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Abstract 
In this paper, a new methodology of fractional derivatives based upon Her-
mite polynomial is projected. The fractional derivatives are demonstrated ac-
cording to Caputo sense. Hermite collocation technique is introduced to ex-
press the definite results of Bagley-Torvik Equations. The appropriateness and 
straightforwardness of numerical plan is presented by graphs and error tables. 
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1. Introduction 

Numerical analysis is the study of set of rules that use numerical estimation for 
the problems of mathematical analysis as distinguished from discrete mathe-
matics. Fractional differential equations are operational and most effective tool 
to describe different physical phenomena such as rheology, diffusion processes, 
damping laws, and so on. Many technics have been delegated to solve differen-
tial equation of fractional order. Different structures are used to resolve the is-
sues of nonlinear physical models of fractional orders like Finite element method 
[1], Finite difference method [2], differential transformation method [3] [4], 
Adomian’s decomposition method [5] [6] [7], variational iteration method [8] [9] 
[10], Homotopy perturbation technique [11], Zubair decomposition method 
(ZDM) [12], (G’/G)-expansion method [13], (U’/U)-expansion method [14], U- 
expansion method [15], Fractional sub numerical announcement method [16] 
[17], Legendre wavelets technique [18], Chebyshev wavelets framework [19] [20] 
[21], Haar wavelets schema [22], Legendre Method [23], Chebyshev strategy [24], 
Jacobi polynomial scheme [25] and collocation scheme [26] [27] [28] [29]. All 
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the mentioned approaches have certain limitations like excessive computational 
work, less efficiency to tackle nonlinearity and divergent solution due to which 
many issues arise. All these disputes can be fixed with the help of orthogonal 
polynomials, which is a vital thought in close estimation and structures. These 
orthogonal polynomials are the reason of powerful strategies of spectral methods 
[30] [31] [32]. Starting late, Khader [33] displayed a capable numerical proce-
dure for enlightening the fractional order physical problems using the Cheby-
shev polynomials. In the [34] two Chebyshev spectral frameworks for measuring 
multi-term fractional problems are displayed. The author (Tamour Zubair) de-
volve a new wavelets algorithm to construct the numerical solution of nonlinear 
Bagley-Torvik equation of fractional order which will have less computational 
works, straight forward and better accuracy as compare to the existing technique. 
It is to be emphasized that proposed algorithm is tremendously simple but high-
ly effective Moreover, this new pattern is proficient for reducing the computa-
tional work to a tangible level while still retaining a very high level of accuracy. 

2. Basic Definitions 
Fractional Calculus [35]-[40] 

We give some basic definitions and properties of the fractional calculus theory 
which are used further in this paper. 

Definition 1. A real function ( ) , 0f t t >  is said to be in the space ,c Rµ µ ∈  
if there exists a real number ( ) p µ> , such that ( ) ( )1

pf t t f t= , where  
( ) [ ]1 0,f t C∈ ∞ , and it is said to be in the space mCµ  iff ,m

ìf C m N∈ ∈ . 
Definition 2. The Riemann-Liouville fractional integral operator of order 

0α ≥ , of a function , 1,f Cµ µ∈ ≥ −  is defined as 

( ) ( ) ( ) ( )1

0

1 d , 0, 0,
t

J f t t f tαα τ τ τ α
α

−= − > >
Γ ∫  

( ) ( )0 .J f t f t=  

Properties of the operator Jα  can be found in literature, we mention only 
the following: For , 1, , 0f Cµ µ α β∈ ≥ − ≥  and 1γ > − : 
1) ( ) ( ).J J f t J f tα β α β+=  
2) ( ) ( ).J J f t J J f tα β β α=  

3) ( )
( )

1
.

1
J t tα γ α γγ

α γ
+Γ +

=
Γ + +

 

The Riemann-Liouville derivative has certain drawbacks when trying to model 
real-world processes with fractional differential equations. Therefore, we shall 
introduce a improved fractional differential operator Dα  proposed by  M . 

Definition 3. The fractional derivative of ( )f t  in the Caputo sense is de-
fined as 

( ) ( ) ( ) ( ) ( )1

0

1 d ,
t mm m mD f t J D f t t f t t

m
αα α τ

α
− −−= = −

Γ − ∫  

for 11 1 , , 0, mm m m N t f Cα −− < ≤ ∈ > ∈ . For the Caputo’s derivative we have  
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0,D Cα = C  is a constant, 

( )
( )

0

0

0, for and ;

Γ 1
, for and .

