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Abstract 
This research paper represents a numerical approximation to three interesting 
equations of Fisher, which are linear, non-linear and coupled linear one di-
mensional reaction diffusion equations from population genetics. We studied 
accuracy in term of L∞  error norm by random selected grids along time le-
vels for comparison with exact results. The test example demonstrates the ac-
curacy, efficiency and versatility of the proposed schemes. It is shown that the 
numerical schemes give better solutions. Moreover, the schemes can be easily 
applied to a wide class of higher dimension non-linear reaction diffusion equ-
ations. 
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1. Introduction 

Reaction diffusion equations arise as models for the densities of substances or 
organisms that disperse through space by Brownian motion, random walks, 
hydrodynamic turbulence, or similar mechanisms, and that react to each other 
and their surroundings in ways that affect their local densities [1]. Reaction 
diffusion models are in themselves deterministic, but they can be derived as 
limits of stochastic processes under suitable scaling. Specifically, they provide a 
modelling approach that allows us to translate assumptions about stochastic 
local movement into deterministic descriptions of global densities [1] [2]. 
Reaction diffusion models are spatially explicit, describe population densities, 
and treat space and time as continuous [1] [2] [3]. There are three major types of 
ecological phenomena that are supported by reaction diffusion equations: the 
existence of a minimal patch size necessary to support a population, the presence 
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of travelling wave fronts corresponding to biological invasions, and the formation 
of spatial patterns [1] [2] [3]. 

1.1. Diffusion 

Diffusion is a description of movement that arises as a result of an object or 
organism making many short movements in random directions. The diffusive 
description of random motion emerges as a continuum limit of such random 
walks when the length x∆  of each step and the time t∆  required for each 
step go to zero in such a way that the ratio ( )2x t∆ ∆  remains constant. To 
understand how this works it is useful to consider a simple example in one 
space dimension. Suppose that an organism moves along a line by moving a 
distance x∆  to the left with probability 1/2 or a distance x∆  to the right 
with probability 1/2 at each time step t∆ . Suppose that ( ),x tρ  is the 
probability that the organism is at location x at time t. To arrive at that point 
at that time it must have been either one step to the left at time t t− ∆  and 
then moved to the right, or one step to the right and have moved to the left. 
Thus, we have  

( ) ( ) ( )1 1, , ,
2 2

x t x x t t x x t tρ ρ ρ= + ∆ − ∆ + − ∆ − ∆
           

(1) 

If we subtract ( ),x t tρ − ∆  from both sides and divide by t∆  in Equation 
(1), we obtain,  

( ) ( )

( ) ( ) ( )

, ,

1 , 2 , ,
2

x t x t t
t

x x t t x t t x x t t
t

ρ ρ

ρ ρ ρ

− − ∆
∆

= + ∆ −∆ − − ∆ + − ∆ −∆  ∆
       

(2) 

Suppose that we now impose the diffusive scaling, ( )2 2x t D∆ ∆ = . Let us 
look at Equation (2),  

( ) ( )

( )
( ) ( ) ( )2

, ,

, 2 , ,

x t x t t
t

D x x t t x t t x x t t
x

ρ ρ

ρ ρ ρ

− − ∆
∆

= + ∆ −∆ − − ∆ + − ∆ −∆  ∆
      

(3) 

From above Equation (3), the expression on the left is a difference quotient in 
t and also the expression on the right is a second difference in x. Taking the limit 
of expression in Equation (3), as ( ), 0x t∆ ∆ → , while in Equation (2) remains in 
force yields the diffusion equation,  

2

2 .D
t x
ρ ρ∂ ∂
=

∂ ∂                          
(4) 

Mathematically this is identical to the heat equation. Note that the scaling, 
where D is the square of the distance x∆  moved by the organism in a time unit 

t∆ , produces a coefficient in front of the term 2 2xρ∂ ∂ , which is equal to 1/2 of 
the square of the distance moved per unit time. This interpretation of the 
diffusion coefficient D is valid in any number of dimensions. 
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1.2. Reaction 

