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Abstract 
One of the most complex questions in quantitative biology is how to manage 
noise sources and the subsequent consequences for cell functions. Noise in 
genetic networks is inevitable, as chemical reactions are probabilistic and of-
ten, genes, mRNAs and proteins are present in variable numbers per cell. Pre-
vious research has focused on counting these numbers using experimental 
methods such as complex fluorescent techniques or theoretical methods by 
characterizing the probability distribution of mRNAs and proteins numbers 
in cells. In this work, we propose a modeling based approach; we build a ma-
thematical model that is used to predict the number of mRNAs and proteins 
over time, and develop a computational method to extract the noise-related 
information in such a biological system. Our approach contributes to ans-
wering the question of how the number of mRNA and proteins change in liv-
ing cells over time and how these changes induce noise. Moreover, we calcu-
late the entropy of the system; this turns out to be important information for 
prediction which could allow us to understand how noise information is gen-
erated and expanded. 
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1. Introduction 

Randomness, or noise, in biological systems has long been predicted from basic 
physical principles [1]-[8] and later on by observations of phenotype heteroge-
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neity [7]. But the confirmation came later with [9], [10] and [11] who showed 
that mRNA and protein variability may lead to important a source of noise in 
biology. Researches in [12], [13], [14] and [15] have reported that the number of 
proteins translated from an mRNA obeys a geometric distribution but the dis-
tribution describing the number of protein remaining once mRNA is degraded 
will no longer be geometric. Various techniques have so far been used to moni-
tor and capture those numbers among which fluorescent probes or green fluo-
rescent protein variants which allow the quantification of protein levels in living 
cells by flow cytometry or fluorescence microscopy [16] [17]. The first quantita-
tive study collectively examines the noise associated with the principal step of 
central dogma of molecular biology in replication, gene activation, transcription, 
translation and the enslaving intracellular environment, and suggested that 
autorepression of replication and transcriptions suppresses noise. This then leads 
to examination (by analysis, modelling and simulation) of the role of noise in bi-
ology relying on the similarity between biological and engineering systems—see 
[7], [10] and [18]. In general, noise may be considered either intrinsic or extrin-
sic to a specific gene circuit, and within a specific gene circuit there are three 
different effects of noise: i) noise is negligible with little or no influence over 
function; ii) noise is detrimental to function and gene circuit; iii) noise is impor-
tant for circuit function, and by using simple assumptions, it is possible to 
evaluate these effects. The assumption we use in this paper is dynamic correlation 
between the noise level of molecules (mRNA/protein) and the change in the prob-
ability of having those molecules in given interval of time. Our paper is organ-
ised as follows. In Section 2, we introduce our model of the dynamic of the 
number of mRNA and proteins after a brief review of previous models. In Sec-
tion 4, we present our method and algorithm for solving the (mRNA and pro-
tein) prediction problem. In Section 5, we present the simulation results, fol-
lowed by a discussion of those results, and end this work in Section 6 with a 
short conclusion. 

2. Somes Examples and Motivations 
2.1. Birth-Death Model 

To understand noise in biological systems, biochemical circuits and genetic 
networks are often used as the measured noise properties to elucidate the struc-
ture and the function of the underlying gene circuit [6] [8]. Also recent re-
searches [13] and [14] have clearly established the existence of dynamic correla-
tion between genetic network and mRNA/protein variability. In the next sec-
tion we will present previous models with their strengths and weaknesses. The 
preliminary model used was a simple birth-death Markov process which cap-
tures noise in a biochemical process. This model showed that noise in the 
population was a consequence of the change in the parameters of the system 
over time and was used to explore the temporal change of the number of pro-
teins in a biological system. The time course of the number of proteins was 
modelled consequently by the equation 
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( ) ( )
d

d
n t

n t
t

α γ= −                        (1) 

with parameters α  representing the rate of production and γ  the rate of de-
cay of number of proteins ( )n t . However, such continuous time formulation 
neglects the discrete nature of proteins and the random timing of molecular 
transition [17] because the actual time evolution may follow any one of a num-
ber of trajectories, and hence sufficiently many trajectories have to be examined 
to obtain statistics that converge. In the next section a probabilistic approach 
using the extended versions of Kolmogorov’s equations is used to explore ran-
domness in the system.  

