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ABSTRACT 

In this paper, we present the mathematical equations that govern the deformation of an imbedded blood vessel under exter-
nal uniform pressure taking into consideration the nonliner behavior of the soft tissue surrounding the vessel. We present a 
bifurcation analysis and give explicit formulas for the bifurcation points and the corresponding first order approximations 
for the non-trivial solutions. We then present the results of a MATLAB program that integrates the equilibrium equations 
and calculates the blood flow rate through a deformed cross section for given values of the elasticity parameters and pres-
sure. Finally, we provide (numerical) verification that the flow rate as a function of the elasticity parameters of the soft tis-
sue surrounding the blood vessel is convex, and therefore validate the invertibility of our model. 
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1. Introduction 

Stability analysis for the buckling, post-buckling shapes 
and flow rate through an imbedded blood vessel under 
uniform external pressure were considered in [1]. In that 
paper, the soft tissues surrounding blood vessels are mo- 
deled by numerous linear independent springs. However, 
biological tissues are well known to respond in a non- 
linear fashion to applied forces [2-6]. Since the support 
provided by the perivascular tissue is an important con- 
tributor to the in vivo structural stiffness of arteries, 
which will in turn affect the pressure-flow rate rela- 
tionship, there is a critical need for further studies. In this 
paper, we examine the effect of replacing the linear 
spring in [1] by nonlinear ones on the post-buckling 
shapes and on the pressure-flow rate relationship. Fur- 
thermore, we verify (numerically) the convexity of the 
flow rate as a function of the elasticity parameters. This 
convexity of the (direct) problem is important to ensure 
its invertibility. That is, to ensure the solvability of the 
(more important) inverse problem, namely, to determine 
the elasticity parameters of the soft tissue surrounding 
the blood vessel from measurements of the deformation, 
the pressure, and the flow rate. The paper [1] assumes: 

1) The tethering can be represented by numerous in- 
dependent springs.  

2) The springs are linear. 

Motivated by the fact that biological tissues are known 
to respond in a nonlinear fashion to applied forces, we 
begin our series of studies to improve previous results by 
replacing Equation (8) of [1] by a nonlinear function 

   1 2=F k BC AC k g BC AC   . It is expected that 
this nonlinearity will have no effect on the stability 
analysis; however, it will alter the post-buckling shapes 
and flow rates through them. Interests in these post- 
buckling computations will make the present studies 
necessary and useful steps in the direction of describing 
tethered vessels more precisely. Furthermore, our (nu- 
merical) validation of the solvability of the inverse pro- 
blem gives the simple physical model used in this project 
advantages over more complicated ones. The rest of this 
paper is organized in five sections. In Section 1, we de- 
fine the variables and formulate the equilibrium equa- 
tions. In Section 2, we give a bifurcation analysis of the 
equilibrium equations that lead to explicit formulas for 
the bifurcation points, dependent on spring stiffness, and 
the corresponding first order approximations for the 
bifurcation solutions. In Section 3, we show the numeri- 
cal formulation [7]. In Section 4, we present our numeri- 
cal results. In Section 5, we give some concluding remarks. 

2. Mathematical Formulation 

We consider the deformation of a thin-walled elastic 
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cylinder tethered by continuously distributed nonlinear 
springs to a rigid outer cylinder (see Figure 1, below). 
The interior cylinder is subjected to internal pressure i , 
and external pressure e . This cylinder will remain 
circular until a bifurcation pressure difference is exceeded.  

P
P

To formulate the mathematical equations governing 
the equlibrium, we consider the forces acting on an ele- 
mental length of the interior cylinder (see Figure 2, 
below).  

In Figure 3, below, we analyze changes in the coor- 
dinates of an element length due to a displacement from 
point A to point B.  

2.1. Notations 

In the rest of this paper, we use the following notations 
for our variables: 

iP
P

: Internal pressure 

e

S
: External pressure 
: Shearing force 

s

: Arc length 

tq
q

: Tangential stress 

n : Normal stress 
M : Moment 
T : Tension 
 : Local curvature of vessel from x axis 

2.2. Assumptions 

We make the following assumptions: 
1) The flow of blood through a tethered blood vessel is 

slow and steady.  
2) The cross section does not vary much along a 

segment, so that the internal pressure is taken as constant 
(locally).  

2.3. Remark 

From the assumptions above, we conclude that we can 
solve for the deformed shape first, then calculate the 
flow rate afterward. 

