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Abstract

The optimality of a density estimation on Besov spaces vaq(R) for the L, risk was established by

Donoho, Johnstone, Kerkyacharian and Picard (“Density estimation by wavelet thresholding,” The Annals of
Statistics, Vol. 24, No. 2, 1996, pp. 508-539). To show the lower bound of optimal rates of conver-

gence R, (Bf’q, p), they use Korostelev and Assouad lemmas. However, the conditions of those two lemmas

are difficult to be verified. This paper aims to give another proof for that bound by using Fano’s Lemma,
which looks a little simpler. In addition, our method can be used in many other statistical models for lower

bounds of estimations.
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1. Introduction

Wavelet analysis has many applications, one of which is
to estimate an unknown density function based on inde-
pendent and identically distributed (i.i.d.) random sam-
ples. Let (€, N, P) be a probability measurable space
and X,,---,X, be ii.d. random variables with an un-
known density function f. We use E(X) to denote the
expectation of a random variable X. The sequence

R, (V,p)::infsupE(" f,—f ) is called optimal rate
fn fev P

of convergence on the functional class V for the L, risk.

Here, f. is an arbitrary estimator of f with n i.i.d. ran-
dom samples. Kerkyacharian and Picard [1] study
R,(V,p) when V is a Besov space with matched case.
Donoho, Johnstone, Kerkyacharian and Picard [2] con-
sider unmatched cases. In fact, they show the optimal
convergence rates for L, Besov class I§fvq and L,
risk

s-1/r+l/p p
(In n/n)Z(s—llr)+1 , r< L
< S+
R, (Brq.P)~ : (LD)
n 2s+ r>—P
2s+1

To show the lower bound of (1.1), authors of [2,3] use
Korostelev and Assouad lemmas. However, the condi-
tions of those two lemmas are difficult to be verified. In
this small paper, we give another proof for the lower
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bound of (1.1) by using Fano’s lemma [4]. It should be
pointed out that Fano’s lemma can be used to a variety of
statistical models, see [5-7].

As usual, L,(R)(p=1) denotes the classical Lebes-
gue space on the real line R. In particular, L, (R) stands
for the Hilbert space, which consists of all square inte-
grable functions. As a subspace of L (R), the Sobolev
space with an integer exponent k means
Wy (R):={f, f™eL,(R),m=01-k|(p=1).

p

The corresponding norm
— (k)
Il =071, +] 1) -

Moreover, the Besov space B (R) [3] (1<p, g<w,

s=n+a and a<(0,1]) car%e defined by

B;q(R):{f eWFI‘(R),(Zj“a)ﬁ(f("),Z’j))jez elq}
with the associated norm

¥, =l + (2702 (17.27)]

4(2)

where

ol (f.t)= ST

f(x+2h)=2f (x+h)+ f (x)] .

In general, it can be shown that compactly supported and
n times differentiable functions belong to B; ,(R) for
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O<s<n and 1<p, <.

The Besov space can be discretized by the sequence
norm of wavelet coefficients. Many useful wavelets are
generated by scaling functions. More precisely, if ¢ is
a scaling function with

0(x)= Zh2o(2x-K),

theny (x):= Zk(—l)khl_kx/i(p(Zx—k) defines a wave-
let [3]. Clearly, when ¢ is compactly supported and
continuous, the corresponding wavelet y has the same
properties. An orthonormal wavelet basis of L,(R) is
generated from dilation and translation of a scaling func-
tion and its corresponding wavelet, i.e.

Jo

oy (=27

(p(2j° x—k),

iy (%)= 22 (2ix—k)}

i>jo.kez

Although wavelet basis are constructed for L,(R),
most of them constitute unconditional bases for L, (R).
A scaling function ¢ is called t regular, if ¢ has con-
tinuous derivatives of order t and its corresponding
wavelet w has vanishing moments of order t, i.e.

[xw (x)dx =0,k =0,1,---,t 1.

The following lemma [3] plays important roles in this
paper.

Lemma 1.1. Let ¢ be a compactly supported, t regu-
lar orthonormal scaling function with the corresponding
wavelet y andO<s<t. If f el (R), sy =(f,0),
d; ::<f,y/jk> and 1<p, gq<o, then the following
two conditions are equivalent:

1) feB,(R);

(s 1
2 ||SO_||p . {21(5 2 p]"dj-"p} <o,
j=0

0]l
Furthermore,

R 11
1l Il + {2’[“”] o, }
Bpag 0-Ilp Fip
j=0

Before introducing Fano’s Lemma, we need the nota-
tion of Kullback-Leilber distance [4]. Let P and Q with P
being absolutely continuous with respect to Q (denoted
by P < Q). Then the Kullback-Leilber distance is de-
fined by

q

K(P.Q)=],  p(x)n PO 4y

Copyright © 2011 SciRes.

