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Abstract 
 
The optimality of a density estimation on Besov spaces  ,

s
r qB R  for the  risk was established by 

Donoho, Johnstone, Kerkyacharian and Picard (“Density estimation by wavelet thresholding,” The Annals of 
Statistics, Vol. 24, No. 2, 1996, pp. 508-539). To show the lower bound of optimal rates of conver-

gence

pL

 , ,s
n r q R B p , they use Korostelev and Assouad lemmas. However, the conditions of those two lemmas 

are difficult to be verified. This paper aims to give another proof for that bound by using Fano’s Lemma, 
which looks a little simpler. In addition, our method can be used in many other statistical models for lower 
bounds of estimations. 
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1. Introduction 
 
Wavelet analysis has many applications, one of which is 
to estimate an unknown density function based on inde-
pendent and identically distributed (i.i.d.) random sam-
ples. Let  be a probability measurable space 
and 1

( , , )P 
, , nX X  be i.i.d. random variables with an un-

known density function f. We use  to denote the 
expectation of a random variable X. The sequence  

 E X

  , : inf sup
n

n n pf f V
R V p E f f


   is called optimal rate  

of convergence on the functional class V for the pL  risk. 
Here, nf  is an arbitrary estimator of f with n i.i.d. ran-
dom samples. Kerkyacharian and Picard [1] study 

n  when V is a Besov space with matched case. 
Donoho, Johnstone, Kerkyacharian and Picard [2] con-
sider unmatched cases. In fact, they show the optimal 
convergence rates for  Besov class 

 , pR V

rL ,
s
r qB  and pL  

risk 
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    (1.1) 

To show the lower bound of (1.1), authors of [2,3] use 
Korostelev and Assouad lemmas. However, the condi-
tions of those two lemmas are difficult to be verified. In 
this small paper, we give another proof for the lower 

bound of (1.1) by using Fano’s lemma [4]. It should be 
pointed out that Fano’s lemma can be used to a variety of 
statistical models, see [5-7]. 

As usual,    1pL R p   denotes the classical Lebes-
gue space on the real line R. In particular,  2L R

R

 stands 
for the Hilbert space, which consists of all square inte-
grable functions. As a subspace of p , the Sobolev 
space with an integer exponent k means  

L

        : , , 0,1, , 1mk
p pW R f f L R m k p .      

The corresponding norm 

 : .k
p

k

W p p
f f f   

Moreover, the Besov space ,  [3] , s
p qB R (1 p q   , 

s n    and (0,1])   can be defined by 

        2
, , 2 , 2ns n j j

p q p p
j Z

B R f W R f l 


   q  

with the associated norm  

  
 ,

2 ( ): 2 , 2s n
p q p

q

j n j
pB W l Z

f f f   , 

where  

       2 , : sup 2 2 .p h t p
f t f x h f x h f x       

In general, it can be shown that compactly supported and 
n times differentiable functions belong to  ,

s
p qB R  for 
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Where p and q are density functions of P Q respec-
tively. 

Lemma 1.2. (Fano’s Lemma, [4]) Let  be 
pr

, 0 s n   and 1 , . p q  
The Besov space can be discretized by the sequence 

norm of wavelet coefficients. Many useful wavelets are 
generated by scaling functions. More precisely, if   is 
a scaling function with 

   2 2 ,k
k

x h x k    

then     1 2 2k : 1
k

k
x h x  k     defines a wave-

let [3]. Clearly, when   is compactly supported and 
continuous, the corresponding wavelet   has the same 
properties. An orthonormal wavelet basis of  2L R  is 
generated from dilation and translation of a scaling func-
tion and its corresponding wavelet, i.e. 
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Although wavelet basis are constructed for  2L R , 
most of them constitute unconditional bases for  pL R . 
A scaling function   is called t regular, if   has con-
tinuous derivatives of order t and its corresponding 
wavelet   has vanishing moments of order t, i.e. 

 kx x d 0, 0,1, , 1x k t    .  

The following lemma [3] plays important roles in this 
paper. 