2.4. Equilibrium Equations 

Balancing forces in the normal direction gives:  
= nTd q ds dS               (1) 

Balancing forces in tangential direction gives:  
= 0tq ds Sd dT             (2) 

Balance of moments gives:  
=dM Sds                 (3) 

Assuming the wall thickness to be small compared to 
the radius, it follows that the moment M is proportional 
to the local curvature, where E and I are material 
constants [8]:  

d
=

d
M EI

s




              (4) 

 

Figure 1. Elastic cylinder tethered to a rigid cylinder. 
 

 

Figure 2. An element length. 
 

 

Figure 3. A small displacement from A to B. 
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From which  

 

2

2

d d
=

d d

M
EI

s s


 

             (5) 

From (2) we get  

 

2

2

d d d
= 0

d dd
t

T
q EI

s ss

   
 

        (6) 

From (1) we get  

d d
=

d d n

S
T

s s

 
 

q              (7) 

And this gives  

2 2

2 2 2

dd d d d
=

d d dd d
nqT S

T
EI

s s ss s R

 
         (8) 

From (6) we get  

22

2 2 2

d d d d d
= 0

d d ddt

EI EI T
q

s s sR R s

      
  ds

    (9) 

From (8) and (9) we get  

34 2 3 2

4 2 3

2

d d d d d d

d dd d d d

dd d
= 0

d dd

n

n
t

q
s s 2s s s s

q
q

s ss

    

 

      
   

 



    (10) 

where 

=
s

s
R


                   (11) 

3

= n
n

q R
q

EI


                (12) 

3

= t
t

q R
q

EI


                (13) 

We also have  
d

= cos
d

x

s
                (14) 

d
= sin

d

y

s
                (15) 

Let 0F  be the tension per unit length per unit area of 
a spring at spring length of 1a   ( ). > 1a

We define 

0= e iP P P F               (16) 

We assume that the extra force due to deformation is F 
and is given by:  

  1 2= F k BC AC k g BC AC       (17) 

where  and  are spring constants and g is a 

nonlinear function.  

1k 2k

= 1AC a                  (18) 

   2
= cos sin =BC a s x a s y d   2

   (19) 

2 2
2 2

2 2

sin 1 cos
tan = = sec 1

cos cos

x x
x x

x x


     (20) 

   

   
 

2
2 2

2 2

2

sin
sec = tan 1 = 1

cos

sin cos
=

cos

a s y

a s x

a s y a s x

a s x

          

  



 (21) 

   
   
 

2

2
2 2

2

2

cos
cos =

sin cos

cos
=

a s x

a s y a s x

a s x

d

 



  


     (22) 

  cos
cos =

a s

d
  


x
         (23) 

  sin
sin =

a s y

d
  
          (24) 

But 

   
 

cos cos sin sin

= cos = cos

cos sin
cos sin = cos

a s x a s y

d d

     

   

  

  

 

 
 

  (25) 

    = cos cos sin sint

F Z
q a s x a

d
    s y    (26) 

    = sin cos cos sinn

F Z
q a s x a

d
    s y    (27) 

    1 2= F Z k Z k g Z          (28) 

= 1Z d a               (29) 

3. Bifurcation Analysis 

For low values of the pressure difference, the interior 
cylinder remains circular. As the pressure difference in- 
creases byond some critical values, non-circular solu- 
tions occur (see Figure 4, below). These critical values 
of the pressure difference are called bifurcation points 
while the corresponding non-circular solutions are called 
bifurcation solutions. It is well known that bifurcation 
may occur only at pressure difference values that corre- 
spond to a singular linearized problem about the circular 
solution.  
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Figure 4. Bifurcation points with solutions for N = 2, 3, and 4. 
 

In this section, we present the calculations to find the 
bifurcation points: the critical values of the pressure 
difference at which the vessel deforms into non-circular 
shapes. 

First, we set 

 1y s   (local angle) 

 2 Momenty s   

 3 Sheary s   

 4 Tensiony s   

 5y s x  

 6y s y  

where 
2π

0,s
N

  

  is the arclength. 