In the context of ecological models, the reaction terms in reaction diffusion 
equations and systems are typically the same as those that are used in non- 
spatial population models based on ordinary differential equations. Thus, for a 
single population, the reaction terms would be those that might occur in a model 
for a population density ( )tρ  of the form  

( ) ,f
t
ρ

ρ
∂

=
∂                          

(5) 

where ( )f ρ  often has the form ( ) ( )f gρ ρ ρ= . Common choices for 
( )f ρ  are ( )f Rρ ρ=  (linear growth), ( ) ( )1f R Kρ ρ ρ= −  (logistic 

growth), or ( ) ( )( )1f R a Kρ ρ ρ ρ= − −  with ( )0,a K∈  (growth with Allee 
effect). For systems, typical reaction terms are those that occur in non-spatial 
models for competition, mutualism, or predator-prey interactions. Those include 
Lotka-Volterra models, but also more general models such as predator-prey 
models with a functional response. In the case of systems the stability analysis 
often involves the eigenvalues of matrices obtained by linearising about the 
equilibria. Equilibria and eigenvalues play a similar role in the analysis of reaction 
diffusion models, but the eigenvalues generally are associated with differential 
operators rather than matrices. 

Here is the outline of the article. In Section 2, we mentioned literature review 
according to scope of the equation and numerical treatment also in section 3, we 
derived governing equation and its three interesting types and in section 4, 
methodology is explained. In the section 5, we discussed results in detail.  

2. Literature Review 

A well known researchers have studied such model problem, for example, 
Abdullaev [4] has studied the stability of symmetric travelling waves in the 
Cauchy problem for a more general case, also Logan has studied this problem 
using a perturbation method and found an approximate solution by expanding 
the solution in terms of a power series and in terms of some small parameters 
[5], whereas numerical solution found by Gazdag and Canosa [6] [7] which 
exhibits consistency with partial differential equations along initial and 
boundary condition. Both numerical schemes intimated in [7] are totally com- 
plicated and source of unexpected high frequency oscillations, which must be 
refine at each time step. Tang and Weber [8] [9] have studied Fisher’s equation, 
using the Petrov-Galerkin method and Al-Khaled [10] has used the sinc col- 
location method to solve such model equation. 

Recently, numerical solution to Fisher’s equation, have studied by many 
researchers, such as Wang [11] give idea of exact solution and explicit solitary 
wave solutions which are associated with generalized form, also Dag [12] found 
solution of Fisher’s equation numerically, using B-spline Galerkin method, 
whereas Qio and Sloan [13] built up numerical solutions of Fisher’s equation by 
moving mesh method, meanwhile Ting [13] studied to solve generalized Fisher’s 
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equation by element free Galerkin method. Also modified cubic B-spline 
collocation method is used by Mittal and Jain [13] to study numerical solutions 
of non-linear Fisher’s equation. Fisher’s equation is studied numerically by 
Chandraker [13], also Tomasiello studied numerical stability of differential 
quadrature solutions of wave problems. Korkmaz and Dag applied polynomial 
differential quadrature method to study numerical solutions of non-linear 
Burger’s equation [13]. Finite difference based methods have been applied by 
Kaysar [14] to solve Burger’s and Fisher’s equations numerically. 

3. Governing Equation 

In 1937 Fisher [15] and Kolmogorov et al. [16] investigated independently the 
Fisher Kolmogorov Petrovsky Piscounov (Fisher-KPP) equation, after that it is 
widely known as Fisher equation. This equation has many applications in science 
and engineering fields [6] [17]. The researchers studied some meaningful 
generalization of this equation, here we considered one generalization of this 
equation which is called as one component reaction diffusion equation. Many 
reaction diffusion equations have travelling wave fronts which play an important 
role in the understanding of physical, chemical, and biological phenomena [18]. 
Reaction-diffusion systems are mathematical models which explains how the 
concentration of one or more substances distributed in space changes under the 
influence of two processes, first one is local chemical reactions in which the 
substances are transformed into each other and second is the diffusion which 
causes the substances to spread out over a surface in space. Reaction-diffusion 
systems are naturally applied in chemistry. However, the system can also describe 
the dynamical processes of non-chemical nature. In this paper, we introduce the 
following three major Fisher’s equations, which can be explained as. 

