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Abstract 
This article concerns the application of wavelet techniques on molecular sur-
faces constituted of four-sided patches. The Polarizable Continuum Model, 
which is governed by the Poisson-Boltzmann equation, is treated by means of 
boundary integral equations. The media inside and outside the molecular 
surface consist respectively of the solute and the solvent. For a given electri-
cally charged molecule, the principal unknown is the electrostatic solvation 
energy when the permittivity is specified. The wavelet basis functions are con-
structed on the unit square which are subsequently mapped onto the patches 
that are assumed to be isotropically shaped and to admit similar surface areas. 
The initial transmission problem is recast as an integral equation in term of 
both the single and the double layers. Domain decomposition preconditioner 
serves as acceleration of the linear solver of the single layer which is badly 
conditioned.  
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1. Introduction 

Potential applications of solute-solvent interactions include synthetic medical 
design, charge transfer, simulation of membranes and nanotubes as well as 
studies of biological process. The molecular surface Γ  is surrounded by the 
solvent media consisting of mobile ions admitting a specified permittivity. The 
domain enclosed within the molecular surface consists of the solute composed of 
fixed atoms admitting their respective charges [1] [2]. We focus on the Boundary 
Element Method (BEM) [3] [4] [5] [6] using wavelets on NURBS (Non-Uniform 
Rational B-Splines) patches [7] [8] [9] [10] to solve the Polarizable Continuum  
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Model (PCM) which treats a particular case of the Poisson-Boltzmann equation 
when the coefficient related to the modified Debye-Hückel parameter vanishes. 
Approaches based on BEM [1] [2] [11] become a preferred tool for solving 
linearized solvent problems because it is inconvenient to apply 3D-solvers such 
as FEM (Finite Element Method) [12] [13] [14] for several reasons. For one, the 
related transmission problem is solved by FEM in the entire 3D-space [15] [16] 
[17] while only the solution on the molecular surface is required. In addition, 
most FEM programs and analysis assume that the right hand side (RHS) is a 
sufficiently smooth function whereas one considers in the solvent problem a 
RHS which is a sum of nonsmooth Diracs defined only in the sense of distribution 
[18] leading to very fine adaptive mesh refinements. In the opposite, FEM 
appears to be the only recourse to treat nonlinear Poisson-Boltzmann [19] [20]. 
The principal BEM unknown is the apparent surface charge that is not a physical 
entity but a fictive value which behaves very much like a density of charge 
distributed on the molecular surface. In the application, the entire solution to 
the original transmission problem of the PCM is not needed as only the apparent 
surface charge suffices to deduce the electrostatic reaction potential. The initial 
transmission partial differential equations are recast as a PCM integral equation 
involving the single layer and the double layer operators. That will be decoupled 
into a pair of equations which are solved separately. First, one solves a second 
kind integral equation governed by the double layer operator only. The solution 
to that first problem serves subsequently as a RHS to another equation involving 
the single layer operator. The linear systems from BEM [21] [22] [23] [24] are 
fully populated in the case that the classical polynomial basis is utilized. Wavelet 
basis [25] [26] serves well as an efficient technique to obtain quasi-sparse 
matrices [27]. The construction of the wavelet basis [21] [28] [29] starts from 
univariate basis on the unit interval. Taking the tensor product in the unit 
square and mapping onto the patches result in the wavelet basis on the whole 
manifold. We assume the absence of anisotropic patches where some curved 
edges are relatively much longer in comparison to other ones. In addition, the 
surface areas of the NURBS patches ought not be considerably dissimilar. 
Accomplishing such a geometric property is not straightforward if the only 
available information consists of the nuclei coordinates and the Van-der-Waals 
radii of the atoms. Formerly, we have made efforts to achieve a geometric 
structure resulting in patches admitting comparable surface areas as well as 
isotropically shaped structure. The inputs are usually acquired from the format 
PDB or PQR for which some conversion techniques exist [30]. The system for 
the double layer operator produces a bounded condition number and no 
preconditioner is required. In the opposite, the single layer potential is severely 
badly conditioned and a domain decomposition technique [31] is used as a 
preconditioner for the reduction of the condition number which substantially 
decreases the required number of iterations to solve the linear system iteratively. 
Before proceeding further, we briefly survey our previous papers as well as 
computer implementations. A splitting method for CAD surfaces has been  
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proposed in [32] [33] for BEM simulation. Additionally, methods for checking 
the regularity of the mappings have been proved in [34]. The surface structure, 
which is required by the wavelet-BEM, is unfortunately very complicated to 
construct in contrast to the standard mesh generation [35]. While approximations 
are required to obtain global continuity in [34] for CAD objects, it can be 
achieved exactly for molecular surfaces in [36]. Furthermore, some quantum 
simulation by using wavelet BEM on single processor is described in [37]. A 
wavelet BEM simulation using domain decomposition techniques was described 
in [38] which treats the case of ASM (Additive Schwarz Method). By using 
Sobolev norms with negative orders [39], it was utilized as an efficient 
preconditioner for the wavelet single layer potential which is badly conditioned. 
Recently, we gained experience [13] in elasticity nanosimulation where one has 
used nanotube fibers immersed in polymer matrices as quantum models. 
Separate studies dedicated exclusively for the wavelet double layer potential are 
documented in [31] which describes as well the modeling techniques to achieves 
the molecular NURBS patching. In this current paper, we mainly compare 
computational results with analytical solutions. We display numerical outcomes 
pertaining to the single and double layer operators separately for complete 
molecules. The only well-known molecular model that has explicit analytical 
formula for the solvation energy appears to be the single atom, which is also 
known as Born ion. More precisely, it consists of an atom admitting specified 
charge and radius which is surrounded by the solvent media with given 
permittivity. More details pertinent to chemical solvation energy for more 
complex molecules will be deferred to a subsequent paper. 

2. Transmission Problem on NURBS Patches 

We present in this section the required geometric structure needed by the 
wavelet formulation of the PCM. The problem setting of the transmission 
problem which is related to the PCM will also be developed. The pertaining 
integral equation formulation is introduced because we need only the values on 
the interface Γ . We consider M  atoms { } 1

M
k k=

x  which are located in the 
solute region soluteΩ  and we suppose the geometry Γ  satisfies the following 
conditions:  
• We have a covering of the surface by four-sided patches 1

P
pp=

=


Γ Γ ,  
• The intersection of two different patches pΓ  and qΓ  is supposed to be 

either empty, a common curvilinear edge or a common vertex,  
• Each patch pΓ  where 1,2, ,p P=   is the image by [ ]2: : 0,1p p= → Γγ  

which is described by a bivariate function that is bijective, sufficiently smooth 
and admitting bounded Jacobians,  

• The patch decomposition has a global continuity: for each pair of patches 

pΓ , qΓ  sharing a curvilinear edge, the parametric representation is subject 
to a matching condition. That is, a bijective affine mapping : → Ξ  
exists such that for all ( )p=x sγ  on the common curvilinear edge, one has 
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( ) ( )( )p q= s sΞγ γ . In other words, the images of the functions pγ  and qγ  
agree pointwise at common edges after some reorientation,  

• The manifold Γ  is orientable and the normal vector ( )n x  is consistently 
pointing outward for any ∈x Γ ,  

• The patches admit similar surface areas.  
An illustration of the above surface structure is depicted in Figure 1. The 

CAD representation of the former mappings pγ  uses the concept of B-spline 
and NURBS [7] [9] [32]. Consider two integers ,n k  such that 1n k≥ ≥ . The 
interval [0, 1] is subdivided by a knot sequence ( ) 0

n k
i i
τ +

=
=τ  such that 1i iτ τ +<  

for 1, , 1i k n= − −  and such that the initial and the final entries of the knot 
sequence are clamped 0 1 0kτ τ −= = =  and 1n n kτ τ += = = . One defines the 
B-splines [7] [8] [10] basis functions as  

( ) ( )[ ]( ) [ ]1, : , , for 0, , and 0,1kk
i i k i i i kN t t i n tτ τ τ τ −

+ + +
= − ⋅ − = ∈ 

τ  

where we employ the divided difference 1, , ,i i p fτ τ τ+    in which we use the 
truncated power functions ( )kt

+
⋅ −  given by ( ) ( ):k kx t x t

+
− = −  if x t≥ , while 

it is zero otherwise. The integer k controls the polynomial degree 1k −  of the 
B-spline which admits an overall smoothness of 2k−  while the integer n 
controls the number of B-spline functions for which each B-spline basis ,k

iN τ  is 
supported by [ ],i i kτ τ + . The NURBS patch pγ  admitting the control points 