Γ 1

k
k

n n
D x k

x n n
k

α
α

α

α
α

−

 ∈ <   


= +
∈ ≥    + +




 

We use the ceiling function α    to denote the smallest integer greater than 
or equal to α , and { }0 0,1, 2,= 

. Recall that for α ∈ , the Caputo diffe-
rential operator coincides with the usual differential operator of integer order. 

3. Bagley-Torvik Equations 

Bagley-Torvik equation assumes an extremely vital part to study the perfor-
mance of different material by application of fractional calculus [40] [41]. It has 
increased its significance in many fields of industrial and applied sciences. Pre-
cisely, the equation with 1/2 order derivative or 3/2 order derivative can be 
model the frequency dependent damping materials. The summed up form of 
Bagley-Torvik equation is given 

( ) ( ) ( )( ) ( )d d
, 0 ? .

d d
nu t u t

y t f t t T
t t

α β

α βσ ω µ+ + = < ≤           (1) 

with initial condition 

( )d 0 , 0,1.
d

p

pp u l p
t

= =  

with boundary condition at 0t t= , for 00 t T< ≤ , is given by 

( )0
d , 0,1.
d

p

pp u t m p
t

= =  

where n  is the nonlinear operator of the equation, ( )u t  is unknown function. 
,σ ω  and µ  are the constant coefficients, T is the constant representing the 

span of input in close interval [0,T], and ,k kl m  are contents. When we have 
1, , , 2n M k Sσ µ ω ρ= = = =   

where M  is mass of the rigid plate, k  is stiffness of the spring, S is the area of 
plate immersed in Newtonian fluid,   is the velocity, and ρ  is the fluid den-
sity then equation (1) represents the motion of large thin plate in a Newtonian 
fluid [39]. Similarly, linearly damped fractional oscillator with the damping term  

has the fraction derivative 3
2

β = . 

Further, we will discuss mathematical modeling of BT equation with feed-for- 
ward artificial neural network. The solution u  of the fractional differential equa- 

tion along with its 𝑣𝑣 arbitrary order derivative d
d

v

v

u
t

 can be approximated by the 

following continuous mapping as a neural network methodology [41] [42] [43] [44]: 

( ) ( )1 ,h
i i iiu t tγ ϑ χ

=
= ℵ +∑

 

( )1

d d ,
d d

v v
h

i i iv vi

u t
t t

γ ϑ χ
=

= ℵ +∑

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where ,i iγ ℵ and iχ  are bounded real valued adaptive parameters, h is the 
number of neurons and f  is the active function taken as exponential function. 

Fractional differential equation neural networks (FDN-NNs) can be approx-
imate as 

( ) ( )
1 e ,i ih t

iiu t χγ ℵ +
=

= ∑  

( )
1

d e ,
d

i i
v

h tv
i iv i

u
t

χγ ℵ +
=

= ℵ∑


 

for 2v = , we get 

( )
2

2
2 1

d e ,
d

i ih t
i ii

u
t

χγ ℵ +
=

= ℵ∑


 

Using Definition 4, for 3
2

v = , we get 

( ) ( )
3

32
2

13 1 1,
22

d e .
d

ih
i ii

u t E t
t

χγ
−

= −
= ℵ∑


 

 

 
Figure 1. FDE-NN architecture of Bagley-Torvik equation. 
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The mathematical model can be the linear combinations of the networks 
represented above. The FDE-NN architecture formulated for Bagley-Torvik 
equation can be seen in Figure 1. It is clear that the solution u  can be ap-
proximated with u  subject to finding appropriate unknown weights. 

4. Hermite Polynomials [45] 

It is classical orthogonal polynomials play very important role in probability. It 
has wide applications in numerical analysis as finite element methods as shape 
functions for beams. They are also applicable in physical quantum theory. Her-
mite polynomials are categorized into two kinds 

The Probabilists Hermite polynomials are the solutions of 

( ) ( )e e 0, 0, 0.y yλ λ∅ ∅′′ + = ∅ < >  

where 
2

2
x

∅ =  and λ  is a constant, with the boundary conditions that y   

should be polynomially bounded at infinity. The above equation can be written 
in the form of eigen value problem 

[ ] ,L y y xy yλ′′ ′= + = −  

solutions are the Eigen functions of the differential operator L . This equation is 
called Hermite equation, although the term is also used for the closely related 
equation 

2 2 .y xy yλ′′ ′− =  

whose solutions are the Physicists Hermites Polynomials, which is the second 
kind of Hermite polynomials. 