2.2. Kolmogorov’s Equations Based Model 

In general, the Kolmogorov’s equations are used as master equation to capture 
the distribution of chemical components of the gene circuit over time. The state 
of the system is defined by a vector ( ) ( )1 2, , , Nn t n n n=  , where ( )in t  
represents the i-th component of molecule n at time t; ia  and iv  are internal 
parameters representing respectively the propensity of the dynamic and the ac-
tual change in ix , resulting from the change in the previous state The probabil-
ity, ( ),p n t , that the system evolves into the state ( ) ( ),n t n t=  at time t is de-
scribed by the following partial differential equation: 

( ) ( ) ( ) ( ) ( )
1

, N

j j j j
j

p n t
a n p n a n p n

t
ν ν

=

∂
= − − −

∂ ∑            (2) 

This equation makes sense only if we assume that the probability for two or 
more reactions to occur in the time interval dt  is negligible compared to the 
case when only one reaction occurs. In addition, (2) can only be solved numeri-
cally for relatively simple systems. In a recent work by [15], a similar mathe-
matical model was used for gene expression and an approximate solution was 
proposed to the PDE; the model was based on the assumption that gene expres-
sions are Brownian motions. They considered a two-stage model of gene expres-
sion, assuming that the promoter was always active and so had two stochastic 
variables (the number of mRNA and the number of proteins). The probability of 
having m mRNA and n proteins at time t was given by the following master 
equation: 

( ) ( )
( )
( )

,
0 1, , 1 , 1 ,

0 1, ,

1 , 1 ,

           1

           1

m n
m n m n m n m n

m n m n

m n m n

P
P P P P

t
d m P mP

d n P nP

ν ν− −

+

+

∂
= − + −

∂
 + + − 
 + + − 

              (3) 

The meanings of the rates in (3) are: 0ν  is the probability per unit time of 
transcription, 1ν  the probability per unit of translation, 0d  the probability per 
unit time of degradation of an mRNA, and 1d  the probability per unit time of 
degradation of a protein. The authors use a particular generating function and 
transform (3) into a first order PDE which is solved using a simple approxima-
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tion. However, this model works only on a single cell, and all rates 0ν , 1ν , 0d  
and 1d  are fixed over time. Further, by assuming that the protein synthesis oc-
curs in bursts ( )0m = , the authors derive the Kolmogorov (master) equation 
for gene expression that considers only proteins, by implicitly including mRNAs 
(since n and m seem to be correlated over time). In the next section, we shall 
re-examine this model and propose a new one in order to overcome the above 
limitations. 

3. The New Model 

Our setup is motivated by the necessity to overcome the limitations from the 
previous models by increasing the cell numbers and relaxing the restriction on 
constant parameters. We propose a new, flexible, and more general, model for a 
population of N cells. This model is an extended version of the previous Kol-
mogorov’s equation with additional cell-dependent constraints. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0
0 0 0 0

1

0 0
0 0 0 0

1

, ,
, , , ,

, ,
, , , ,  

N

j j j j
j

N

j j j j
j

p m t m t
a m p m t m t a m p m t m t

t
p n t n t

a n d p n d t n t a n p n t n t
t

ν ν
=

=

∂
= − − − ∂


∂ = − − − ∂

∑

∑
 (4) 

The parameters of the model have an autoregressive form: 

( ) ( )
( ) ( )

1 1 1

1 1 1

j j

j j

a m a m

a n a n

ϑ θ

ϑ θ
−

−

= +


= +
                     (5) 

The transcription, translation and degradation rates are assumed to vary from 
one cell to another as  

0.005
0e j

jν ν −=  and 0.001
0e j

jd d −=                  (6) 

We assume for [ ]0,k N∈ , the first 1, , kν ν  are sequences of transcription 
rates and the late 1, ,k Nν ν+   are sequences of translation rates with 0ν  being 
the fixed initial rate. Our model, which is composed of the Equations (4)-(6), is 
well adapted to various real biological promoter change. We shall notice that 
Equation (4) is a system of 200 equations with 100 by 2 unknowns, which is 
likely to be only numerically solvable after some good approximations. To effi-
ciently predict the number of mRNAs and proteins over time, we shall rely on 
the following assumptions. 

Proposition 1. Over time the number of mRNAs/Proteins is perfectly corre-
lated with the probability mass functions of mRNAs m(t) and proteins n(t) re-
spectively. That is, ( ) ( ) 0,m t p m t m=  and ( ) ( ) 0,n t p n t n= , where 0m  and 

0n  are initial measurements. 
Proof: The proof follows from our algorithm and solution in this paper.  
Proposition 2. Let ( )n n t=  be the number of proteins and ( ),n tη η= ∆  be 

the noise generated by n  proteins (or m for mRNAs) in the same time interval 
t∆ . Then there exists a unique constant C such that ( ) ( ), ,n t Cp n tη ∆ = ∆  which 

means that noise is cells is proportionally correlated to the probability distribu-
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tion of protein and mRNA numbers. 
Proof: 
Let ( ),n tη η= ∆ , ( ) ( ) ( )1n t n t n t∆ = − −  be respectively the noise and the 

number of proteins in a cell. By the simple decomposition of numbers of mRNA/ 
proteins, ( )( ) ( )( ),p n t p n t∆ = ∆  and ( )( ) ( )( ) ( )( )1p n t p n t p n t∆ = − − , (by 
the additivity property of probability distribution. We also have, using the  

definition, that n
t

η ∆
=
∆

, ( ) np n
N
∆

∆ =  and n N=∑ . This implies that 

( )( ) ( )( ) ( ) ( ) ( )1np n t Np n t n t n t n t
N
∆

∆ = ⇒ ∆ = ∆ = − −  multiplying the right side 

of above with t
t

∆
∆

 and we obtain ( )( ) ( ) ( )1n t n t
N p n t t

t
− −

× ∆ = ∆
∆

. 