3
,i j ∈d   and weights ,i jw +∈  is expressed as  

( )
( ) ( )

( ) ( )
( )

, ,
, ,0 0 3

, ,
,0 0

, ,
n n k k

i j i j i ji j
p n m k k

i j i ji j

w N u N v
u v u v

w N u N v
= =

= =

= ∈ ∀ ∈
∑ ∑
∑ ∑

 
d τ τ

τ τ
γ

    
(1) 

which describes thus a parametric function from the unit square [ ] [ ]0,1 0,1= ×  
onto the four-sided patch 3

p ⊂ Γ . The similarity of the surface areas are 
needed in practice for the wavelet threshold to function in a unified manner. We  

 

 
Figure 1. Patch representation of a Water Cluster with 1089 NURBS. 
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will the wavelet threshold to function in a unified manner. We will consider only 
geometries which are globally smooth and which admit moderate curvature. For 
each patch pΓ , the Gram determinant is denoted by  

( ) ( ) ( ) ( ) ( )1 2 1 2
1 2

, : ,p p
p pG G t t t t

t t
∂ ∂

= = × ∀ = ∈
∂ ∂

t t t t
γ γ

      
(2) 

which quantifies the norm of the normal vector at the image ( )p p∈tγ Γ  of any 
point t  belonging to the unit square [ ] [ ]0,1 0,1= ×  by the parametric 
function pγ . The Gram determinant pG  and its partial derivatives are 
assumed to be bounded  

( ) ( )
1, , 1, ,

0 min inf max sup ,p pp M p M
c G G C

= ∈ = ∈
< ≤ < ≤ < ∞

  t t
t t

        
(3) 

( ) ( ) ( )
1 2 1 2

1 2

sup sup , ,p pG G C t t
t tα α

∈ ∈

∂
∂ = ≤ < ∞ =

∂ ∂ t t
t t t

α

α

      
(4) 

for ( )1 2,α α=α  where 1 2α α η= + ≤α  for η  sufficiently large. We 
consider the transmission problem for a parameter 1ε ≥  related to the 
dielectric coefficient:  

( ) ( ) ( )2 solute

1
: for ,

M

k k
k

u q δ ρ
=

−∇ = − = ∈∑x x x x x Ω
         

(5) 

( )2 solvent0 for ,uε− ∇ = ∈x x Ω                (6) 

( ) ( )
0 0

solute solute

0lim lim for ,u u
→ →

∈ ∈

= ∈
x x x x

x x

x x x
Ω Ω

Γ

             
(7) 

( ) ( ) ( ) ( )
0 0

solute solute

0 0 0lim , lim , for ,u uε
→ →

∈ ∈

∇ = ∇ ∈
x x x x

x x

x n x x n x x
Ω Ω

Γ

     
(8) 

( ) 0 asu → →∞x x                   (9) 

where kq  denotes the electric charge of the k-th atom while ( )kδ ⋅ − x  is the 
Dirac distribution centered at the coordinates of the nucleus kx . It consists of a 
special case of the Poisson-Boltzmann equation in the situation that the effect of 
the Debye-Hückel parameter is neglected. We are not solving those equations 
directly, rather we solve only the pertaining integral equations which are located 
on the interface surface Γ . Introduce the single layer V , the double layer K  
and the adjoint double layer *K  operators for ∈x Γ  as follows  

( )( ) ( )1 1: d ,
4π

v v=
−∫ΓV x y y

x y Γ  

( )( ) ( ) ( )
( )

( )3

,1 1 1: d d ,
4π 4π

v v v
− ∂

= = 
∂ − −  

∫ ∫Γ Γ

n y x y
K x y y y y

n y x y x y
Γ Γ  

( )( ) ( ) ( )
( )

( )*
3

,1 1 1: d d .
4π 4π

v v v
− ∂

= = 
∂ − −  

∫ ∫Γ Γ

n x x y
K x y y y y

n x x y x y
Γ Γ  

Consider the components ( ),i eu u  of the solution u inside the solute soluteΩ  
and the solvent solventΩ  respectively. We recall very briefly the transformation 
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of the transmission problem (5)-(9) into integral equations which follow the 
procedure of [1] [2] where one replaces ( ),i eu u  by ( ),i ew w  such that  

( ) ( ) ( ) ( )3

1, , : d , : .
4πi i i e e e i e iw u f w u f f f f

ρ
ε= − = − = =

−∫
x

x y x x
x y

  
(10) 

The apparent surface charge is defined as 1: iwσ −= V  so that one obtains  

( ) ( )
1

1 1d
4π 4π

M
k

i
k k

q
u

σ

=

= +
− −∑∫ ΓΓ

x
x y

x y x x            
(11) 

which shows that σ  behaves as a charge distribution over Γ  while the second 
term is a sum over the actual charges { }kq . The representation formula [4] 
yields  

( ) ( )1 1 1,
2 2i i i e e iw w w w w w

ε
∂ − = ∂ − = −V K V K

        
(12) 

where ∂  represents the conormal derivative. By combining them with the 
transmission jump conditions [[ ]] : e i e iw w w f f= − = −  and  
[[ ]] : e i e iw w w f f∂ = ∂ − ∂ = ∂ − ∂ , one obtains  

( ) ( ) ( )
2i e i i e i i e iw f f w f f w f fεε∂ − ∂ + ∂ − − + = − − +V K

      
(13) 

of which the full detail is described in [1] [2]. The fact that *=KV VK , 

iw σ= V  and the Newton potential : ifρ =  lead to  

( )*1 1 1 1 1 .
2 2 2 ρ ρσ

ε ε
      − + + = − − − ∂            

 I K V V I K I K V
   

(14) 

Apply the representation formula to the Newton potential which is harmonic to 

obtain ( )1 0
2 ρ ρ

 − + ∂ = 
 

I K V   which results in  

1 1 1 1 1 1
2 2 2 2ρ ρσ

ε ε
        − + + = − − + −                

 I K I K V I K I K
   

(15) 

( ) ( ) ( ) ( )1 11 1 1 1
2 2ρ ρε ε σ ε ε   + + − = − + + −      

 I K V I K
    

(16) 

( ) ( )
11 1 1 .

2 ρ ρσ ε ε
−

 = + + − −  
 V I K

           
(17) 

In practice, we are not interested in the entire solution u  of the transmission 
problem but only in the electrostatic reaction potential  

( )
1

1 1: d .
2 4π

M

k k

P
σ

=

=
−∑ ∫REAC y

y
x y ΓΓ

              
(18) 

Thus, our objective is to seek for the apparent surface charge σ  satisfying  

( ) 1 m gσ λ µ −= − +V I K                 (19) 

where λ  and µ  are constant parameters while m and g are given functions 
which are sufficiently smooth. For the practical applications related to (5)-(9), 
the coefficients λ  and µ  and the functions m and g are as follows  
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( ) ( ) ( )
1

2 1, 2 1 1, for .
M

k

k k

qm gλ ε µ ε ε
=

= + = − + = − = ∈
−∑x x x

x x
Γ

 
(20) 

In order to simplify the presentation, we assume henceforth the parameters 
λ  and µ  are unity. Everything remains valid with little modifications for 
other constant parameters. The above problem (19) is decoupled as two integral 
equations:  

f gσ = +V                      (21) 

where 

( ) ( )1: or equivalently solve .f m f m−= − − =I K I K       (22) 

That is, the solution to (22) is used as a RHS in (21). To numerically treat 
those last problems by means of the wavelet technique, several approximations 
are involved:  
• The Galerkin error related to the single layer V  by using a finite 

dimensional space ( )L Γ ,  
• Similar Galerkin error but for the double layer potential K ,  
• Replacing the RHS for fσ =V  by the approximate solution from the 

double layer equation,  
• Replacing the operator V  by its truncated version V ,  
• Similar truncation but for substituting K  by K .  

We will consider the space of piecewise constants ( )L Γ  whose construction 
will be specified later on. Concerning the discrete Galerkin variational 
formulation in ( )L Γ  for discretizing the integral Equations ((21) and (22)), 
one searches for ( ),L L Lfσ ∈ Γ  such that for all ( )L Lv ∈ Γ   

( ) ( ) ( ) ( ) ( ) ( ) ( ), d d d d ,L L L L Lv f v g vσ = +∫ ∫ ∫ ∫SL
Γ Γ Γ ΓΓ

x y x y x y x x x x x x
Γ Γ Γ  (23) 

( ) ( ) ( ) ( ) ( ) ( ) ( ), d d dL L L L Lf v d f v m v− =∫ ∫ ∫ ∫DL
Γx x x x y x y x y x x xΓ Γ ΓΓ Γ Γ Γ  (24) 

where ( ),SL x y  and ( ),DL x y  are respectively the kernel functions for the 
single layer V  and double layer K . Most of the following theoretical works 
are inspired from different sources including [1] [2] [21] [22] [27] [40] [41] [42] 
[43]. 