3.1. Linear Form of Fisher’s Equation 

The linear form of Fisher’s equation is as follows,  

( )( )1 , ,t xxu u u x t= + −β α                     
(6) 

where β  is diffusive constant with value 0 1≤ ≤β  and α  is reactive 
constant with value 0 1≤ ≤α . Also analytical solution to above Equation (6) is,  

( ) ( ) ( )
( ) ( )

( )( )2 21 2 1 π 4

2 2 21

1 cos 2 1 π 2cosh 16, 1 e ,
cosh1 π 2 1 2 1 π 4

n
n t

n

n xxu x t
n n

∞ − + −

=

− −
= − −

 − − + 
∑

     

(7) 

with boundary conditions are  

( ) ( )1, 1, 0,u t u t− = =                       (8) 

and initial condition also,  

( ),0 0.u x =                           (9) 

3.2. Coupled Linear System 

The coupled linear system is as follows,  
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( ) ( )( ) ( )
( ) ( )( ) ( )

, , ,

, , ,
t xx

t xx

u u u x t v x t F x t

v v u x t v x t G x t

= + − + 


= + + +                 

(10) 

with analytical solution,  

( )
( )

, e sin

, e cos

t

t

u x t x

v x t x

= 


=                        
(11) 

3.3. Nonlinear Generalized Fisher’s Equation 

The generalized form of nonlinear Fisher’s equation is as follows,  

( )( )1 11 , 0 1t xxu u u u u= + − − < <α α               (12) 

with analytical solution,  

( ) ( ) ( )
( )2

1
1 1 1

11 1 1, 1 tanh 2 1 ,
2 2 2 4 4

xu x t t
 −   = + + − − +      

α
α α α

     

(13) 

the initial and boundary conditions are taken from the exact solution (13). 

4. Numerical Methods 

Let us apply numerical methods like Finite Difference Schemes (Forward in time 
and central in space (FTCS), Crank Nicolson (CN) and Douglas), to solve such 
Equations ((6), (10), (12)) in finite domain [ ]0,1Ω = . We partitioned the 
interval [ ],a b  into n equal parts of width h. Place a grid on the rectangle region 
R by drawing vertical and horizontal lines through the points with coordinates 

ix , where ix a ih= +  for each 0,1,2, ,i n=   also the lines ix x=  represent 
grid lines, we assume , 0,1,nt nt n= =   where n is the time grid step size. We 
denote the exact and numerical solutions at the grid point ( ),m nx t  by n

mU  and 
n
mu  respectively. 

4.1. Forward in Time and Center in Space (FTCS) Scheme 

We consider forward in time and center in space (FTCS) explicit scheme by 
substituting the forward difference approximation for the time derivative and 
the central difference approximation for the space derivative in Equations ((6), 
(10), (12)) respectively, we get the following  

( ) ( )1
1 12 1 ,n n n n n n

i i i i i iu u u u u u+
+ −= + − + + −R Q              

(14) 

where 2

k
h
β

=R , and kα=Q . Above equation (14) represents descritezation to 

linear form of Fisher’s equation.  

( ) ( )
( ) ( )

1
1 1

1
1 1

2 , , ,

2 , , ,

n n n n n n n n n
i i i i i i i i i

n n n n n n n n n
i i i i i i i i i

u u u u u ku kv kF u v x t

v v v v v ku kv kG u v x t

+
+ −

+
+ −

= + − + + − + 


= + − + + + + 

R

R
      

(15) 

above Equation (15) represents descritezation to coupled linear system.  

( ) ( )( )1
1 1 12 1 ,n n n n n n n n

i i i i i i i iu u u u u ku u u+
+ −= + − + + − −R α         

(16) 
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above Equation (16) represents descritezation to nonlinear generalized form of 
Fisher’s equation. 