since ( ) ( ) ( )1
,

n t n t
n t

t
η

− −
∆ =

∆
 

and ( )( ) ( ),N p n t n t tη× ∆ = ∆ ×∆  

thus ( )( ) ( ),N p n t n t
t

η× ∆ = ∆
∆

 

leading to ( )( ) ( ), ,C p n t n tη× ∆ = ∆  

Finally we conclusion that NC
t

=
∆

.  

Here we put 
0

Tt
N

∆ =  where T  is the total time, 0N  the total number of  

points in the simulation and N  is the total number of mRNA or proteins in a 
single cell. In the next section we introduce our method and algorithm for solv-
ing Equations (4)-(6). 

4. Method and Justification 

We propose a straightforward method of solving the above problem based on 
numerical approximation via the following algorithm. As the analytical solution 
to Equation (4) is (at least) hard to obtain, even for a “reasonable” number of 
cells, a numerical algorithm using an adapted stochastic simulation approach is 
proposed in this paper. In our algorithm, two random variables ( )m t  and 
( )n t  determine the temporal evolution of the system. The variable kτ  is the 

time for the next event to occurs, the probability density of an event (appearance 
of m(t) or n(t)) is evaluated based upon our model (4), so as to give a better 
flexibility and applicability to the approach in comparison with previous ones. 
The main purpose of creating such an algorithm is to simultaneously simulate 
the process noise, while predicting the online probability mass function (≈prob-
ability density) of each event over time. An important assumption here is that 
the hypothetical probability distribution functions (p.m.fs) of the translation 
and transcription rates are of the form ( )~ 2,0.05j Nν  and the mRNA and 
protein degradation rates are ( )~ 2,0.05jd N . This is in line with the exis-
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tence of a one-to-one relation between the dynamic and distribution for pre-
dictable dynamic systems. We will present our algorithm in the next section of 
our work. 

Our Algorithm 

Input: Initial data 0 0,m n  
Outputs: ,m nP P  

1. Set ( ) ( )0 0 0 0: , :a m m a n n= = . 
2. For j = 1:k do                    [k = number of iterations] 

a. Let ( ) ( )~ 2,0.05 , ~ 2,0.05j jN d Nν  be the changes associated to a 
single event; 

b. Compute ( ) ( ) ( ) ( )1 1,j j j ja m a m a n a nθ ϑ θ ϑ− −= + = + ; 
c. Compute ( ) ( ) ( ) ( )1 , 1m m n nj j j jα ϑα θ α ϑα θ= − + = − + ; 
d. Compute 

( )
( )( ) ( )

( )
( )( ) ( )1 2,

1 1
j m j j n j

m n
j j

v j v j d j d j
P j P j

v d

α ξ α ξ− − + − − +
= =

+ +
, 

where ( ) ( ) ( ) ( )1 2~ 10 , ~ 10j Po j Poξ ξ ; 

e. Normalize ,m nP P . 
3. Output ,m nP P . 

End 

5. Simulations and Results 

The initial data here is a matrix of randomly generated numbers between one 
and fifty for mRNAs and between one and forty for proteins. The rows represent 
the cell numbers and the columns are the number of mRNAs/proteins counted 
at each time interval. Therefore we have 100 cells (population) and 50 samples 
taken at a time interval of one unit, and the total time of 50 time units in the en-
tire population; (a unite could be second, minute or hour depending on the ex-
periment). The bar and image pots of the initial data are shown in Figure 1. 

 

 
Figure 1. These subfigures give plots of the initial randomly generated data with 50 sam-
ples for proteins. A sample is the number of protein in cells for a fixed interval of time. 
This image plot support the presence of various level of noise in the biodynamic system.  
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5.1. Results 

Our results will show various figures related to our solutions. We first plot the 
variability of the number of protein in cells over time for a sample of 50. 
Next, we plot the solutions of (4) over time and explain their relevance for our 
work. pmf (probability mass function) of the mRNA and proteins in separate 
graphs for each sample, and further we plot the histograms of the distribution 
and finally the scatter plot of nP  against mP . Our observations are presented in 
the caption of each figure. 