Lemma 1.1. Let   be a compactly supported, t regu-
lar orthonormal scaling function with the corresponding 
wavelet   and 0 s t  . If  pf L R , 0 0k k  : , ,s f 

: ,jk jk  and 1 , d f  p q   , then the following 
two conditions are equivalent: 

1)  ,
s
p qf B R ;  

2) 
1 1

2
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2
j s
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Furthermore, 

,

1 1

2
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2s
p q

j s
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jB p p

j q

f s d
 
  

 
 



    
  

 . 

Before introducing Fano’s Lemma, we need the nota-
tion of Kullback-Leilber distance [4]. Let P and Q with P 
being absolutely continuous with respect to Q (denoted 
by ). Then the Kullback-Leilber distance is de-
fined by  

P Q

     
 0

, : ln d
p q

p x

( , , )kP 
obability measurable spaces and kA , 0,1, ,k m  . 

If kA

,K P Q p x x
q x 

   

vA  k v , then with cA  standing for for   

the complement of A and  ,k v
v0

1
: infm

v m k

K P P

 , 

m


 


   11
, exp 3 .

2 mm e 
0
sup minc

k k
k m

P A
 

   


 

By Lemma 1.1 and 1.2, we can show the following re-
sult: 

Theorem 1.1. Let 



 , ,s
r qf B R L   with , 1 r q   , 

1 p    and 1sr  . If nf  is an estimator of f with 
n  i.i.d. random samples, then 
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where     
,

, ,, : , s
r q

s s
r q r q B

B R L f B R f L   f and  
x y  means has compact support}; The notation 

with a constant C. 
rk 1.1. Note that  

x Cy  
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Then theorem 1.1 is a reformulate of the lowe und in 
(1.1). By using the idea of reference [5], we show this 
theorem in the next two sections. 

irstly, we prove  

n   
  

r bo

 
2. Proof of Theorem 1.1 
 
F
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One need construct

f B R L

E
 

 such that  ,s
k r kg ,qg B R L   

and  
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Let 

sn
E f g

   

  
ono

be a compactly supported,  regular and 
orth rmal scaling function, 

 t t s
  be the corresponding 

wav let with suppe  0, l  , l N  . He re and after, 
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N   enotes the set of positive inte en there ex-
ists a compactly supported density function g (i.e.  
  0g x   and  g ) satisfying  

   ,
s
r q

d 1x x 

g x B R  and     00, 0.lg x c   

 , 2 jl l l l . ThenLet 
elem

 , 2 , , 2 1j : 0,j 
ents in 

 the number of 

j enote
ed by [

 is 2 j

5], one defines 
1 , d d by 1 .  # 2 j

j  
 2 1/Motivat 1/: 2 j s r  and  ja   

       2 jk j jk k l
g x g x x I k


: ,  ja 

: 1  if 2with 
2

I
 jk l

 jk l , else  2
: 0jk l

I


 . Obvi-

ously, 
2 j l

g g ,  g x x 
 

 d 1  and  

  1/s r
kg x   for large  implies 

that k

0 2 0c 


  j j, which
g  

h
is a density function 

e assumptions of 
for each k. 

By t  , the wavelet   is com-
pported and pactly su

s
r qB

t  times differentiable. Therefore, 
   R t s    and  , .s

k r q, g B R  Bec   ause
 1/2 1/2 1j s r

ja    , 
,

s
r q

j jk B
a C   and so is 

,
s
r q

k B
g  

Hence, due to Lemma 1.1.   ,
s

k r q  ,g x B  R L . Clearly, 
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For  2 j
jk k l   due to : 2 1/2 1/j s
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thermore, :
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kg x g x g  x


   2 21 1 2 1 2
0 02

d0 j jk j jk jx x c a x c a     by the  
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 . Our  

proof depends on another lemma [4]. 
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ov-Gilbert) Let  Lemma 2.1. (Varsham
  1: , , m      ,  0,1i  . Then there exists a sub-

set  0 , , M   of 

/8m

  with   0 0, ,0   such that  

2M   and  
1

0 .
8

m
i j m
k k

k

i j M 
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r qg B R L
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On the other hand, it follows 1 2 20
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This with (2.7) and 
1

2 12 j sn   yield (2.5). 
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