined as log that of each ( )m
iC r  element average of i, and is 

expressed as follows: 

( ) ( )
1

1

1 log
1

N m
m m

i
i

r C r
N m

− +

=

Φ =
− + ∑

               
 (20) 

Therefore, ApEn is estimated as follows: 

( ) ( ) ( )1, , m m
nApE m r N r r+= Φ − Φ                 (21) 

Sample Entropy (SamPEn) 
An improvement to the ( ), ,nApE m r N  algorithm was presented by Richman 

and Moorman [12]. This algorithm was called Sample Entropy SampEn, which 
has the advantage of being less dependent on time series size. Thus: 

 ( ) ( )
1

1 N m
m m

i
i

U r C r
N m

−

=

=
− ∑                    (22) 

 ( ) ( )1 1

1

1 N m
m m

i
i

U r C r
N m

−
+ +

=

=
− ∑                   (23) 

Equations ((22) and (23)) define vector SampEn elements using the number of 
pairs um(i), um(j) that comply with parameter r, so long as ( ) ( ),m md u i u j r≤   . 
That said, i ≠ j, and so the pairing of a vector with itself is not taken into ac-
count. 

Richman and Moorman defined the sample entropy as: 

( ) ( )
( )

1

, lim ln
m

n mN

U r
SampE m r

U r

+

→∞
= −                 (24) 

Which is estimated in statistics [13] as: 

( ) ( )
( )

1

, , ln
m

n m

U r
SampE m r N

U r

+

= −
               

 (25) 
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6. Approach of the Series 

With the definition of regularity, it is necessary to introduce an approach to se-
ries from a signal to show the components that can be disaggregated and have 
the same degree of regularity of these components. 

6.1. Axiomatic Definition of Multiresolution Using Wavelets 

An intuitive idea for the division of the spectrum by series of discrete waves, us-
ing filters is represented in Figure 2. 

Definition 2 [2] 
A multiresolution structure is a sequence of subspaces {Vj} in L2(R), such that: 

( )
{ }

( ) ( )

1

2

1 1

1

1) 0

2) It is dense in

3) 0

4) 0

5) 2

j j

jj

jj

j j j

j j

V V j

V L R

V

V V W j

f t V f t V

+

+ +

+

⊆ ∀ >

=

= ⊕ ∀ >

∈ ⇔ ∈





                 

 (26) 

The symbol ⊕ should be interpreted as the orthogonal sum of two subspaces. 
From Figure 2, one can observe that Wj + 1 is the orthogonal complement of 

Vj + 1 in Vj. Wj is the subspace of a band limited to the 12 , 2j j− − +    interval, 
and the orthonormal basis for this subspace is the function {ψn,m(t)}. 

Theorem 2: any succession of spaces satisfying the five equations in definition 
(26), shows that there is an orthonormal basis for L2(R) such that: 

( ) ( )2
, 2 2 , ,m m

m n t t n m n Zψ ψ− −= − ∈               (27) 

 

 
Figure 2. The spectrum is symmetrical in the vicinity of zero. The division into Vi spaces 
(Vi ⊂ Vi-1), results in Wi spaces. (The width of VJ and WJ is 2j/2 they have a unitary norm). 
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Beginning with: {ψm,n}, n∈Z an orthonormal basis for Wm, where Wm is the 
orthogonal complement of Vm in Vm − 1. A demonstration can be seen in [1]. 

By virtue of the previous theorem, the simple choice of a0 = 2 and b0 = 1 gene-
rates an orthonormal basis of functions. 

Observation: From the multiresolution analysis, we have, therefore, two 
spaces and for each of them, a set of generating functions. 

As V1 ⊆ V0 and W1 ⊆ V0, the functions of these subspaces are boundaries (in 
L2) FOR linear combinations of the base function V0. There is a sequence {v(k)}, 
such that: 

 ( ) ( ) ( ) ( )2    ratio of two scales
k

t v k t kφ φ= −∑            (28) 

( ) ( ) ( )( )1 22 1 2sin 2π 2 2
k

t v k c t kφ = −∑             (29) 

Reorganizing internal parentheses: 

( ) ( ) ( )( )1 22 1 2sin 2π 1 2 2
k

t v k c t kφ = −  ∑
          

 (30) 

In accordance with the sampling theorem results: 

( ) ( ) ( )1 22 2 sin π 4 πv k k k kφ= =                 (31) 

And since φ(t) satisfies the equation between two scales, it is called scale func-
tion. 