Since the one dimensional Fisher’s equation or system is well posed, make 
sure the spacing h for spatial and k for time of the finite difference grid are made 
sufficiently small [6] [17] [19]. The FTCS scheme, from Equations (14)-(16), is 
classified as explicit because the value of 1n

iu +  at the ( )1n th+  time level may 
be calculated directly from known value of n

iu  at previous time levels. It is a two 
level method because values of ( ),u x t  at only two levels of time are involved in 
the approximating finite difference equation [6] [17] [19]. There is no best 
method for obtaining approximating difference formula, the only requirement is 
that the formula, having been obtained, must pass certain tests of accuracy, 
consistency, stability and convergence [20] [21] [22]. By Von Neumann stability  

analysis, the FTCS scheme is always conditionally stable, which is 
10
2

< ≤R . 

4.2. Crank Nicolson Implicit Scheme 

Let us apply implicit finite difference scheme, which is Crank Nicolson. This 
method uses central finite difference approximation for both time and space 
derivatives at the point ( ),m nx t  [6]. For diffusion equations (and many other 
equations), it can be shown that, the Crank Nicolson method is unconditionally 
stable [23] [24] [25]. However, the approximate solutions can still contain 
(decaying) spurious oscillations if the ratio of time step k times to the square of 
space step 2h , is large (typically larger than 1/2 per Von-Neumann stability 
analysis) [21] [26] [27]. For this reason, whenever large time steps or high spatial 
resolution is necessary, the less accurate backward Euler method is often used, 
which is both stable and immune to oscillations [24] [25] [27] [28] [29] [30]. In 
this method, we consider the Equations ((6), (10), (12)) respectively, in the 
following way,  

( )
( )

( )

1
2 1 1

2

1 1 1
1 1 1 1 1 1

1 1 1 1 1 1 1

11
22

1 2 0.5

1 2 0.5

n n
n n n ni i

x i i i i

n n n
i i i

n n n
i i i

u u k u u u u
k h

u u u

u u u

β
δ α

+
+ +

+ + +
+ −

+ −

−   = + + − +    
− + + + −

= + − − + +

R R Q R

R R Q R Q          

(17) 

where 1 22
k
h
β

=R  and 1 kα=Q . Above Equation (17) represents descritezation  

using Crank Nicolson to linear form of Fisher’s equation. Now let us look at 
coupled linear system, in the following way,  

( )

( ) ( ) ( )
( )

( )

1 1 1 1
1 1 1 1 1

1 1
1 1 1

1 1 1 1
1 1 1 1 1

1
1 1 1

1 2 0.5 0.5

1 11 2 0.5 0.5 , , ,
2 2

1 2 0.5 0.5

11 2 0.5 0.5
2

n n n n
i i i i

n n n n n n n
i i i i i i i

n n n n
i i i i

n n n n
i i i i

u k u kv u

u k u kv kF u u v v x t

v k v ku v

v k v ku kG u u

+ + + +
+ −

+ +
+

+ + + +
+ −

+
+

− + + − + −

 = + − + − + + + 
 

− + + − − −

= + − + + + +

R R R

R R

R R R

R R ( ) ( )11, , ,
2

n n n
i i iv v x t+







 +    

(18) 
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Above equation (18) represents descritezation using Crank Nicolson to 
coupled linear system. Now let us look at generalized nonlinear Fisher’s equation 
using Crank Nicolson,  

( )

( ) ( ) ( )( ) ( )( )

1 1 1
1 1 1 1 1

1 1 1
1 1 1 1

1 2

1 2 1 0.5 0.5
2

n n n
i i i

n n n n n n n n
i i i i i i i i

u u u
ku u u u u u u u

+ + +
+ −

+ + +
+

− + + −

= + − + + − + + −

R R R

R R α
 

(19) 

4.3. Fourth Order Accurate Implicit Scheme 

Let us apply another implicit scheme to Equations ((6), (12)) in an order 
respectively.  