It can be seen that all probability values are between 0.1 and 0.9 and do not 
overlap in most of the cases; this is an indication that mRNAs and proteins 
number may be dynamically dependent, and therefore correlated. Next, we pre-
dict the number of mRNAs and proteins ,j jm n  using a straightforward prob-
abilistic concept which states that “a good value of m (or n) depends on a good 
guess of p”. The prediction for the number of mRNA and Protein ,j jm n  (for 
iteration 1,2,3, ,100j = 

) are then given by the following Markov equations. 

( )
( )

0

1

0 * ; if 0

* ; if 0
m

j
m j

P m j
m

P j m j−

 == 
>

                   (7) 

( )
( )

0

1

0 * ; if 0

* ; if 0
n

j
n j

P n j
n

P j n j−

 == 
>

                   (8) 

Leading to the following results for mRNA 

5.2. Entropy Distribution 

To measure the uncertainty associated with each sample of mRNA or proteins 
count, we introduce the concept of entropy over a population, which is calcu-
lated as follows:  

(for mRNAs) ( ) ( ) ( )( )
1

log
N

j j
j

H m p m p m
=

= −∑            (9) 

(for Proteins) ( ) ( ) ( )( )
1

log
N

j j
j

H n p n p n
=

= −∑            (10) 

Computational results are shown in the figures below in the discussion section. 

6. Discussion 

We have shown (Figure 2) that, one may calculate the distribution of the num-
ber of mRNAs and proteins during gene expression, according to our model in 
Section 3. Based on these distributions (Figure 3 and Figure 4) we were able to 
predict the number of proteins and mRNAs over time. We use two main as-
sumptions: i) The initial number of mRNA and proteins must be known; and ii) 
all cells must present similarity (functional, structural, architectural and/or dy-
namical). Our results show that both the protein and mRNA distributions are 
typically non-symmetric and may not be unimodal (Figure 5, Figure 6 and 
Figure 7). Consequently the mean and the mode are significantly different, and  
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Figure 2. These figures are a recorded solution of the main PDE, showing a continuous random change in the probability distri-
bution of mRNA (left) and proteins (right) in all 100 cells. It can be seen that most probability values are between 0.3 and 0.7, this 
indicates that very low and/or very high probability values are rare and our prediction approach is suitable to this problem. 
 

 
Figure 3. Shows scatter plots of the probability distribution of both number of mRNA and proteins over time for four different 
samples, plotted on the same graph. Each column represents the number of mRNA or proteins in all cells at a specific time period.  
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Figure 4. Four steps ahead prediction of mRNA numbers in all cells using Equations ((7) and (8)), for j = 1, 2, 3, 4. This result 
shows a fast decrease of probability values of mRNAs in cells iteration, indicating that mRNAs have a short life time, which is in 
accordance with biological evidence. 
 

 
Figure 5. Shows the frequency of proteins related to Pn values in four generations. The optimal for proteins is around 0.4 (except 
generation 3), this indicates that on average 40% of probability level will give a better proteins count over time. The frequency 
distribution shows in all cases an asymmetric distribution, which indicates protein numbers are not normally distributed. 
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Figure 6. Shows the online scatter plots of nP  against mP  in four different cells. These figures confirm that both processes are 
strongly correlated over time in each of the cells, indicating that mRNA and protein dynamics (count) are depend over time. This 
will also hold for m and n since probabilities and mRNA/proteins are correlated. 
 

 
Figure 7. Shows the plot of entropy distributions over time in a chosen cell. It can be seen that the maximum entropy reached 
earlier for proteins and that the right tail is also longer in protein compared to that of mRNA. This may suggest that proteins have 
a longer life time, compared to mRNA. This evidence is in line with biological knowledge. The next section gives some discussion 
of the results. 
 

the standard deviation is clearly not constant over time. Such distributions are 
poorly characterized by Gaussian characteristics. This paper was primarily de-
signed to promote a modelling culture among noise biologists, modellers and to 
cope with the noise source and consequences in cell development. 
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7. Conclusion 

The advantage of counting single molecules (mRNAs or proteins) is that, one 
obtains the probability distribution of molecules corresponding to each stage of 
the “central dogma” of molecular biology for each single gene. The mathematical 
model developed here differs from those that cellular biologists are accustomed 
to encountering [3] [5]. Instead of having a continuous and deterministic model 
of kinetic behavior, the mathematics of gene expression may be described by 
discrete stochastic models that take into account the numbers of molecules in-
volved at both the mRNA and protein levels variability. Figure 7 shows the plot 
of entropy distributions over time in a chosen cell. We have found that the 
maximum entropy reached earlier for proteins in comparison to mRNAs, the 
right tail density is also longer in protein in comparison of that of mRNA. This 
result clearly suggests that proteins have a longer life time, compared to mRNA. 
This evidence is in line with biological principles.  
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