Where p and g are density functions of P, Q respec-
tively.

Lemma 1.2. (Fano’s Lemma, [4]) Let (Q, N, B,) be
probability measurable spaces and A €N, k=0,1,---,m
If ANA =¢ for kv, then with A° standing for

the complement of Aand «, = inf —ZK(Pk,PV)

0<v<m m

sup P, (Af)z min{l,«/ﬁexp(—Se‘1 - K, )}
0<k<m 2

By Lemma 1.1 and 1.2, we can show the following re-
sult:

Theorem 1.1. Let f eB’,(R,L) withl<r, g<o,
1<p<ow and sr>1.If f is an estimator of f with
N j.i.d. random samples, then

s-1/r+1/p

sup E(|f, - [, ) - max (M_njas-mm,nw |
n

feBfq(R,L)

where B’ (R,L)= r{‘f €B,(R),| <L} and f
has compact support}; The notatlon X>Yy means
x> Cy with a constant C.

Remark 1.1. Note that

s-1/r+1/p s s-1/r+1/p

max Inn 2(s—1/r)+1,nfﬁ _ Inn \a(s-ur)+

n n
for r< P and for r> P
s+1 2s+1
s-1/r+1/p s s
ax (In njz(sllr)ﬂ Nl

n

Then theorem 1.1 is a reformulate of the lower bound in
(1.1). By using the idea of reference [5], we show this
theorem in the next two sections.

2. Proof of Theorem 1.1

Firstly, we prove

s-1/r+1/p

Inn \2(s-v/r)+L
" .

dOne need construct g, such that g, B, (R,L)
an

sup E(||f —f|| )

feB q(R.L)

| s-1/r+1/p
nn \2(s-1/r1
SlipE("f gk|| ) ( j .

Let ¢ be a compactly supported, t(t>s) regular and
orthonormal scaling function, y be the corresponding
wavelet with suppy <[0,1), e N*. Here and after,
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N* denotes the set of positive integers. Then there ex-
ists a compactly supported density function g (i.e.
g(x)=0 and [g(x)dx=1) satisfying

9(x)eB,(R) and g(x)‘[oyl] =¢, > 0.

Let A, _{O,I,2I ( 1)I 2)11 . Then the number of
elements in A is 20 41, denoted by #A, =241,
Motivated by [5], one defines a, =2 7' and

9 (X)=g(x)+a,p (x) I{k¢zjl}' keA,

with | =0. Obvi-

k:thI} )

]

fie ]} =1 if k=2'l, else I{
ously, g, = g fg x)dx=1 and
g (x) 2, =27y, 20 for large j, which implies
that g, isa den5|ty function for each k.

By the assumptions of ¢, the wavelet  is com-
pactly supported and t times differentiable. Therefore,
weB (R)(t>s) and g, €B;,(R).Because

j(s+12-1r) _ -
a2 =1, ||ajz//jk " <C and so is |g, o,

due to Lemma 1.1. Hence, g, (x)<B;, (R,

”gk _gk’”p Z”Qk —0, o :|a
:||V/|| 2—j(s+1/p—1/r) — 5.

]

L). Clearly,

wul, @.1)

ol j(s+1/2-1/r)

For k¢k’eA/2’I due to a,
J;
thermore, A = {” fo =9l <?} satisfies A NA. =¢
for k=k'. Recall that #A, =2’ +1. By Lemma 1.2,
L)1 - 3
sup P" (A°) = min{=,~2) exp| -x, —> | Here and
w7 () 25 )

after, P{' stands for the probability measure correspond-
ing to the density function f"(x):= f(x,) f(x,) -
It is easy to see that Pn < Pn from the constructions
of g,.Since f, isan estlmator of density with n i.i.d.
random samples,

0 0,
el -0l )2 2 (10,2 2|0 (4).

Then,

. Fur-

supE("f —gk|| )>5up5— " (Ak)

e

2.2)

Next, one shows x ; < ¢;'na; : Recall that
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f(x,)

K(a“,P;)zi;jfl(x,)ln fz(x;)dxi K(R.P)
Note that K(P},P, )= f,(x)In :1(():(;dx and Inu<u-1
2

for u>0.Then

K(R",P7)=n] f,(x)In E(())(())dx

<nf fl(x){ EE):(; —1}dx
=n[| £, () f,(x)~ £, (x)[ dx.