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 12 1 1
2

1
2 1 2 1

2

1 2 1 1 2 1
1

11 1
22

11 1 1
22

11 1
2

n n
n n n ni i

x i i i i

n n
n n n ni i

x i i x i i

n n n n n n n n
i i x i i i i x i i

u u u u u u
k h

u u u u u u
k h

u u u u u u u u

β
δ α

β
δ δ α

δ δ α

+
− + +

+
+ +

+ + + +

−   = + + + − +      
 −     + = + + + − +           
  − + − = + + + − +    

R
 

(20) 

Now Douglas scheme to nonlinear generalized Fisher’s equation,  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 12 1 1 1 1
12

1
2 1 2 1 1 1

12

2 1

1 1 11 1
2 2 22

1 1 11 1 1
2 2 22

1

n n
n n n n n n n ni i

x i i i i i i i i

n n
n n n n n n n ni i

x i i x i i i i i i

n
x i

u u u u u u u u u u
k h

u u u u u u u u u u
k h

u

β
δ α

β
δ δ α

δ

+
− + + + +

+
+ + + +

+

−    = + + + + − + + −      
 −      + = + + + + − + + −           

 + −  ( ) ( ) ( ) ( ) ( )1 2 1 1 1
1 1

1 1 11 1
2 2 2

n n n n n n n n n
i i i x i i i i i iu u u u u u u u uδ α+ + + +







    = + + + + − + + −       

R

(21) 

5. Error Norms 

The aim of the accuracy is assessed by some redefined norms, associated with 
the consistency of the finite difference schemes, such scaled measurement to 
error defined in term of norms specially L∞ , which is outlined below:  

Exact Approximationmaxi i iL u u∞ = −                  
(22) 

6. Results 

Numerical computations have been performed using the uniform grid. We used 
FTCS, Crank Nicolson and Douglas finite difference schemes to analyse 
numerical behaviour of simple linear Fisher;s equation, one dimensional linear 
coupled system and non-linear Fisher’s equation respectively. First we look at 
the linear Fisher’s equation by finite difference schemes as in Table 1, we used 
FTCS explicit scheme with some variations in grid size and h (space step) is 
changed according to the grid sizes. this table explains the second order accuracy 
in term of L∞  norm, of the explicit numerical scheme also Table 2 explains 
results for FTCS with different time steps (k). As we know that FTCS scheme is 
always conditionally stable and we can see from Table 2. In Table 3, we used 
implicit Crank Nicolson finite difference scheme, which shows that results with 
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[ ]0.0001, 1, interval 1,1k t= = = −  and different grid sizes with h changes 
accordingly also Table 4 explains the method with different k (time steps). Table 
5 shows results using Douglas scheme with [ ]0.0001, 1, interval 1,1k t= = = −  
and different grid sizes with h changes accordingly also Table 6 shows results 
using Douglas scheme with [ ]Grid 71 71, 1, interval 1,1t= × = = −  and different k. 
In Table 7 we represent results for linear Fisher’s equation with comparison of 
two implicit schemes and Douglas improves and encourages our solution. 

Secondly, we look at the coupled linear system by finite difference schemes as 
in Table 8 and Table 9, we used FTCS explicit scheme with some variations in 
grid size and h (space step) is changed according to the grid sizes. these tables 
explain the second order accuracy in term of L∞  norm and also classical simple 
error as ( ) ( )Error , ,U x t u x t= − , by using both explicit and implicit schemes.  

Lastly, we look at the generalized Fisher’s equation by finite difference 
schemes as in Table 10, we used FTCS explicit scheme with some variations in 
grid size and h (space step) is changed according to the grid sizes. this table 
explains the second order accuracy in term of L∞  norm, of the explicit 
numerical scheme. Table 11 shows results for Crank Nicolson to generalized 
non-linear Fisher’s equation along Table 12 shows Douglas results at different 
grid sizes. 

 
Table 1. This table shows results using FTCS explicit scheme with 0.0001, 1,k t= =  

[ ]interval 1,1= −  and different grid sizes with h changes accordingly. 