3. A-Priori Estimate for Multi-Wavelet PCM 

We consider in this section the multi-wavelet Galerkin formulation of the PCM 
problem. We recall several important properties which are used in the deduction 
of the a-priori error estimate when no wavelet. For the unidimensional basis 
functions, we introduce the next knot sequence on level 10,1, , DL=  ,  

{ } [ ]0 1 2
, , , 0,1 where 2 .i iζ ζ ζ ζ −= ⊂ =



     

ζ
         

(25) 

The internal knots on the next level ( )1+  are obtained by inserting a new 
knot in the middle of two consecutive knots on the lower level  . Introduce the 
piecewise constant linear space in the unit interval [ ]0,1  on level  :  
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[ ]
1,

0,1 : span , 1, , 2
i i

i i
ζ ζ

φ χ
− 

 

 = = = 
 

 

 




          

(26) 

where Dχ  designates the characteristic function with respect to D . By using 
the two scale relation  

( ) ( ) ( ) [ ]0 0 0
1 1 12 2 1 for all 0,1t t t tφ φ φ= + − ∈           (27) 

and the inclusion 1+⊂ ζ ζ , the spaces [ ]0,1


  form a nested sequence of 
subspaces:  

[ ] [ ] [ ] [ ]10 1 20,1 0,1 0,1 0,1 .DL
⊂ ⊂ ⊂ ⊂             (28) 

On account of the nestedness (28), the space [ ]0,1


  is expressed as an 
orthogonal sum  

[ ] [ ] [ ]10,1 0,1 0,1−= ⊕
  

                  (29) 

with respect to the 2 -scalar product where [ ]0,1


  is the complementary 
wavelet space  

[ ] [ ]
[ ]

[ ]{ }2 10,1
0,1 span 0,1 , , 0, 0,1 .i iψ ψ φ φ −= ∈ = ∀ ∈ 

  
  

    
(30) 

For the explicit expression of the wavelet functions 

iψ , we use the Haar 
wavelet defined on [ ]0,1  by  

( ) [ )
( ) [ ]

( )1

0

: 1 for 0,1 2
such that d 0

: 1 for 1 2,1

t t
t t

t t

ψ
ψ

ψ

 = + ∈ =
= − ∈

∫
Haar

Haar
Haar

    
(31) 

whose relation with the single scale basis is [ ) [ ]0,1 2 1 2,1ψ χ χ= −Haar . By using 
dilation and shift, one defines for 11, , DL=   and 11, , 2i −= 

   

( ) ( ) ( ) ( ) ( )
1 2 1

22 12 2 1 where Support , .i i iit t iψ ψ ψ ζ ζ− −
−

 = − + =  


    Haar

  
(32) 

The wavelet functions iψ   constitute an orthonormal basis  

( ) ( )1 2
1 2 1 2 1 2

1
, ,0

di i i it t tψ ψ δ δ=∫  

                 
(33) 

where the first Dirac 
1 2,δ
 

 comes from the inter-level orthogonality while the 
second Dirac 

1 2,i iδ  is justified by the non-overlapping of ( )1
Support iψ   and 

( )2
Support iψ   on the same level  . By applying the decomposition (29) 
recursively, one obtains on the maximal level 1DL   

[ ] [ ] [ ] [ ]
1 1

1 0
1 0

0,1 0,1 0,1 0,1
D D

D

L L

L
= =

 
= ⊕ = 

 
⊕ ⊕ 

 

   
        

(34) 

where 

[ ] [ ] 0 0
0 0 1 10,1 : 0,1 and :ψ φ= =               (35) 

so that we have the dimensionalities  

[ ]( ) 1 1
0: dim 0,1 where 1and 2 1, , .DLω ω ω −= = = ∀ =

  

      (36) 

Thus, a function [ ]1 0,1DL
u∈  has two representations: in the single-scale 
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basis and in the multiscale basis, we have respectively  

( ) ( )
1

2

1
where ,

DL
L

i i i
i

u t u t uφ
=

= ∈∑ S.Sc. S.Sc.

            
(37) 

( ) ( )
1

, ,
0 1

where .
DL

k k k
k

u t u t u
ω

ψ
= =

= ∈∑∑




 



M.Sc. M.Sc.

           
(38) 

From here onward, we use the notation X Y  if there is a constant c such 
that X cY≤  in which c  is independent on the level   and the maximal level. 
Besides, the notation X Y  amounts to Y X Y  . Moreover, we denote  

{ }2 : 2exp XX =                     (39) 

when the expression of X  is complicated. It has the properties:  

{ } { } { } { } { }1 2 1 22 2 2 2 2, 1exp exp exp exp expX X X X X X+ = − =    (40) 

{ } { } { } { }2 2 2 2, 0 1, 1 2.exp exp exp exp
r

X rX= = =         (41) 

The next norm equivalences related to the coefficients are valid [21] [29]  

[ ] { } { }2 2 2,0,1 ,
.i ki k

u u u








 
S.Sc. M.Sc.

            
(42) 

Due to the property (33) and ( )1 0
10

d 1t tφ =∫ , the orthogonal projection of any 
[ ]1 0,1DL

u∈  onto [ ]0,1q  verifies  

[ ]2 0,10 1
, .

q

q k k
k

Q u u
ω

ψ ψ
= =

= ∑∑


 



                 
(43) 

The 2D-wavelet space on the unit square  is defined for any level 
10,1, , : 2 DL L= = 

 in term of tensor product as follows  

( ) [ ] [ ]{ }1 2
1 2

: 0,1 0,1
+ =

= ⊗⊕  

  

                       (44) 

( ){ }1 2
1 2 1 2,span , ,i iiψ ψ ψ= = ⊗ + = 




  

            
(45) 

( ) ( ) ( ) ( )1
0

: .k
k

−
=

= = ⊕⊕


  

      
           

(46) 

On each patch pΓ  ( 1, ,p P=  ) and on the whole surface 
1

P
pp=

=


Γ Γ , we 
define for the level 0,1, , L=    

( ) ( ) ( ) ( ) ( ){ }1
, , ,: span : : ,p pi i iψ ψ ψ−= = ∈

 

  

 
  Γ γ

        
(47) 

( ) ( ) ( ) ( ) ( ){ }1
, , ,: span : : ,p pi i iψ ψ ψ−= = ∈

 

  

 
  Γ γ

        
(48) 

( ) ( ) ( ) ( )
1 1

: , : .
P P

p p
p p= =

= =⊕ ⊕   

   Γ Γ Γ Γ
         

(49) 

The space ( )L Γ  corresponds to the piecewise constant functions on a 
tensor product mesh admitting a step size of ( ) ( )1 22 2

DL L
Lh − −= =  . It is 

deduced from the above construction that the next nested inclusions are valid  

( ) ( ) ( ) ( )0 1 .L+⊂ ⊂ ⊂ ⊂ ⊂
 

    Γ Γ Γ Γ           (50) 

Some immediate properties for all wavelet functions ( ) ( ),iψ ∈




 Γ  are as 
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follows:  

( ) ( ) ( ) ( ),meas , 2 where , : support ,iS i S i ψ−  = =    




 
     

(51) 

( ) ( )2: diam , 2 ,S i −∆ = =  




                (52) 

( ) ( ) ( )2
, ,max , 2 ,u v i u vψ = 




               

(53) 

( )
( )1 2

2
1 2, ,1

12 max .
! S i

−

∈=

∆ = −∑
u u

u u





 α

α α            
(54) 

They are easily derived from the 1D definitions where 1 2= +    and the 
boundedness of the mappings pγ . 