We define the state vector:  

             1 2 3 4 5 6= , , , , ,Y s y s y s y s y s y s y s    (30) 

Then the equations of equilibrium can be written as:  

   

2

3

4 2

3 2

1

1

= , = =

cos

sin

n

t

y

y

y y q P
Y s F Y P

y y q

y

y

 
 
 
  

 
  

 
 
  

0     (31) 

with boundary conditions: 

 1

π
0 =

2
y  

   3 60 = 0 = 0y y  

1

2π π 2π
=

2
y

N N
   
 

 

3

2π
= 0y

N
 
 
 

 

   2 2 2 2
5 6 5 6

2π 2π
0 0 =y y y y

N N
       
   

 

, nP q
=P
, and  defined by: t

 Pressure difference, 
q

    1 5 1= sin cos cos sinn

F Z
q y a s y y a s

d
6y     , 

    1 5 1= cos cos sin sint

F Z
q y a s y y a s

d
6y     , 

where n  and t  are the normal and tangential com- 
ponents of stress per unit length, 

q q
 F Z  is the force due 

to the springs, which is given by:  

  1 2=  F Z k Z k g Z        (32) 

where  
= 1Z d a              (33) 

And  

   2 2

5 6= cos sind a s y a s y   .     (34) 

In the circular case, the Basic Solution is given by:  

 

 
 
 
 
 
 

1

2

3
0

4

5

6

π

2
1

0= =

cos

sin

y s s

y s

y s
Y s

y s
P

y s
s

y s
s

                            


            (35) 

where = 1d a  , , , and = 0Z = 0tq  = 0nq g . 
Assuming that  0g 0 , we have    0 0= ,Y PY s F , 
P , and furthermore  0Y s  satisfies the boundary 

conditions for formula (31). The Fréchet derivative of 
 ,F Y P  at the basic solution is given by:  

 
4 2

1 5
0

3 2
1 5

1

1

0 1 0 0 0 0

0 0 1 0 0 0

0

=

0

sin 0 0 0 0 0

cos 0 0 0 0 0

n n

Y
t t

q q
y y

y y
F Y

q q
y y

y y

y

y

6

6

n

t

q

y

q

y

 
 
 
  
 


    

  
    


 

   
  
  

(36) 

where:  

= 0 0 00
1 1 5 6

= = = =
Y Y

n t t t
Y Y Y

q q q q

y y y y

   
   

0    (37) 

0 1
5

= cosn
Y

q
k s

y





           (38) 
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0 1
6

= sinn
Y

q
k s           (39) 

y






Therefore, the linearized problem about the 
solution  is: 









(40) 

Which may be written as:  

basic 
 0Y s

 
0 0

s

  
 
 
 
 
 

1

2

31 1

4

5

6

1 0 0 0

0 0 1 0 0 0

0 0 1 cos sin
=

0 0 1 0 0 0

cos 0 0 0 0 0

sin 0 0 0 0 0

Y

y s

y s

y sP k s k s

y s

y ss

y ss

 
 
  
  
  

   
 


    

   5 6

d
= 1 cos siny P y k y s y s

s
     (41) 

Integrating twice gives:  

2

w

1 1 1 d
 

 1 1 1 5 6 11 cos sin d =y P y k y s y s s c s c       (42) 

ith boundary conditions: 

     1 3 60 = 0 = 0 = 0y y y  

1 3

2π  2π
= = 0y y

N N
 

   
   

 

 5 5

2π 2π 2π 2π
0 = cos siny y y

N N N N
              
       

 6

Therefore, 
To solve the fferential equation:  

1=

2 = 0c . 
di

1 1  1 5 61 sin cosy P y   k y s y s c  s   (43) 

We write the solution in the form:  

1
=12 n

n

π
= = siny s b nNs

         (44)  
 

5 3

1

=1

cos 1 cos
= = cos

1 1n
n

s nN s nN
y x s b

nN nN

      


(45) 

c
   

6 4
=1

sin 1 sin 1
= = sin

2 1 1
n

n

b s nN s nN
y y s c

nN nN

        
  

(46) 
where 

Substituting these equations into the differential 
equation gives:  

= 2,3,4,N  . 

2 2 1
2 2

=1

sin 1 = 0n
n

k
b nNs n N P

        (47) 

2 2 1
2 2

1 = 0,
1n

k
b n N P n

n N

       
 > 1  

n-zero solution (a bifurcation point) to exist, 
 must be

 (48) 

For a no

1b  0 . 
ore,  Theref

2 1
2

1 = 0
1

N P
N

   


        (49) 

From whic e get: 

k

 h w

* 2 1
2

= 1
1N

k
P N

N
 


         (50) 

here *
NP  is the critica

nt, at which the vessel d
w l pressure value, or bifurcation 
poi eforms into a shape with N 
axes of symmetry. 