Grids k = Time Step L∞
 h = Space Step 

51 × 51 0.0001 0.115 0.0400 

101 × 101 0.0001 0.0115 0.0200 

225 × 225 0.0001 Inf 0.0089 

1011 × 1011 0.0001 Inf 0.0020 

 
Table 2. This table shows results using FTCS explicit scheme with Grid 71 71, 1,t= × =

[ ]interval 1,1= −  and different k. 

k = Time L∞
 t 

0.01 1616.6408e+  1 

0.001 Inf 1 

0.0001 0.0115 1 

 
Table 3. This table shows results using Crank Nicolson scheme with 0.0001, 1,k t= =

[ ]interval 1,1= −  and different grid sizes with h changes accordingly. 

Grids k = Time Step L∞
 h = Space Step 

51 × 51 0.0001 53.1810e−  0.0400 

101 × 101 0.0001 67.9538e−  0.0200 

225 × 225 0.0001 61.5852e−  0.0089 

1011 × 1011 0.0001 87.7977e−  0.0020 
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Table 4. This table shows results using Crank Nicolson scheme with Grid 71 71, 1,t= × =

[ ]interval 1,1= −  and different k. 

k = Time L∞
 t 

0.01 51.6232e−  1 

0.001 51.6231e−  1 

0.0001 51.6231e−  1 

 
Table 5. This table shows results using Douglas scheme with 0.0001, 1,k t= =

[ ]interval 1,1= −  and different grid sizes with h changes accordingly. 

Grids k = Time Step L∞
 h = Space Step 

51 × 51 0.0001 92.5452e−  0.0400 

101 × 101 0.0001 101.5913e−  0.0200 

225 × 225 0.0001 125.6298e−  0.0089 

1011 × 1011 0.0001 124.4561e−  0.0020 

 
Table 6. This table shows results using Douglas scheme with Grid 71 71, 1,t= × =

[ ]interval 1,1= −  and different k. 

k = Time L∞
 t 

0.01 106.6254e−  1 

0.001 106.6250e−  1 

0.0001 106.6248e−  1 

 
Table 7. This table shows comparison between Crank Nicolson and Douglas schemes 
with 0.0001, 1k t= =  and [ ]interval 1,1 .= −  

Crank Nicolson Douglas 

Grid L∞
 h = Space Step Grid L∞

 h = Space Step 

31 × 31 58.8330e−  0.0667 31 × 31 81.9637e−  0.0667 

45 × 45 54.1075e−  0.0455 45 × 45 81.9637e−  0.0455 

77 × 77 51.3770e−  0.0263 77 × 77 104.7676e−  0.0263 

 
Table 8. This table shows results using FTCS explicit scheme with 0.0001, 0.1k t= =  and [ ]interval 3,3= − .  

Grid exactU  
app.u  

1Error  1L∞
 

exactV  
app.v  

2Error  2L∞
 

51 × 51 −0.41156459 −0.375022428 0.0365 0.0981 −1.02567897 −0.93461058 0.0911 0.0981 

71 × 71 0.77048108 0.706718997 0.0638 0.0914 0.79231412 0.72674521 0.0656 0.0915 

151 × 151 0.98573361 0.947763396 0.0380 0.0426 −0.49973194 −0.48048240 0.0192 0.0426 

201 × 201 0.94172500 0.946871908 0.0051 0.0060 0.57840883 0.58157006 0.0032 0.0060 

271 × 271 0.37021916 0.402856751 0.0326 0.0974 −1.04131673 −1.13311659 0.0918 0.0974 
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Table 9. This table shows results using Crank Nicolson implicit scheme with 0.00001, 0.001k t= =  and [ ]interval 10,10= − .  

Grid exactU  
app.u  

1Error  1L∞
 

exactV  
app.v  

2Error  2L∞
 

51 × 51 −0.99034809 −0.9903612342 51.3e−  51.3e−  −0.14564560 −0.1456475382 61.9e−  51.3e−  

71 × 71 0.910207179 0.91021335413 66.1e−  66.7e−  −0.41656319 −0.4165660175 62.8e−  66.7e−  

151 × 151 −0.79446192 −0.7944631049 61.1e−  61.4e−  0.608959970 0.60896087175 79.0e−  61.4e−  

201 × 201 −0.84231287 −0.8423135783 77.0e−  78.3e−  0.540842878 0.54084332896 74.5e−  78.3e−  

271 × 271 −0.09140859 −0.0914086402 84.1e−  69.2e−  −0.99681817 −0.9968186284 74.5e−  51.4e−  

 
Table 10. This Table shows results using FTCS explicit scheme with 0.0001, 0.1,k t= =

[ ]interval 10,10 , 0.5A= − = , and different grid sizes with h changes accordingly. 