The space of square integrable functions is  

( ) ( ){ }22 : : , df f= → < ∞∫ x x  ΓΓ
Γ Γ

           
(55) 

which is equipped with the following scalar product and norm after 
transformation onto  ,  

( ) ( ) ( ) ( )( ) ( )( ) ( )2
1

, : d d ,
P

p p p
p

u v u v u v G
=

= =∑∫ ∫Γx x x t t t t Γ Γ
γ γ

   
(56) 

( ) ( )2 2

1 2
: , .v v v =   Γ Γ                  

(57) 

The Sobolev space on Γ  for a non-negative integer k  is  

( ) ( )
( ){ }2

2: : for allk f f k= ∈ ∂ < ∞ ≤


 
Γ

Γ Γ α α
       

(58) 

where the differentiation f∂α  is interpreted in the sense of distribution [18] 

such that 
( )

( )
( )2 2, 1 ,f g f g∂ = − ∂

 Γ Γ

αα α  for all compactly supported smooth 

functions g . The Sobolev space ( )k Γ  is endowed with the norm  

( ) ( )2

22 : .k
k

f f
≤

= ∂∑ Γ Γ

α

α                 
(59) 

Concerning a real positive order p k θ= +  such that k  is an integer and 
] [0,1θ ∈ , the Sobolev space ( )p Γ  consists of the functions such that their 

norms with respect to the next Slobodeckij norm are finite  

( ) ( )

( ) ( )
2

2 2
2 2 d d .p k

k

f f
f f θ+×

=

∂ − ∂
= +

−
∑ ∫

x y
x y

x y  Γ ΓΓ Γ Γ Γ

α α

α       
(60) 

For negative orders, one employs the dual spaces ( ) ( )
*p p−  =   Γ Γ  

equipped with the dual norm  

( )
( )

( )

( )

2

0

,
sup .p

p p
p

v

u v
u u

v
−−

≠ ∈

= = 


 

Γ

Γ
Γ Γ             

(61) 

We will denote the orthogonal projection with respect to the 2 -scalar 
product onto ( )



 Γ  by 


  such that  

( ) ( ) ( )
2 2

, , .v w v w w= ∀ ∈
   

Γ Γ
Γ             

(62) 

Theorem 1. On the 2D level L , consider the discrete Galerkin PCM 
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problems for seeking ( ),L L Lfσ ∈ Γ  such that  

( ), , ,L L L L L L Lv f v g v vσ = + ∀ ∈V  Γ           (63) 

( ) ( ), , .L L L L Lf v m v v− = ∀ ∈I K  Γ           (64) 

Then, the accuracy between the apparent surface charge σ  from (21) and 

Lσ  from (63) for 1 2r ≥  and 1 2t ≥ −  satisfies  

( ) ( ) ( ) ( ) ( )1 2 1 2 2 1 2 2

1 1 .
2 2

r tL L r L t mσ σ σ− + −
− +  

Γ Γ Γ        
(65) 

In addition, the accuracy of the reaction potential PREAC  from (18) and  

( )
1

1 1: d fulfills
2 4π

M
L

L
k k

P
σ

=

=
−∑ ∫REAC

Γ

y
y

x yΓ
           

(66) 

( ) ( ) ( )2 1 2

1 1 .
2 2

r tL Lr L tP P mσ
−

− +REAC REAC
 

Γ Γ         
(67) 

Proof. The single layer operator V  can be decomposed [4] as 0= +V V L  
where the principal part 0V  is an elliptic operator ( )1 2

2
0 ,u u u −V 

Γ  and 
L  is a compact operator. Therefore, it is a Fredholm operator of zero index 
which is in addition injective [44]. As a consequence, Equations ((21) and (63)) 
are uniquely solvable. On account of the Strang lemma [12] with perturbed right 
hand side, the orthogonal projection ( ) ( )1 2:L L

− → Γ Γ  leads to  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1 2
1 2

1 2
1 2

, ,
min sup

,
sup .

L L L L

L L

L L L
L Lw v L

L L
L

v L

f g v f g v
w

v

f f v
v

σ σ σ

σ σ

− −

−

−

−

∈ ∈

∈

+ − +
− − +

−
≤ − +

 






Γ ΓΓ Γ Γ

Γ
Γ Γ

 




 

On the 2D-level L  for piecewise constant setup, one has  

( )
( )

( )
( )

( )

( )

( ) ( ) ( ) ( )

( )
( ) ( )

( )
( )

1 2
1 2 1 2

2 2
1 2

1 2
1 2

2

1 1

1

1 2 22 4

1

sup , sup ,

sup

sup 2 2 2 .r r

L L L

L L

L rLr L

I I

I I

φ φ

φ

φ

σ σ σ φ σ φ

σ φ

σ φ σ

−
= =

=

− +− −

=

− = − = −

− −

=

 







 

  





  

 

Γ Γ

Γ

Γ

Γ

Γ Γ

Γ Γ Γ

 

In addition, apply the inverse estimate ( ) ( )2 1 2
42L

L Lv v − 
Γ Γ  to obtain  

( ) ( ) ( )

( ) ( )

( )

2 2

1 2 1 2

,
sup sup

L L L L

L LL L

v vL L

f f vf f v
v v− −∈ ∈

−−
≤  

  

Γ Γ

Γ Γ
Γ Γ         

(68) 

( )

( ) ( )

( )

2 2

2
4sup

2L L

L L

L
v L

f f v

v−
∈

−
≤  



Γ Γ

Γ
Γ         

(69) 

( )2
42 .L

Lf f− 
Γ               

(70) 

A combination of the above relations yields therefore  

( )
( )

( ) ( )1 2 2
1 2 2 42 2 .r

L r L
L Lf fσ σ σ−

− +− + −  
Γ Γ Γ        

(71) 
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On the other hand, for the estimation of ( )2Lf f−  Γ
, one uses the same 

reasoning as above where K  is now the compact operator. Hence, one has the 
estimation  

( ) ( ) ( ) ( )2 2 2min
L L

L L Lq
f f f q f f

∈
− − ≤ −  




Γ Γ ΓΓ         
(72) 

( ) ( )
2 22 2 .t t

Lt Ltf m− −
  

Γ Γ            
(73) 

The a-priori error estimate for the apparent surface charge follows  

( )
( )

( )
( )

( )1 2
1 2 2 1 2 22 2 .r t

L r L t
L mσ σ σ−

− + − −− +  
Γ Γ Γ       

(74) 

Concerning the reaction potential, one obtains on account of the Cauchy- 
Schwarz inequality  

1

1 1 1,
2 4π

M

L L
k k

P P σ σ
=

− = −
− ⋅∑REAC REAC

x           
(75) 

( )
( )

2

21

1 1 1 .
2 4π

M

L
k k

σ σ
=

≤ −
− ⋅∑ x


Γ

Γ      
(76) 

We introduce the minimal distance between the nuclei coordinates { } 1

M
k k=

x  
and the molecular surface Γ ,  

1, ,
min min 0.kk M

D
= ∈

= − >
y

x y
 Γ                 

(77) 

By using the orthogonal projection L  and an inverse inequality, one obtains  

( ) ( )( )
( ) ( )

( ) ( )

( ) ( ) ( ){ }
( )

( )
( ) ( ){ }

( ) ( )

2 2

2

1 2

1 2 1 2

1 2

1 2

1

2

2 4

2 4

1 2 22 4

2 4

2

2 2

2 2

2 2 2

2 2 .

r

r

r

r r

r

L L L L

Lr
L L

Lr L
L L

Lr L
L L

L rLr L
L

Lr L
L

P P MD σ σ σ σ

σ σ σ

σ σ σ

σ σ σ σ σ

σ σ σ σ

σ σ σ

−

− −

−

−

−

−

−

−

− +−

−

− − + −

+ −

+ −

+ − + −

+ + −

+ −

REAC REAC
 

 

 

  

  

 













Γ Γ

Γ Γ

Γ Γ

Γ Γ Γ

Γ Γ Γ

Γ Γ

 






 

As a consequence, one concludes the following accuracy by applying (74),  

( )
( )

( )
( )

( )( )
( )

( )
( )

1 2 2 1 2 22 /4

1 22

2 2 2 2

2 2 .

r r t

r t

L r L tLr L
L

L tLr

P P m

m

σ σ

σ

− + − −−

− −−

− + +

+

REAC REAC
  

 




Γ Γ Γ

Γ Γ

 

  

4. Multiscale for Solvation Energy 

This section will be occupied by the treatment of the PCM by means of the wavelet 
technique. The matrix entries where the distance between the supports is beyond a 
level dependent threshold are annihilated. For a matrix 

1, ,

1, ,

j Q
ij i P

M M
=

=
 =  





, define  

( ) { }: card 0 : 1, , ; 1, , ,ijM M i P j Q= ≠ = =           (78) 
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1, , 1
: max ,

P

ijj Q i
M M

∞ = =

 =  
 
∑

                
(79) 

1 1, , 1
: max ,

Q

ijj P j
M M

= =

 
=  

 
∑

                 
(80) 

2
0

: sup .
x

M Mx x
≠

=
                 

(81) 