In the same way, {w(k)} is a sequence such that: 

( ) ( ) ( ) 1 22 2
k

t w k t kψ ϕ= −∑                   (32) 

Resulting in: 

( ) ( ) ( ) ( )( )1 2 1 22 2 2 2 2w k k k kψ ϕ ϕ= = −             (33) 

The following relationships result from orthogonality: 

 ( ) ( ) ( ),t t m mϕ ϕ δ− =
                   

 (34) 

 ( ) ( ) ( ),t t m mψ ψ δ− =                    (35) 

( ) ( ), 0t t mϕ ψ − =
                    

 (36) 

where δ(m) is a generalized function or a Dirac delta [1]. The internal product 
between the functions is symbolized by 〈,〉. 

The V spaces are generated by scale functions φ(t), and similarly, W spaces are 
generated by wavelet functions ψ(k). 

In other words, wavelet functions and scale functions are used as blocks on 
which to construct or decompose the signal at different levels of resolution. 
Wavelet functions will generate different versions of details of the composite 
signal and the scale function will generate the approximate version of the signal, 
object of the decomposition. This can be mathematically represented by the fol-
lowing equation: 

 ( ) ( ) ( ) ( ) ( )
1

/2

0
2 2

J
j j

j
k k j

f t c k t k d k t kϕ ψ
−

=

= − + −∑ ∑∑
        

 (37) 
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where, c is the coefficient of the scale, dj is the coefficient of the wavelet in scale j, 
φ(t) and ψ(t) are the functions scale and wavelet, respectively, and k is the coeffi-
cient of translation.  

Partial conclusion: This main result proposed by French mathematician Yves 
F. Meyer was the core for posterior (section VII) assessment in power quality. 
Equation (37) has all three central elements proposed in this article: reflexivity, 
regularity, and it is a series. 

6.2. Multiscale Entropy (MSE) 

With algorithms ApEn [14] and SampEn, the loss of regularity in the time series 
is measured. Madalena et al. [13] have proposed taking into account a reconsti-
tution of the time series on scales. With this, they have managed to increase the 
classification level of the pathologies that they study. This decomposition of the 
series is known as the Multi-scale Entropy (MSE) algorithm. The decomposition 
process is shown in Figure 3 and is described below. 

Description: 
From succession { }1, , , ,i Nx x x  , a new series y(τ) emerges, whose terms are 

the average of the consecutive elements of the original series, without overlap-
ping. τ corresponds to a scale factor. Each element generated in the time series is 
calculated by Equation (38): 

( )1 1

1 ,     1
j

j i
i j

Ny x j
τ

τ

ττ τ= − +

= ≤ ≤∑                   (38) 

For scale one (τ = 1), time series y(1) is simply the original time series. The 
length of each new time series generated is equal to the length of the original se-
ries, divided by factor τ. 

Finally, each new time series represents a new τ (factor scale function), which 
is processed by the SampEn, thus obtaining the entropy of the signal at multiple 
scales, or MSE. 

7. Applications for Power Quality 

The three characteristics cited, reflexivity, regularity, and series, are indispensa- 
 

 
Figure 3. Two series construction from entropy. Adapted from reference [13]. 
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ble properties for the design of a quality indicator. 
Quality itself can be classified as the valuation that is given to a physical object 

that comes from the production process of another such object. This representa-
tion shows its own degree of excellence. For this, it is necessary to have an in-
strument which allows measurement of a signal from the physical object to be 
evaluated. This signal must be able to be placed in a comparative framework, 
where it is demonstrated that the degree of deviation from a reference is mea-
surable. This deviation speaks to its degree of quality. 

7.1. Definition 3—Measurement of Excellence 

It is possible to normalize the workspace with a scalar type value, this will be a 
representation of the degree of excellence of a measured point versus its refer-
ence value, it is a normalized value, and since the signal analysis is equivalent to 
the signal noise ratio. 

7.2. Definition 4—The Quality Index 
2

2
i

r

x
QI

x
= ∑                         (39) 

In Equation (39), xi indicates the components that are deviated from reference 
xr. 

In this way, the definition of the quality index is reached. You can use conti-
nuous parameter or discrete parameter space {Ln, ln}. As it is a work that can be 
carried to the transformed frame, the measure and integral within will be de-
fined according to Lebesgue [2] [15] and the analysis can be performed in dis-
crete space. 

7.3. Representation of the Quality Index  
from the Wavelet Transform 

( ) ( )( )
( ) ( )

1 2/2

0
2

2 2
J

j j
j

k j

k

d k t k
QI

c k t k

ψ

ϕ

−

=

−
=

−

∑∑

∑
              (40) 

With this definition, the level of deviation of the detailed energy values, with 
respect to energy values from the thick part of the signal, or low frequency, is 
measured. 

7.4. Representation of the Quality Index from the Theory  
of Entropy 

( )
( )

2

1
2

J

j
k j

k

MSC
QI

MSC
==

∑∑

                   

 (41) 

where MSC is multiscale entropy, k is the scale where the energy of major im-
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portance is concentrated against the rest. This will be the level of quality devia-
tion. 