The Hermite polynomials is given by 

( ) ( ) 1 2
1 2

d1 e e , 0, 0.
d

n
n

n nH x
x

∅ ∅= − ∅ > ∅ <  

where 

2

2
1

, for Physicists Hermites Polynomials,

, for Probabilists Hermites Polynomials.
2

x
x


∅ = 

  

 

and also 1 2∅ = −∅ . 
 

Probabilists Hermites Polynomials Physicists Hermites Polynomials 

0 1,He =  

1 ,He x=  
2

2 1,He x= −  
3

3 3 ,He x x= −  
4 2

4 6 3,He x x= − +  
  

0 1,H =  

1 2 ,H x=  
2

2 4 2,H x= −  
3

3 8 12 ,H x x= −  
4 2

4 6 3,H x x= − +  
  
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( )nH x  and ( )nHe x  the two branches of Hermite polynomial of degree n , 
which are orthogonal with respect to weigh function. 

( )
1

1

2

2

e , for Physicists Hermites Polynomials,

e , for Probabilists Hermites Polynomials.
w x

∅

∅

= 


 

Here we have 1 0∅ < . 
Further we have orthogonality ( )R x  is given by 

( )
( ) ( ) ( )

( ) ( ) ( )

d 2π ! , for Probabilists,

d π2 ! , for Physicists.

m n nm

n
m n nm

He x He x w x x n
R x

H x H x w x x n

δ

δ

∞

−∞

∞

−∞

 == 
 =

∫

∫
 

A function ( ) ( ) ( )2 ,w xu x L∈ ∞ −∞  can be express in term of Hermite polyno-
mials 

( ) ( )0 .i iiu x a H x∞

=
= ∑  

where ia  coefficients is given by 

( ) ( ) ( )1 d .i i
i

a u x H x w x x
∞

−∞
= ∫  

where π2 !n
i n= . 

5. Fractional Form of Hermite Polynomials [35]-[40] 

The explicit formula of Hermites polynomials is 

( ) ( )
( )

2
0

1
! .

! !

mn

n mP x n X
m n m

 
  
=

 − ′=  
−  

∑
                

(1*) 

where X ′  is given by 

( ) 2

2

2 , for Physicists Hermites Polynomials,

, for Probabilists Hermites Polynomials.
2

n m

n m

m

x
X x

−

−


′ = 



 

Further we have 

( ) { }2
0! .

n

n mmP x n Xδ
 
  
=

′= ∑                      (2) 

where mδ  is given by 

( )
( )

1
.

! !

m

m m n m
δ

−
=

−  

A function ( ) ( ) ( )2 ,w xu x L∈ ∞ −∞  can be express in term of Hermite polyno-
mials 

( ) ( )0 .M
k nnu x a P x

=
= ∑

                      (3) 

where ( )P x  are Hermites polynomials. Using (1*)-(3) and definition of frac-
tional derivative, we get the following 

( ) ( )( )0! .M
n m nmn mD Xu x n a αξα α

α δ χ −

= =
′ ′≅ ℵ∑ ∑

             
(4) 
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where , nm
αχ′ℵ  and ξ  is given by ( )

( )
2 1

2 ,
2 1nm

n m
n m

α αχ
α

Γ − +
′ℵ = =

Γ − − +
 and  

2
n α

ξ
−

= . 

Note that only for ′ℵ , we have following 

0, for Physicists Hermites Polynomials,
0, for Probabilists Hermites Polynomials.

α
α
>′ℵ =  <

 

a) Methodology 
Consider the multi order fractional differential equation (1) as 

( ) ( ) ( ) ( ) ( )( )1 2; , , , , ,nD u x x u x D u x D u x D u xββ βα ϕ= 

        
(5) 

( ) ( )0 , 0,1,2, , 1,n
nu u n m= = −  

where ( )u x  is the unknown function, to be determined. The proposed tech-
nique for solving Equation (5) proceeds in the following three steps: 

Step 1: According to the proposed algorithm we assume the following trial 
solution 

( ) ( ) ( )T
0 ,M

k kku x a P x x
=

= =∑ U P

                 (6) 

where [ ]T0 1 2, , ,a a a=U   and ( ) ( ) ( ) ( ) T
0 1 2, , ,x P x P x P x=   P  . 

where ( )kP x  are Hermite polynomials of degree k  defined in Equation (6) 
and ka  are unknown parameters, to be determined.  