For two levels , 0,1, , L′ =   , a threshold ,δ ′
 

 whose expression will be 
specified subsequently is used. We consider the matrix coefficients  

( ) ( ) ( ) ( ) ( ) ( ) ( ),, , , , ,, d dp qi i i iψ ψ′ ′ ′ ′×
= ∫ u v u v u v

   



 
 

         
(82) 

where 

( ) ( ) ( ) ( ) ( ), , : , .p q p p p qG G =  u v u v u v  γ γ          (83) 

They correspond to the matrix entries in (23) and (24) for the single layer 
kernel = SL   and the double layer kernel = DL   after transformation 
onto  . The following level depended truncation procedure for each pair of 
levels ( ), ′

   is applied:  

( ) ( )
( ) ( ) ( ) ( ) ,, , ,

, , ,

if dist , , ,
:

0 otherwise.
i i

i i

S i S i δ ′′ ′
′ ′

 ′ ′ ≤   = 


 

 

 

 






       
(84) 

The block matrices , ′ 

  and , ′ 

  have respectively the entries 

( ) ( ), , , ,i i i i′ ′ ′
 
  

  and ( ) ( ), , , ,i i i i′ ′ ′
 
  

  such that we have blockwise:  

0,0 0, 0,0 0,

,0 , ,0 ,

, .
L L

L L L L L L

  
  = =   
     

 

 



   

 





   
 

            

(85) 

For the single layer and the double layer, define respectively  

0 0: 1 : 2 : 1 : 0.θ θ θ θ= = = − =SL DL SL DL
           (86) 

For the involved kernels, one has on account of the Calderon-Zygmund 
inequality:  

( ) ,, .
C

θ+ +

∂ ∂
≤

∂ ∂ −
x y

x y x y


α β
α β

α β α β

             
(87) 

Lemma 1. Fix any real parameters ( ), ,s p q  and consider two levels 
, 0, , L′ =   . Suppose (see (39), (40),(41))  

( )
( ) ( ) ( )

( )

, 2
0 0 0,

: exp
2 2 2 2 2 2: max
L s p q

δ
θ θ θδ

λ

′
′

′

  ′− − ′ = − −  
+ + +=    

 ∆ + ∆

 

 

 

 

 



    

(88) 

where 1λ >  and ∆


 denotes the diameter of the supports of any wavelet 

( ),iψ


 on level  . Then, the following error estimates in matrix norms are fulfilled:  

( )1
2 22

, , 2 2 2 2
L s p qL

′+ − ′ ′−
′ ′ ∞

 
− =   

 

 

  

   

  
          

(89) 
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( )1
2 22

, , 1
2 2 2 2

L s p qL
′+ − ′ −

′ ′

 
− =   

 

 

  

   

  
           

(90) 

( )1
2 2 2 22

, , 2
2 2 2 2 2 .

L s p qL
′+ − ′ ′− −

′ ′

 
− =   

 

 

   

   

  
        

(91) 

By using the thresholds ( ),δ ′
 

 for all , 0, , L′ =    as in (88) such that the 
parameters ( ), ,s p q  satisfy  

0, , 0, 2,s p q s p q θ> + + = +                (92) 

one has for ( )u γ∈ Γ  and ( )L Lv ∈ Γ  in the case of the single layer operator  

( ) ( ) ( ) ( )1 2

1 22, 2 L
L L Lu v L u vγ

γ
−

+−−V V  
Γ Γ         

(93) 

while the double layer operator yields  

( ) ( ) ( ) ( )2
2, 2 .L

L L Lu v L u vγ

γ−−K K  
Γ Γ          

(94) 

Proof. The value of ( ), ,p q u v  from (83) will be examined on a pair of 
patches p q×Γ Γ . The indices ( ),p q  are dropped to simplify the notation. Consider 
a tensor product wavelet basis ( ) ( ), ,i iψ ψ ′ ′⊗

 

 and fix ( ) ( ) ( )1 2 1 2, , , ,u u v v=   u v       as 
the midpoints of ( ),S i  and ( ),S i′ ′

 . By considering any  
( ) ( ) ( ) ( ) ( )1 2 1 2, , , , , ,u u v v S i S i′ ′= ∈ ×  u v   , the Taylor expansion leads to  

( ) ( ) ( )( ) ( )* *

1, 1

1 1, , ,
! != =

∂ ∂
= + − −

∂ ∂∑u v u v u v u u v v
u v

  

     
α β

α β
α β

α β α β   
(95) 

for some ( ) ( ) ( )* *, , ,S i S i′ ′∈ ×u v   . For the first term, by taking the integration 
over ×  , one obtains  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,, d d , d di i i iψ ψ ψ ψ′ ′ ′ ′×
=∫ ∫ ∫u v u v u v u v u u v v

   

 

   

   
  (96) 

which is zero due to (33). We will consider now the value of ( ) ( ), , ,i i′ ′ 

  in the 
case ( ) ( ) ( ) ( ) ,, , , : dist , , ,i i S i S i δ ′′ ′ ′ ′∆ = ≥    

 

 

. For the summation over 
1= =α β  from (95), supposing that the Jacobians of the mappings pγ  and 

qγ  are bounded, one has for ( )* *
p=x uγ  and ( )* *

q=y vγ   

( ) ( )0

0

, 2 1* *
,2 1* * * *

1, .L
L

C θ
θ θ θδ − + +

′+ − −

∂ ∂
≤

∂ ∂ − −
u v

u v x y x y
 

 
α β

α β
α β

    
(97) 

Since ( ) ( ) ( ) ( ), , , ,i i δ λ ′′ ′ ′∆ ≥ ≥ ∆ + ∆
 

   

, one has the next inequalities for 
( )p=x uγ  and ( )q=y vγ :  

* * * * * * ,′− ≤ − + − + − ≤ − + ∆ + ∆x y x x x y y y x y
       (98) 

( ) ( ), , ,
1 1 ,i iλ λ′ ′ ′∆ + ∆ ≤ ∆ ≤ −x y

 

 

              
(99) 

( )* * 1 1 λ− ≥ − − −x y x y x y             (100) 

which, when inserted into (97), leads to  

( ) ( )0

0

2 1* *
, 1

1, .L
L

θ
θ θδ − + +

′ − −

∂ ∂
∂ ∂ −

u v
u v x y

 

 
α β

α β

        
(101) 
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A combination of (95), (96) and (101) leads to  

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )

0

1 2

01 2

2 1
, 1 2, , , , , ,1, 1

1 2, 1, ,, ,

1 1 max max
! !

d dmax max .

L
i i i S i

i LS i S iS i

θ

θ θ

δ ψ

ψ

− + +
′′ ′ ∈= =

Γ Γ
′ ′ − −′ ′×′ ′∈

≤ −

× −
−

∑

∫

u u

v v

u u

x yv v
x y

 

  





 



 α

α β

β

α β
 

On account of the properties (51)-(54), one deduces  

( ) ( )
( )

( ) ( )
0

0

2 1
,, , , 1, ,

d d .L
i i LS i S i

θ
θ θδ − + + Γ Γ

′′ ′ − −′ ′× −
∫

x y
x y

 

 

 


         

(102) 

The function ( ) ( )
( ) ( ) ( )2

0 0 0

1
, exp

2 2 2 2 2 2
x y s xp yqx y
θ θ θ

 − −
− + + 

+ + +  
  is 

continuous on the compact [ ] [ ]0,1 0,1× . Hence, the value  

( )
( )

( )
( )

( )
( )

1
, 2

0 0 0

1
exp

2 2 2 2 2 2
L L L s L p L q

δ
θ θ θ

−
′

 ′ ′− −
= − + + 

+ + +  
 

   



     
(103) 

is bounded independently of , 0, , L′ =   . As a consequence, use the 
expression of ,δ ′

 

 to obtain  

( ) ( ) ( )
0 0

1
2 1 2 1 2 22

, , , 2 2 2
L sL L p qθ θδ δ δ

′+ −− + + − + ′−
′ ′ ′=

 

 

     

             (104) 

and hence, 

( ) ( )
( )

( ) ( ) 0

1
2 22

, , , 1, ,

d d2 2 2 .
L s p q

i i LS i S i θ θ

′+ − ′ Γ Γ
′ ′ − −′ ′× −

∫
x y

x y

 

 

 

 


      

(105) 

As a consequence, one deduces the norm estimate  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