8. Framework for Evaluation—Modified pqAT Technique  
(MpqAT) 

Much work has been done on the classification and characterization of distur-
bances [16]-[26]. 

Here a modification to the power quality Analysis Technique-pqAT [27] is 
made. This is an algorithm whose objective is the characterization and classifica-
tion of disturbances in the electrical system. This new technique, MpqAT, is a 
previous step to quality maps [28]. 

The signal analysis method starts from the definition of the instantaneous 
power tensor, and the transformation is then performed on the frame of the 
transformed wavelet [1]. There, the parameters of active, reactive, and distur-
bance power are determined. 

Figure 4 shows the structure of the technique for power measurement, and  
 

 
Figure 4. Structure in MpqAT block diagram. 
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the classification of events in power systems. 
In Figure 4, we see seven blocks, divided into three structures. The structure 

represented by the blocks of thick and continuous trace, attempts to characterize 
transient phenomena in the transformed plane. Then, a dotted structure is 
shown, that is basically an inference engine. This block identifies rules for iden-
tification of the type of phenomenon that has been registered. Two blocks are 
shown, with continuous but tenuous trace, where the calculation of an indicator 
of deviation of quality or error is performed. A description of each of the blocks 
is given below. 

1) Block 1 measures voltage, and current is measured by an instrument or by a 
SCADA system (as is done in some systems at present) [24] [25] [26] [27] for the 
monitoring of various operating points in the system. The information obtained 
proceeds to Block 2, where the voltage and current are transformed in the frame 
of the power tensor, and then the multiresolution or multiscale algorithm will be 
applied to each signal, depending on the case. 

2) In Block 3, the quality index is calculated. 
3) Block 4 represents the database, with which planning and operation of the 

monitored system can be achieved. This is used to feed the inference engine, 
which is the block indicated by the number four. It defines the premises upon 
which the load identification and classification of transient events are made. This 
block, called the system database, also feeds the calibration block. 

4) Block 5: This block examines events and has to do with a decrease in vol-
tage value. The main events characterized here are: 

• Line energization. 
• Motor ignition. 
• Capacitor bank start-up. 
• In the block, there may be a classification of voltages, due to errors, which 

shows all aspects of error characterization (possibly followed by the perfor-
mance of the protection system). 

• These premises, accompanied by the inference engine, produce results pre-
sented by the classification block. 

5) Block 6: In the calibration block, two parameters are set, on which the en-
tire multiresolution analysis depends, making the method entirely dependent on 
them. These parameters are: the sampling frequency and the number of decom-
position levels (in the case of wavelets or signal multiscale in the case of entropy). 
In the case of any number of levels, because it is a dyadic decomposition (divi-
sion of the frequency axis into octaves), the signal size will also be limited to a 
multiple number of samples, which agrees with most instruments that use the 
FFT. 

The most current literature shows significant advances in the treatment of in-
formation from the point of view of classification techniques, using waveform 
transform. From pioneering studies [27] to the results presented in [16] [17] [18] 
[19], two trends are observed: the first is analysis, and the second classification. 
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With the MpqAT technique, an attempt is made to unify these two criteria, and 
give unity to the way to determine three typical effects of electromagnetic phe-
nomenon in three-phase systems: imbalance, harmonics and transients. 

9. Conclusions 

Two traditionally used techniques have been compared in signal analysis, en-
tropy and wavelets. The comparison has focused on three criteria: reflexivity, 
regularity, and series construction. 

The article showed that for the case of wavelet theory, these three criteria are 
perfectly fulfilled. In the case of entropy, the concept of a series in an “artificial” 
signal shape is introduced, but the case of reflexibility is not fulfilled. Conse-
quently, entropy is a valuable tool for regularity measurement only. 

Additionally: 
• Quality has been defined from two main points of view, as a series of 

attributes of a physical object, and a degree of excellence that must be quali-
fied according to that set of attributes. 

− The first part of the definition involves decomposing the attribute into a 
measurable series using the property of regularity. The second proposes the 
idea of quantifying and the degree of excellence through definition of quality 
indexes. This is based on those conservative-type parameters that are deter-
mined through energy definitions in the transformed frame—Parseval’s 
theorem. 

− Finally, any technique that exhibits decomposition in reflexivity, regularity, 
or series is a candidate for use as quality evaluation framework.  

This article will close with a proposal to evaluate power quality using the 
structure of an expert system, dedicated to the measurement and classification of 
perturbations, a system called MpqAT. The novelty of this technique is that, 
through use of the same structure, analysis of both transient and stationary per-
turbation in any type of frame of reference is unified. System topology has been 
considered in the most general way possible, and is based on the results obtained 
by the series criteria, regularity, and reflexivity. 
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