Grids k = Time Step L∞
 h = Space Step 

21 × 21 0.0001 0.0047 1 

61 × 61 0.0001 0.0047 0.3333 

121 × 121 0.0001 0.0047 0.1667 

301 × 301 0.0001 0.0047 0.0667 

 
Table 11. This Table shows results using Crank Nicolson scheme with 0.0001, 0.1,k t= =

[ ]interval 10,10 , 0.5A= − =  and different grid sizes with h changes accordingly. 

Grids k = Time Step L∞
 h = Space Step 

21 × 21 0.0001 67.9231e−  1 

61 × 61 0.0001 79.7270e−  0.3333 

121 × 121 0.0001 72.9720e−  0.1667 

301 × 301 0.0001 71.0864e−  0.0667 

 
Table 12. This Table shows results using Douglas scheme with 0.1t =  and interval =
[ ]10,10− . 

A Grid L∞
 k = Time h = Space Step 

0.1 41 × 41 0.0029 0.0001 0.5000 

0.4 60 × 60 0.0103 0.0001 0.3390 

0.6 131 × 131 0.0079 0.0001 0.1538 

 
To analyse the graphic representation to linear Fisher’s equation, we have 

Figure 1, by FTCS along Figures 2-4 by Crank Nicolson and by Douglas, Figure 
5 enhance our knowledge. Figure 6 & Figure 7 show results for coupled linear 
system by FTCS and Crank Nicolson. Also Figure 8 & Figure 9 show results for 
non-linear generalized Fisher’s equation by Crank Nicolson and Douglas 
schemes respectively. 

7. Conclusion 

In this paper, the solution to linear form of the Fishers equation, coupled linear 
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system and generalized Fisher’s equation is successfully approximated by a 
various numerical finite difference schemes. Two of them are implicit in nature 
such as Crank Nicolson and Douglas and one is explicit FTCS schemes. We have 
to pay attention to parameter R , which can stabilize the results as we can see 
from figures and tables. For instant, Von-Neumann’s method of stability 
analysis can not be used other than locally, since it only applies to linear finite 

 

 
Figure 1. Results for different time level, with fixed grid size and time step, using FTCS scheme. 

 

 
Figure 2. Results for different time level, with fixed grid size and time step, using Crank Nicolson scheme after zoom out. 
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Figure 3. Results for different grid sizes with time step, and find common region of interaction, using Crank 
Nicolson scheme. 

 

 
Figure 4. Results for Douglas scheme and error profile. 
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Figure 5. Results for Douglas scheme and error profile with common region. 

 

 
Figure 6. Results for FTCS scheme on Coupled Linear System. 
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Figure 7. Results for Douglas scheme and error profile with common region. 

 

 
Figure 8. Results for Crank Nicolson scheme and error profile on Non-linear Generalized Fisher’s equation. 

 
difference schemes. In many cases, numerical experimentation, such as solving 
the finite difference schemes using progressively smaller grid spacing and 
examining the behaviour of the sequence of the values of ( ),u x t  obtained at 
given points, is the suitable method available with which to assess the numerical 
model. The various methods of obtaining a finite difference numerical model 
corresponding to a particular mathematical model may result in either explicit 
or implicit finite difference schemes. Explicit schemes are conditionally stable 
and implicit schemes are unconditionally stable. Two implicit schemes are also 
applied to improve accuracy, stability restrictions and consistency in solution. It 
can be observed that the computed results show excellent agreement with the 
analytical solution. Our main purpose of this research is to improve accuracy in 
result. Accuracy in results is glanced from figures and tables. 
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Figure 9. Results for Douglas scheme and error profile on Non-linear Generalized Fisher’s equation. 
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