,, , ,

0

,, , ,

, , , , , , , , , , ,

2 22
1, ,

max max

d2 2 2 max d

i i

i i

i i i i i ii Z i Zi Z i Z

sL p q
LS i S ii Z i Z

δ

θ θ

δ

′ ′

′′ ′

′

′′ ′

′ ′ ′ ′ ′ ′ ′ ′′ ′∞ ∈ ∈∈ ∈
∆ ≥

′+ − ′ Γ
Γ− −′ ′′∈ ∈

∆ ≥

 
    − = − =   
    

 
  

 
  −  

∑ ∑

∑∫ ∫
y x

x y

 

 

 
 





 
 

   

     

 

 

 

 



    


 


 
 

 

For any ∈x Γ , we have  

( ) ( )

( ) ( )
0 0

,, , ,

1 1 2 1,

d d d

i i

L L LS ii Z
Lθ θ θ θ

δ ′′ ′

Γ Γ Γ
− − − − −

∈
∆ ≥

≤ = =
− − −

∑ ∫ ∫ ∫
y y y

x y x y x y


 
 




Γ Γ

 

where the last equality uses a local mapping and polar coordinates. By using the 
measure property (51), obtain 

( )1
2 22

, , 2 2 2 2
L s p qL

′+ − ′ ′−
′ ′ ∞
−

 

  

   

   . The 
1-norm is processed in an analogous manner and therefore  

( ) ( ) ( ) ( )
( )1

2 22
, , , , , , , ,1

max 2 2 2 2
L s p q

i i i ii Z i Z
L

′

′+ − ′ −
′ ′ ′ ′ ′ ′∈ ′∈

  − = − 
  
∑





 

  

   

   

       

( )
212 2 2 2 22

, , , , , ,2 1
2 2 2 2 2 .

L s p qL
′+ − ′ ′− −

′ ′ ′ ′ ′ ′∞

 
− ≤ − −  

 

 

   

           

          
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Consider the orthogonal projection 


  onto ( )


 Γ  and introduce  

( ): ,L LS u v= −    
                

(106) 

in which 

( )1 1
0

where : 0.
L

Lu u− −
=

= − =∑
 



   
           

(107) 

Blockwise according to the levels  

( ) ( )

( ) ( )

0,0 0,0 0, 0,

,0 ,0 , ,

L L

L L L L L L

 − −
 
 − =
 

− −  

 





 

 



   

 

   
         

(108) 

( ) ( ) ( )1 1
0 0

,
L L

S u v′ ′− −
′= =

= − − −∑ ∑
   

 

     
            

(109) 

( ) ( ) ( ) ( ) ( ), , , ,
0 0

, , ,
L L

i i i i
i Z i Z

u vψ ψ ψ ψ
′

′ ′ ′ ′
′ ′= = ∈ ∈

−∑∑ ∑ ∑
 

   

 



  
     

(110) 

( ) ( ) ( ) ( ) ( ), , , ,
, 0 ,

, , ,
L

i i i i
i i

u vψ ψ ψ ψ′ ′ ′ ′
′ ′=

= −∑ ∑
   

 

 
          

(111) 

( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,
, 0 ,

, , .
L

i i i i i i
i i

u vψ ψ′ ′ ′ ′ ′ ′
′ ′=

 = − ∑ ∑
     

 

 
         

(112) 

By utilizing the next estimates  

( ){ } ( ) ( ){ } ( )2 2

2 2
, ,, 2 , , 2 ,i i

i i
u u v vγ γ

γ γψ ψ ′
′ ′− −

′ ′
′

 

 

 

  
Γ Γ  

(113) 

one obtains, based on the Cauchy-Schwarz inequality and (91),  

( ){ } ( ){ }
( )

( ) ( )

( ) ( )

22, , , ,2, 0

1
2 2 2 2 2 22

, 0

1 1
2 2 2 2 2 2 22 2

0 =0

, ,

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 .

L

i i
i

L L s p q

L Ls sLs p q

S u v

L u v

L u v

γ γ

γ γ

γ γ

γ γ

ψ ψ

′

′

′ ′ ′ ′
′=

′+ − ′ ′ ′ ′− − − −

′=

′ ′ ′ ′ ′− − − − −

′=

−

   
   
   

∑

∑

∑ ∑

   

 





 

 

     

 

 

     

 



 

 







 

Γ Γ

Γ Γ

 

The use of the sum of geometric sequence leads to  
1 1

2 2 2 2 2 22 2

0
2 2 2 2 2 2 2 2 ,

L s Lsp Lp L Lγ γ− − − −

=

 
=   

 
∑



  



  

1 1
2 2 2 2 2 22 2

=0
2 2 2 2 2 2 2 2

L s Lsq Lq L Lγ γ′ ′ ′ ′ ′ ′− − − −

′

 
=   

 
∑



  



  

and hence 

( ) ( )
2 2 2 2 22 2 2 2 2 2 2 .Ls Ls Lp Lq L L LS L u vγ γ

γ γ
′

′− − − −
 

Γ Γ  

For piecewise constant setup, obtain for the constant parameters , ,s p q   

( ) ( ) ( ) ( )
22, 2 .

s p qL
L Lu v L u vγ γ

γ γ
′

′− − − + +−− 

    
Γ Γ      

(114) 

For the single layer V , set 1 2γ ′ = −  and use 0 2s p q θ+ + = +SL  to obtain 
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from (86)  

( )02 2 2 1 2 1 2,s p q γ γ θ γ γ′− − − + + = − + + − = +SL  

( )
( )

( )
( )

( ) ( )
1 2 1 2

1 22
, ,

2 .
L L L L L

L L L

u v u v
L u

v v
γ

γ

− −

+−
− −

=
V V V V 


 


 

 Γ
Γ Γ

 

Similarly for the double layer, setting 0γ ′ =  results in  

( )02 2 2s p q γ γ θ γ γ′− − − + + = − + + =DL

         (115) 

( ) ( ) ( ) ( )2
2, 2 .L

L L Lu v v L u γ

γ−−K K  
Γ Γ         

(116) 

 

Theorem 2. Consider the truncated PCM equations on level L :  

( ), , , ,L L L L L L Lv f v g v vσ = + ∀ ∈V 


  Γ
         

(117) 

( ) ( ), , ,L L L L Lf v m v v− = ∀ ∈I K 
  Γ

          
(118) 

where the operators V  and K  are obtained from V  and K  by using the 
threshold ,δ ′

SL
 

 and ,δ ′
DL
 

 respectively. 
Suppose the constant parameters ( ), ,s p q  are chosen such that  

0, , 0, 2.s p q s p q θ> + + = +               (119) 

For P  patches, the numbers of nonzero matrix coefficients are then reduced 
from ( )2

2LP 
  

  to ( ) ( )2LL P =  V   and ( ) ( )2LL P =  K  . 
In addition, the accuracy between σ  in (21) and Lσ  in (117) for 1 2r ≥  

and 1 2t ≥ −  verifies  

( ) ( ) ( ) ( ) ( )1 2 1 2 2 1 2 2 .
2 2

r tL L r L t

L L mσ σ σ− + −
− +

  
Γ Γ Γ       

(120) 

Further, the error between the reaction potential PREAC  from (18) and  

( )
1

1 1: d fulfills
2 4π

M
L

L
k k

P
σ

=

=
−∑ ∫REAC

Γ

y
y

x y




Γ
          

(121) 

( ) ( ) ( )2 1 2 .
2 2

r tL Lr L t

L LP P mσ
−

− +

 REAC REAC
Γ Γ        

(122) 

Proof. We consider first the number of nonzero entries of the compressed 
matrices V  and K . For computing ( ), ′ 

   for each fixed level pair ( ), ′
  , 

consider a basis function ( ),iψ


 on level  . According to [40], the number of 
basis functions ( ),iψ ′ ′



 on level ′


 whose support ( ),S i′ ′
  is within a distance 

of ,δ′ ′∆ + ∆ +
   

 from the support ( ),S i  is in the worst case 
( )2

,2 δ′
′ ′∆ + ∆ +

   

. For that, Lemma 3.2. of [40] uses an argument using a 
sphere of radius ,δ′ ′∆ + ∆ +

   

 centered at a point located upon the support 
( ),S i . There are 2  basis functions ( ),iψ



 on level   for each patch pΓ  
where 1, ,p P=  . The number of the interlevel nonzero entries on all patches 
is thus  

( ) ( )2
, ,2 2 .P δ′
′ ′ ′∆ + ∆ + 

     

  
            

(123) 
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By summing over all levels  

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2
, ,

0 0 0 0

2
,

, 0 , 0

1 2

2

2 2 2 2

.