This result allows us to find the bifurcation points for 
alugiven v es of N  and 1k . Before the first bifurcation 

point, for *
20,P P  , we have the basic (trivial) 

solution which corr

2

esponds to the undeformed shape. 
The deformed shapes corresponding to N = 2, 3, 4,  , 
N exist for P P , where he circular solution becomes 
unstable, and s is lost. A series expansion of 
the first order approximations of the bifurcation solutions 
are given by formula (43). 

Additionally, equating 

 t
 nesunique

NP  with 1NP
  gives us the 

pressure where the shape with N  axes of symmetry 
collapses. For example, the = 2N  case occurs for 0 ≤ 
k1 ≤ 24, while the = 3N  case occurs for 24 ≤ k1 ≤ 120. 

4. Numerical Formulati

extern

). 
, we write the equili- 

on 

Due to the assumed uniform al pressure, the vessel 
will deform into radially symmetric shapes, with N axes 
of symmetry ( N , an integer, 2

Given P , a , N , 1k , and 2k
brium equations in the form: 

1 2=y y  

2 3=y y  

3 4=y y  

 33 2 3
4 2 2

2

= n t ny y q q y q
y y

1n N  

Then  

2

y y y     

5 1= cosy y  

6 1= siny y  

where 

1 =y  , 2 =y   , 3 =y   , 4 =y   , 5 =y x , 6 =y y  

and 

    5 6 cos cos sin sin
Z

a s y a s y =t

F
q      (51) d

    5 6= sin cos cos sinn

F Z
q a s y a

d
  s y     (52) 
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  2 2

5 6= cos sind a s y a s y     (53) 

= 1Z d a              (54) 

and 
2π

0,s
N

    
, with boundary conditions 

 1

π
0 =

2
y   0

 3 0 = 0y  

 6 0 = 0  y

1

2π π 2π
= 0

2
y

N N
       
   

 

3

2π
= 0y

N
 
 
 

 

    2 2 2 2
5 6 5 6

2π 2π
0 0 =y y y y 0

N

          
    

.  

 

We can then numerically solve for the shape of the 
deformed vessel. Using this shape, we solve the follow- 

g (normalized) Poisson equation in a MAT- 
A

in
L

= 1v   
B program to find the velocity of the blood,  ,v x y . 

We can then find the flow rate through the deformed 
vessel by integrating the velocity function over the area 
of the cross sectional area of the vessel. 

5. Numerical Results 

We created a MATLAB code that uses , , ,a k k N , and 
P  as inputs to solve for the shape and fl

1 2

ow rate. The
 this program

ollowing m

 
 outputs of  for figures below are example

the cases N = 2, 3, and 4 . We used the f odel 
to represent the nonlinearality of the soft tissue 
surrounding the blood vessel:  

   1 2 tanh=F Z k Z k Z         (55) 

In each pair below, the figure on the left shows the  N

 

Figure 5. MATLAB results for N = 2. 
 

 

Figure 6. MATLAB results for N = 3. 
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Figure 7. MATLAB results for N = 4. 
 
shape of the deformed vessel, which is then meshed to 
create the image on the right, a  representation of 
the velocity profile of the blood flowing through the 
vessel. 

6. Conclusions 

In real situations, the pressure and deformed shape can 
be easily determined using medical technology (for 
example, by x-ray or ultrasound), hence we would seek 
to determine the elasticity of the tissue  and ) 
based on a given pressure and shape, sin  

only be determined while the tissue is in vivo. 
The tables of graphs below show the varying of

and independently with a constant pressure an
sym ry shape of . As can be seen, all gra
show a strictly increa lationship. By combining the 
flow versus  data, we created a 
mod at also ex curvature. This m
verifies numerically nique minimum
obtaine  The uni  could then be determ
by  Newton' ving us a way to determ
the elasticity param .  
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Figure 8. N = 2 graphs of flow rate and k1 with constant k2 and pressure. 
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Figure 9. N = 2 graphs of flow rate and k2 with constant k1 and pressure. 
 

 

Figure 10. 3D graph of flow rate, k1, and k2 with constant pressure. 
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