Hence,

=inf > 2K (R) B ) <2 <(Pr.Pr )

VEA keAJ

Moreover,
K, <270n ) [lo() o () -g(x)[dx  (23)
EAJ
According to the definition of g,, supp(g, —9)<[0.1]
and g(x)=c, on [0,1]. Thus, f|g(x)|7l|gk(x)—g(x)|2

_ 2 _
dx =" [[ajw s (¥)| dx=c,a] |y (
orthonormality of ;. Then (2.3) reduces to

2
x)"2 =c,'a; by the
K, <c;'na’. (2.4)

1
. 2 1N 2]
Take 2’~(ILJZ(S ) " Then na?=n2 ( 2 r]~In n.
nn

Now, one can choose C >0 such that na <ClInn
and C[4(s-1/r)+2]<c,. Therefore,

[4(s-ur +2]71 .
J2ie "> oig @ na; >(I j ne >1
nn

and (2.2) reduces to sup,., E(||f =9, )ZC§j. Then

the desired follows from &, =y 2 Jelp=n) hy (2.1)

1
and 2] ~(Lj2(s—ur)+1
Inn '

sup E(||f —f|| )>n 25“ Our

feBq(RL)

Now, we prove

proof depends on another lemma [4].
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Lemma 2.1. (Varshamov-Gilbert) Let
®={c=(&,.&,)}, & <{0,1}. Then there exists a sub-
set {&%,,&"} of © with £°=(0,---,0) such that

M >2™® and i|g;—gk"|z%(0si¢jsM).
k=1
It is sufficient to construct g (i=0,1---,M) such

that g, B (R,L) and

sup E( f, - 9, “p) - n_ﬁ. (2.5)

As proved above, let ¢ be a compactly supported,
t(t > s) regular and orthonormal scaling function, w be
the corresponding wavelet with suppy <[0,1), 1eN".
Assumes geB (R,L) and gl,,=¢c,>0 . Define
a =27 A =021, (27 -2)1} and

9. (x)=9(x)+a kEZA:_ & (X)

with ¢=(g), _, e{O,l}zj (note that g, =g ). Since
J

& €{0,1}, oneknowsthat Y || <2’ and
J

IN
-

Ur
2j(s+1/2—1/r)a [ Z |€k |r]
j

keAj

<C, and so is
Bf‘q

By Lemma 1.1, Hajzmj W i

9.l Hence g, B’ (R,L).

Note that the supports of y; for keA; are mutu-
ally disjoint. Then

9, (X)=c,—a; "l/’ik”w >¢, -2 "y, =0

for big j. This with [g, (x)dx=[g(x)dx=1 implies
that g, is a density function for each ¢ e {0,1 2 Ac-
cording to Lemma 2.1, there exists {&°,&",-+,&" | such
that M >2%" and

3 |g; _g;| >218 (2.6)

keAj

Because suppy;, (suppy ;. =¢ for k =k’ e A;, one
knows that

o= T 2l el vl
A kea; A |8k & Vi,

2Ly, e -al
This with (2.6) and &, & <{0,1} leadsto
0, -0, 2lwly2*2° and

9,0,

gl_gi

& &

)2 8Py, 277 =4, 2.7)
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Clearly, the sets A = {

f —gg,”<%}(i =0,1--,M)

satisfy A, ﬂAsi =¢ for i=l. Then Fano’s Lemma
yields
sup Py (Aﬁ)z min{l,\/ﬁexp(—x,\,I —Se‘l)}. (2.8)
o<ism e V¢ 2

On the other hand, it follows x, <c,'na?2’ from

the similar arguments to the proof of (2.4). Take
1

2) ~n>7 . Then nal =a2 ®™J ~1. Hence, one can
choose a constant C >0 such that

_ -4 _cilna22l -4 _l~oj
Mg > 227 @m0 5 927 a6 €2 5 q

Therefore, (2.8) reduces to sup P/ (A; ) >C>0 and

0<isM ¢
sup E( f, g" )
0<i<M & llp
> 5] p" > 5] >CS
> sup -+ -g.| =2+ |=cCs..
ociem 2 O " gg 2 !

This with (2.7) and 27 ~ n2+ yield (2.5).
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