L L L L

L L

P

P P

δ

δ

′+
′ ′ ′

′ ′= = = =

′ ′+ +′− −
′

′ ′= =

= ∆ + ∆ +

   
+ +   

   
= +

∑∑ ∑∑

∑ ∑

 

     

   

   

 

 

   

  



   

 

 

The first sum on all patches verifies  

( )1
0 0

2 2 2 .
L L

LP L P L L P′

′= =

 = + =  ∑ ∑ 

 

 
          

(124) 

For the second sum 2 , the expression of the threshold ,δ ′
 

 leads to  

( ) ( )
( ) ( ) ( )

( )0

2 2
, 0 0 0 0

2
2 2

0 00 0 0 0

2 exp
2 2 2

2 exp 1 exp 1 .
2 2 2 2

L

L L
Ls

L s p qP

s p s qP θ

θ θ θ

θ θ θ θ

′+

′=

+

′= =

 ′− − ′ = − − 
+ + +  

         ′= − − − −      + + + +         

∑

∑ ∑

 

 

 

 

 

 



 

By using sum of geometric sequence, deduce from 0 2s p q θ+ + = +   

2
0 0 0

2 2
0 0 0

exp 1
2 2

exp exp .
2 2

L

L

s p

q qL

θ θ

θ θ

=

=

   − −  + +   
          =         + +          

∑

∑







 

 

In a similar manner, one obtains  

2 2
0 0 0 0

exp 1 exp .
2 2 2

L s q pL
θ θ θ′=

          ′ − − =         + + +          
∑


   

Hence, obtain for the second sum by using 0 2s p q θ+ + = +   

( )2 2
0

exp 2
2 1

Ls p qP L P
Lθ

  + +  =  + +   
 

         
(125) 

Hence, ( ) ( ) ( ) ( )1 2 2 2 2L L LL P P L P   ≤ + = + =   
        for all P  

patches. Concerning the first Equation (117), the next Strang relation [12] holds  

( ) ( ) ( ) ( )

( )
( )

( ) ( )

( ) ( )

( )
( )

( ) ( )

1 2 1 2
1 2

1 2

1 2
1 2

1 2

,
min sup

, ,
sup

,
sup

,
sup

L L L L

L L

L L

L L

L L

L Lw v L

L L L

v L

L L

L
v L

L L

v L

w v
w

v

f g v f g v

v

v

v

f f v

v

σ σ σ

σ
σ σ

− −

−

−

−

−

−

∈ ∈

∈

∈

∈

 − − − + 
  

+ − +
+

−
− +

−
+

V V

V V











 













 










Γ ΓΓ Γ Γ

Γ Γ

Γ
Γ Γ

Γ Γ
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By inserting (115) in the last estimate, the next inequality is fulfilled  
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In the same manner as (70), one has  
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and hence 
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(127) 

On the other hand, for the second Equation (118) by applying the Strang 
lemma [12] for the second time  
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By using (116), deduce  

( ) ( ) ( )2
2 22 2t t

Lt Lt
Lf f f L f− −− +

 


Γ ΓΓ          
(128) 

( ) ( )
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Based on the last estimate and (127), deduce  
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(130) 

Concerning the accuracy with respect to the electrostatic reaction potential 
PREAC , one proceeds as in (75) and (76) in order to obtain  
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 

5. Practical Implementation and Numerical Results 

We want to present in this section some results of the former method. We will 
describe first the process of obtaining the computational results. We distinguish  
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Figure 2. Relative errors for several RHS in function of levels: (a) double layer, (b) single layer. 

 
separate tests for the single layer operator, the double layer operator and the 
electrostatic reaction potential. The exact solutions which have zero Laplacians 
are specified by the user in the case of the double/single layer potentials. The 
corresponding right hand sides are then obtained by applying the Lapacian 
operator to the exact solutions as illustrated in Figure 2(a) and Figure 2(b). 
Transforming Laplace problems into integral equations using double/single 
layers is found in standard textbooks of integral equations [4] [45]. The assembly 
of the basis functions consists in constructing piecewise constant wavelets on the 
unit interval. After taking the tensor product, one obtains basis functions on the 
unit square which are mapped by the NURBS functions onto the patches that are 
embedded in the 3D-space. The assembly of the matrix entries uses hierarchical 
integrations which are described in our former paper [31]. That procedure can 
be achieved on arbitrary geometries. The linear system obtained from the double 
layer operator does not require any preconditioner as a direct GMRes linear 
solver suffices to solve the system. For the single layer operator however, we use 
a domain decomposition preconditioner to reduce the number of iterations. The 
error computation consists in comparing the chosen exact solution with the 
outputs which are acquired by applying the BEM-simulation. The reason for 
displaying separate results pertaining to the double layer potential and the single 
layer potential is that if they are solved individually, analytical results for 
arbitrary boundary Γ  exist for comparisons. As for the computation of the 
electrostatic reaction potential, we make use of the Born ion. That is, the only 
well-known analytical result for the reaction potential PREAC  is a simple 
geometry composed of a single atom. For that case, the process consists in fixing 
some configurations by setting the values of the radius, the electric charges as 
well as the dielectric parameter. The actual process consists therefore in applying 
the PCM simulation on a resolution which is specified by the wavelet level. The 
electrostatic potential is obtained by traversing the patches and by computing 
some integrals related to the apparent surface charge as specified in (18). For the 
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numerical computation of those integrals, a standard Gaussian quadrature for 
smooth integrand suffices because the nuclei { }k k

x  are not located on the 
NURBS patches { }p p

Γ . Different parameters are varied in order to validate the 
accuracy of the PCM-simulation.  

5.1. Molecular Models 

We employ different sorts of quantum models including molecules which are 
acquired from PDB/PQR files [46] as well as water clusters which are obtained 
from a former MD (Molecular Dynamics) simulation. When the MD-iteration 
attains its equilibrium state where the total energy becomes stable, a water 
cluster is obtained by extracting the water molecules which are contained in 
some given large sphere whose radius controls the final size of the water cluster. 
The formerly proposed method assumes that the sizes of the patches are 
proportional. Efforts were done to obtain patches whose shapes related to the 
normal derivatives are as good as possible. In order to measure the quality of the 
patches, we examined the proportionality of the area, length of the curved edges 
and the norm of the normal vectors. That is important because we use the same 
wavelet threshold for all patches. We avoid a patch where some curved boundary 
edges are very long while others are very short. For each patch qΓ , the quality 
gauge for the area is  

( )
( )

area average areamax , .
average area area

q

q

  
 
  

Γ

Γ
            

(131) 

The average of the above value is collected on Table 1 which shows that 
although the areas are different, their ratios with the average area are not 
excessive. Similar quality measurements as (131) have been utilized for the 
length of curved edges separating the patches [47] as well as the normal vectors 
which are computed at some tensor product samples. It is observed from Table 1 
that all involved entities in the patches are practically proportional. 

5.2. Double Layer Potential 

For the double layer potential, one can solve the linear system iteratively without 
recourse to any preconditioner because the system is well conditioned. A 
GM-Res method serves as a solver of the system which is non-symmetric. We  

 
Table 1. Quality of the NURBS patches for several molecules. 

Molecules Number of patches Area quality Edge quality Normal quality 

Propane 75 1.398271 1.321944 1.461835 

Water cluster 386 1.544968 1.353151 1.614005 

Lecithin 567 1.471329 1.291532 1.542821 

Water cluster 1109 1.494891 1.324720 1.563416 

DNA 2119 1.827838 1.433003 1.921646 
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Table 2. BEM accuracy for the double layer and the single layer in function of the levels. 

 Quasi-sparse ratio Absolute Error Relative Error 

DOUBLE LAYER: 

Level 1 0.09590 1.105436e−01 2.249543e−02 

Level 2 0.05656 7.764197e−02 1.580001e−02 

Level 3 0.02203 2.711450e−02 5.517754e−03 

Level 4 0.00751 6.669732e−03 1.357279e−03 

SINGLE LAYER: 

Level 1 0.77720 7.048236e−02 1.434304e−02 

Level 2 0.29145 3.428494e−03 6.976926e−04 

Level 3 0.09715 1.966928e−03 4.002664e−04 

Level 4 0.03036 3.185045e−04 6.481510e−05 

 
shall examine first the error reductions in term of the multiscale level. The 
results are collected in Table 2 which contains both the absolute errors and the 
relative errors. The absolute errors are obtained by comparing with the exact 
solution at some fixed samples in the interior Ω . A division by the largest value 
of the exact solution provides the relative error.  