Step 2: Substituting Equation (6) into Equation (5), we get 

( ) ( ) ( ) ( ) ( )( )1 2T T T T T
1; , , , , ,nD x x x D x D x D xββ βα ϕ β=U P U P U P U P U P  

( )( )T 0 ,nx u=U P  

Using (4) we have 

( )( )
( ) ( )( )(

( )( )
( )( ))

11

1

22

2

0

0 0

0

0

!

; , ! ,

! , ,

! ,nn

n

h
n m nmn m

M M
k k n m nmk n m

M
n m nmn m

M
n m nmn m

n a X

x a P x n a X

n a X

n a X

αξ α
α

βξ β
β

βξ β
β

βξ β
β

δ χ

ϕ δ χ

δ χ

δ χ

 

−

= =  

−

= = =

−

= =

−

=

 

  

   =

′ ′ℵ

′ ′= ℵ

′ ′ℵ

′ ′ℵ

∑ ∑

∑ ∑ ∑

∑ ∑

∑ ∑



       (7) 

( )( )T 0 .nx u=U P  
Step 3: Further we Assume suitable collocation point for Equation (7). There- 

fore, we obtained system has 1M +  equations and 1M +  unknowns. Solving 
this system gives the unknown coefficients using Conjugate Gradient Method. 
Putting these constant into trial solution, we can obtained the approximate/exact 
solutions of linear/nonlinear fractional differential Equation (5). 

b) Approximation by Hermite Polynomials [45] 
Let us define { },x xΩ = −∞ < < ∞  and ( ) ( ) ( ){ }0 1, , ,N Nspan P x P x P xγ =  . 

The ( ) ( )2 Ωw xL -orthogonal projection ( )2: ΩN NLπ γ→  be the mapping and we 
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have 

( ) 0, .N Nz zπ θ γ− = ∀ ∈  

Due to the orthogonality property, we can write it as 

( ) ( )1
0 ,N

N k kkz a P xπ −

=
= ∑  

where ( )0,1, , 1ia i N= −
 are the constants in the following form 

( ) ( )
21 , .i k w x

i

a u x P L=


 

6. Numerical Simulation 

In this section, we apply new algorithm to construct approximate/exact solutions 
fractional differential equation. Numerical results are very encouraging. 

Case 1 In Equation (1), we take 2α = , 3
2

β = , 1nσ ω µ= = = = ,  

( ) 22 4
π
tf t t= + + , 0pl = , 0 1t = , 1,2pm = . The close form solution is 2t . 

Consider the trial solutions for 2M =  as 

( ) ( )0 .M
k nnu t a P t

=
= ∑  

Using the trail solution into Equation (1) and proceed it according to Step 1 
and Step 2, then we collocate it further to generate the system of equations. Solve 
the system of equations along with initial conditions, we get the values of con-
stants 

 
Hermite’s 0a  1a  2a  

Physicists 1
2

 0 1
4

 

Probabilists 1 0 1 

 
Finally, we get the approximate solution 

( ) 2.u t t=  

which is exact solution. 

Case 2 In Equation (1), we take 2α = , 3
2

β = , 1nσ ω µ= = = = ,  

( ) 22 4
π
tf t t= + + , 0 0l = , 0 5t = , 0 25m = . The close form solution is 2t . 

Consider the trial solutions for 2M =  as 

( ) ( )0 .M
k nnu t a P t

=
= ∑  

Using the trail solution into Equation (1) and proceed it according to Step 1 
and Step 2, then we collocate it further to generate the system of equations. Solve 
the system of equations along with initial conditions, we get the values of con-
stants 
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Hermite’s 0a  1a  2a  

Physicists 1
2

 0 1
4

 

Probabilists 1 0 1 

 
Finally, we get the approximate solution 

( ) 2.u t t=  

which is exact solution. 

Case 3 In Equation (1), we take 2α = , 3
2

β = , 1nσ ω µ= = = = ,  

( ) 1f t t= + , 1pl = . The close form solution is 1 t+ . 