In the first part of Table 2, we collect the convergence of the BEM simulation 
in function of the level ranging from 1 to 4. Those results have been obtained 
from a water cluster molecule containing 386 patches. The ratio between the 
nonzero counts of the compressed and uncompressed matrices are also exhibited. 
We examine now the general linear characteristic of the relative errors. We 
display in Figure 2(a) the error evolution where we consider five levels applied 
to a propane molecule using several right hand sides. We consider five exact 
solutions which are respectively ( ) 2 2 2

1 0.2 0.15 0.05x y z= − −x  and ( )2 =x  
( ) ( )exp 0.5 cos 0.5x y , ( ) ( ) ( ) ( )

1 22 2 2
3 5 5 5x y z

−
 = − + − + − x , ( )4 0.1x=x  

and ( ) ( ) ( ) ( ) ( ) ( ) ( )5 exp 0.01 sin 0.01 exp 0.2 cos 0.2 exp 0.1 sin 0.1y x z x z y= − + −x  
( ) ( )exp 0.05 cos 0.05y x+  that all have vanishing Laplacian. The right hand side 

( )g x  is the restriction of the function   on the boundary Γ . The propane 
molecule admits 75 patches. The error reduction is lightly affected by the used 
right hand side but in general the errors reduce satisfactorily in function of the 
wavelet levels. In fact, they decrease linearly in logarithmic scale in function of 
the BEM levels. 

5.3. Single Layer Potential 

The single layer yields a linear system which is badly conditioned [48]. We use 
an additive domain decomposition preconditioner to remedy that bad conditioning. 
We briefly summarize the procedure whose comprehensive description is detailed 
in our former work [38]. In term of geometric structure, the overlapping domain 
decomposition is as follows  
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1
such that

p

M

p p i
p i= ∈

= =
 



Γ Ω Ω Γ
            

(132) 

where 
is not necessarily empty for .p q p q≠Ω Ω          (133) 

In term of linear spaces, this leads to the decomposition  

( ) ( ) ( ) ( ) ( )1 where : .
p

M p L i
i∈

= + + = ⊕


    Γ Ω Ω Ω Γ

    
(134) 

Denote the orthogonal projection onto ( )p Ω  with respect to the bilinear 
form ,⋅ ⋅V  related to the single layer operator V  by  

( ) ( ) ( ): , , , , .
p pp pP P v vφ φ φ→ = ∀ ∈Γ V V  Ω ΩΩ Ω

    
(135) 

The ASM operator is defined by  

( ) ( )
1

: , : .
M

P P P P→ = + +ASM ASM
 Γ Γ Ω ΩΓ Γ         (136) 

The ASM procedure consists in solving a local problem which is projected by 

p
PΩ  onto the subdomain pΩ . The results of the number of iterations are 
summarized in Figure 3(a) where it is observed that the ASM method needs 
significantly less iterations than the direct method. A larger view for the 
iterations less than 50 is exhibited in Figure 3(b). Like the double layer, the 
same test for the compression is detailed in the second part of Table 2 in the 
case of the single layer potential. Further, the decrease of the BEM error in 
function of the levels for different RHS is presented in Figure 2(b) where a 
propane molecule is used as in the double layer case. 

5.4. Apparent Surface Charge 

We want now to examine the values of electrostatic reaction potential PREAC  
which are computed with the PCM-wavelet technique. It is beyond the scope of  

 

 
Figure 3. (a) Preconditioning the single layer potential for the entire iterations. (b) Zoom for preconditioning the single layer 
potential for iterations 0 - 60. 
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this article to provide a detailed comparison with other softwares as all results 
here are only computed for analytical comparison where we do not use any 
physical units. The explicit values for the reaction potential are unknown except 
for some simple geometries. We consider the Born ion that consists of a single 
sphere of radius 0R >  which is centered at the origin and to which an electric 
charge q is assigned while the dielectric coefficient ε  of the solute is adjusted. 
The analytical expression [11] for the reaction potential reads  

( )( )2 8π 1 1P q R ε= − −REAC . All those parameters are unitless in the sense that 
no physical units are used to measure them. Our next test consists in examining 
the effect of the dielectric coefficient 1ε ≥ . The corresponding result is depicted 
in Figure 4(a) in which we consider three configurations corresponding to 
( ) ( ), 1.2, 2.0R q = , ( ) ( ), 2.2, 2.0R q =  and ( ) ( ), 1.5,1.0R q =  respectively. We 
execute the wavelet-PCM simulation on multiscale level 3 while the dielectric 
coefficient varies from 1ε =  to 200ε = . We observe for all three configurations 
that the exact reaction potential and the computed PCM results align well in 
Figure 4(a) where a zoom is also provided for [ ]1,20ε ∈  in which the reaction 
potential drops down very quickly. As a next test, we investigate the variation of  

 

 
Figure 4. Unitless comparison for the Born ion: (a) dielectric coefficients, (b) electric charge, (c) radius. 
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the electrostatic potential in function of the electric charge q. The corresponding 
outcome is depicted in Figure 4(b) where we consider four configurations 
corresponding to 4R = , 3R = , 2R = , 1R =  while the dielectric coefficient 
is constantly 200ε = . The electric charge is allowed to vary in the range 

[ ]1.5,4.25q∈ . One observes in Figure 4(b) that the computed reaction 
potential varies quadratically in function of the electric charge. In fact, a 
parabolic dependence on the charge q is exhibited. The purpose of the next test 
displayed in Figure 4(c) is to highlight the agreement between the computed 
PCM result and the exact solution when the ion radius varies from 0.5R =  to 

3.5R = . One considers three configurations where the electric charge is 
respectively 1.5q = , 2.0q =  and 2.5q =  while the dielectric coefficient is 
consistently 12.5ε = . For all three configurations, the electrostatic reaction 
potential is inversely proportional with regard to the ion radius. For all cases, the 
results computed by means of the PCM-wavelet align well with the theoretical 
expectations. As a final test, we examine the accuracy of the electrostatic 
potential in function of the BEM-levels which vary from 1 to 6. We consider two 
configurations where the radii and electric charges are ( ) ( ), 1.2, 2.0R q =  and 
( ) ( ), 2.3, 2.5R q =  respectively. The results of the BEM accuracy are summarized 
in Table 3 where we consider four dielectric values 15ε = , 5ε = , 100ε =  
and 45ε = . The exact and the computed reaction potentials which are 
exhibited there imply that the BEM-approximation becomes satisfactorily 
precise as the multiscale levels increase. 

 
Table 3. Computed PCM-reaction potential in function of the multi-scale levels for the 
Born ion.  

 ( ) ( ), 1.2,2.0R q =  ( ) ( ), 2.3,2.5R q =  

 Approximation Error Approximation Error 

Dielectric = 15 (Exact = −0.12378): Dielectric = 5 (Exact = −0.086497): 

Lev 1 −0.17264 4.886E−02 −0.11993 3.343E−02 

Lev 2 −0.13445 1.067E−02 −0.09392 7.431E−03 

Lev 3 −0.12628 2.493E−03 −0.08820 1.707E−03 

Lev 4 −0.12439 6.037E−04 −0.08685 3.613E−04 

Lev 5 −0.12397 1.913E−04 −0.08659 9.805E−05 

Lev 6 −0.12386 7.278E−05 −0.08653 4.069E−05 

Dielectric = 100 (Exact = −0.131303): Dielectric = 45 (Exact = −0.105719): 

Lev 1 −0.18326 5.196E−02 −0.146894 4.117E−02 

Lev 2 −0.14262 1.132E−02 −0.114802 9.083E−03 

Lev 3 −0.13394 2.640E−03 −0.107792 2.073E−03 

Lev 4 −0.13194 6.416E−04 −0.106160 4.409E−04 

Lev 5 −0.13150 2.045E−04 −0.105841 1.216E−04 

Lev 6 −0.13138 7.818E−05 −0.105771 5.201E−05 
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6. Conclusion 

We consider the transmission problem occurring in the interaction between the 
solute and the solvent media. Our method is based on an integral equation 
formulation which is solved by means of the wavelet Boundary Element Method. 
The entire molecular surface is supposed to be structured in four-sided NURBS 
patches onto which wavelets constructed on the unit square are embedded. For 
the Born ion, the exact reaction potential is known explicitly without using 
physical units. Our results align well with the exact solutions when we vary 
various parameters including the electric charge, the radius and the dielectric 
coefficient. The current approach is limited to the linear case where the 
coefficients in the transmission problem are constant parameters. Prospective 
future works could comprise the nonlinear Poisson-Boltzmann admitting 
nonsmooth Dirac load function. Further, non-constant matrix-valued coefficients 
which are difficult to treat by BEM might be examined. These challenging works 
need to be approached and presented step by step. 
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