This equation can be simplify by using  

( ) ( ) 1 .U t u t t= − −  

Consider the trial solutions for 2M =  as 

( ) ( )0 .M
k nnu t a P t

=
= ∑  

Using the trail solution into Equation (1) and proceed it according to Step 1 
and Step 2, then we collocate it further to generate the system of equations. Solve 
the system of equations along with initial conditions, we get the values of con-
stants 

 
Hermite’s 0a  1a  2a  

Physicists 1 1
2

 0 

Probabilists 1 1 0 

 
Finally, we get the approximate solution 

( ) 1 .u t t= +  

which is exact solution. 

Case 4 In Equation (1), we take 2α = , 1nσ µ= = = , 1
2

ω = ,  

( ) ( )
23 1
Γ 3

tf t t
β

β

− 
= + +  − 

, 0p = , 0 1l = , 0 1t = , 0 2m = . The close form so-

lution is 21 t+ . 
Using the trail solution into Equation (1) and proceed it according to Step 1 

and Step 2, then we collocate it further to generate the system of equations. Solve 
the system of equations along with initial conditions, we get the values of con-
stants 

 
Hermite’s 0a  1a  2a  

Physicists 3
2

 0 1
4

 

Probabilists 2 0 1 

https://doi.org/10.4236/ijmnta.2017.63010


T. Zubair et al. 
 

 

DOI: 10.4236/ijmnta.2017.63010 113 Int. J. Modern Nonlinear Theory and Application 
 

Finally, we get the approximate solution 

( ) 21 .u t t= +  

which is exact solution. 

Case 5. In Equation (1), we take 2α = , 1nσ µ= = = , 1
2

ω = ,  

( ) ( ) ( ) ( ) ( )2 4 4120 244 5 3 1
Γ 6 Γ 5

f t t t t t t tβω µ
β β

−  
= − + − + −  − − 

, 0p = , 0 0l = , 

0 1t = , 0 0m = . The close form solution is ( )4 1t t − . 

The numerical solution is represented in Table 1 in case of 2,5M =  and 
0.3β = , while the error for various values of 0β =  and  0.5β =  are repre- 

sented in Table 2. There is a graphical comparison between exact and approx-
imate solution represented in Figure 2.  

 
Table 1. Numerical comparison between exact and approximate solution for deferent 
values of .M  

x  2M =  5M =  

0 0.00000E+00 0.00000E+00 

0.1 9.00000E−05 6.42250E−45 

0.2 1.28000E−03 9.13422E−44 

0.3 5.67000E−03 4.04617E−43 

0.4 1.53600E−02 1.09611E−42 

0.5 3.12500E−02 2.23003E−42 

0.6 5.18400E−02 3.69936E−42 

0.7 7.20300E−02 5.14014E−42 

0.8 8.19200E−02 5.84590E−42 

0.9 6.56100E−02 4.68200E−42 

1.0 0.00000E+00 0.00000E+00 

Error Exact Solution Approximate solution .= −  
 

Table 2. Numerical comparison between exact approximate solutions for different values 
of .β  

x  0β =  0.5β =  

0 0.00000E+00 4.00000E−100 

0.1 9.08224E−32 7.57685E−45 

0.2 1.80074E−31 1.07760E−43 

0.3 2.65365E−31 4.77341E−43 

0.4 3.42665E−31 1.29312E−42 

0.5 4.05488E−31 2.63085E−42 

0.6 4.44066E−31 4.36426E−42 

0.7 4.44538E−31 6.06400E−42 

0.8 3.88121E−31 6.89662E−42 
0.9 2.50300E−31 5.52352E−42 
1.0 8.00000E−100 2.00000E−99 

Error Exact Solution Approximate solution .= −  
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Figure 2. Graphysical comparision between exact and approximted solution. 

7. Conclusions 

All the facts and findings of the paper are summarized as follow:  
• This paper provides novel study of Bagley-Torvik equations of fractional or-

der in different situations by using newly suggested Hermite Polynomial 
scheme. 

• Implementation of this methodology is moderately relaxed and with the help 
of this suggested algorithm, complicated problems can be tackled.  

• It is to be highlighted that the suggested comparison gives attentive respond 
regarding some particular issues for values of M, which demonstrates viabili-
ty of the proposed framework. Likewise, the reliability of the application pro-
vided this technique a more comprehensive suitability. 
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