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Abstract 
An asymptotic theory developed for a second-order differential equation. We 
obtain the form of solutions for some class of the coefficients for large x. 
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1. Introduction 

In this paper, we examine the asymptotic form of two linearly independant 
solutions of the general second-order differential equation. 

( ) 0,py qy ry′′ ′+ + =                       (1) 

as x →∞ , where x is the independant variable and the prime denotes 
d
dx

. 

The coefficients p,q and r are nowhere zero in some interval [ ),a ∞ . We shall 
consider the situation where p and r are small compared to q see (15) to identify 
the following case:  

( )o ,q r x
q q
′  
= →∞ 

                        
(2) 

and under (2) we shall obtain the forms of the asymptotic solutions for (1) as 
x →∞  which is given in Theorem 1. 

If 1p = , then (1) reduces to the differential equation considered by Walker 
[1]. We do not investigate the case where ( )2 oq pr= , the analysis for this case 
is already known for the Sturm-Liouville equation  

( ) 0,py ry′′ + =  

see Eastham [2] and Atkinson [3]. 
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We shall use the asymptotic Theorem of Eastham ([3], Section 2), [4] to 
obtain our main result of (1) in Section 4. The general feature of our method are 
given in Sections (2) and (3), with some examples in Section (5). 

2. The General Method 

We write (1) in a standard way [5] as a first-order system:  

Y AY′ =                            (3) 

where  

y
Y

py
 

=  ′                            
(4) 

and the matrix is given by  
1

1

0
.

p
A

r qp

−

−

 
=  

− −                         
(5) 

As in [6] we express the matrix A in the diagonal form:  

( )1
1 2,T AT diag λ λ− = Λ =                     (6) 

and we therefore require the eigenvalues jλ  and the eigenvectors jv  of A, 
1, 2j = . 

The characteristic equation of is given by:  
2 0.p q rλ λ+ + =                         (7) 

An eigenvector jv  corresponding to jλ  is  

( )*1j jv pλ=
                         

(8) 

where the superscript *  denote the transpose. 
Now by (7)  

( )
( )

1 22 4
1,2

2 2j

q prq j
p p

λ
−

= − ± =
                

(9) 

Now we define the matrix T  in (6) by  

1 2

1 1
T

p pλ λ
 

=  
                         

(10) 

Hence by (6), the transformation  

,Y TZ=                           (11) 

takes (3) into  

( )1Z T T Z−′ ′= Λ −
                      

(12) 

Now if we write  

( )1 ,jkT T t− ′ =
                        

(13) 

then by (7) and (10)  
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( ) ( )( )
( )

11 2
1 1 2

2 1

2

1,2 .

j j j j j

j j

pt p q r p q
p

t t j

λ λ λ λ λ λ
−− ′ ′ ′ ′= − + + + − 

 
= − =        

(14) 

Now we need to work (14) in terms of ,r p  and q  in order to determine 
(12) and then make progress for (1). 

3. The Matrices Λ  and ′1T T−  

At this stage we require the following conditions in the coefficients ,r p  and 
q  as x →∞ . 

Condition I. ,r p  and q  are nowhere zero in some interval [ ),a ∞ , and  

( ) ( )2o ,rp q x= →∞
                     

(15) 

we write  

( )2 0rp x
q

δ = → →∞
                     

(16) 

Condition II. 

( ), , are all , .r p q L a
r p q

δ δ δ
′ ′ ′

∞
                  

(17) 

Now if we let  

( )1 22 4

2

q pr
D

p

−
=

                      
(18) 

then (9) gives  

( )1,2
2j
q D j
p

λ = − ± =
                    

(19) 

where by(18) and (16)  

( ) ( )1 21 4 ~ .
2 2
q qD x
p p

δ= − →∞
                

(20) 

Now by (19) and (20)  

( )2
1 1 O ,r

q
λ δ δ = − + + 

                    
(21) 

and  

( )2
2 1 Oq

p
λ δ δ = − − + 

                    
(22) 

Now using (14), (21) and (22) we obtain  

( )11 21 O ,t t= = ∆                        (23) 

( )12 22 O ,qt t
q
′

= − = − + ∆
                   

(24) 

where  
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r p q
r p q
δ δ δ

 ′ ′ ′
∆ = + + 

                     
(25) 

Hence by (17),  

( ), .L a∆∈ ∞                         (26) 

Therefore, by (23), (24) and (26), we can write (12) as:  

( ) ,Z R S Z′ = Λ + +                       (27) 

where  

0
,

0

q
q

R
q
q

′ 
 
 =

′ 
− 

                         

(28) 

and S  is ( ),L a ∞  by (26).  

4. The Asymptotic Form of Solutions 

Theorem 1. Let the coefficients r and p in (1) be [ )1 ,C a ∞  while q to be 
[ )2 ,C a ∞ . 

Let (15) and (17) hold. 
Let  

( )oq r x
q q
′  
= →∞ 

                       
(29) 

( )
2

2 3, are ,q p r p L a
q q

′′ 
∞ 

                      
(30) 

Let  

[ )2 be of one sign in , .q r qRe a
p q q

′ 
− + ∞ 

               
(31) 

Then (1) has solutions 1y  and 2y  such that  

1 ~ exp d ,
x

a

ry t
q

 
− 
 
∫

                      
(32) 

1
1 o exp d

x

a

ry qp t
q

−  ′ = −  
  
∫

                  
(33) 

while  

1
2 ~ exp d ,

x

a

q ry q t
p q

−   
− +  
  

∫
                 

(34) 

1
2 ~ exp d .

x

a

q ry p t
p q

−   ′ − +  
  

∫
                 

(35) 

Proof. As in [6], we apply the Eastham theorem ([3], section 2) to the system 
(27) provided only that Λ  and R , satisfy the required conditions.  
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We shall use (15), (17), (29), and (31). 
We first require that  

( )1 2o ,q
q

λ λ
′
= −

                       
(36) 

this being [2] for our system,  

( )1 2
1 2 1 4 ,q

p
λ λ δ− = −

                     
(37) 

Thus (36) holds by (15) and (29). 
Second, we need  

( ) ( )1
1 2 , .q L a

q
λ λ −

′′ 
− ∈ ∞ 

                     
(38) 

this being [2] for our system. By (38), this requirement is implied by (17) and 
(30). 

Finally we show that the eigenvalues kµ  of RΛ +  satisfy the dichotomy 
condition [2]. 

As in [6] and [7], the dichotomy condition holds if  

( )1 2 ,Re f gµ µ− = +                      (39) 

where f  has one sign in [ ),a ∞  and g  is ( ),L a ∞  [2]. 
Now by (6) and (28):  

( ) ( ) ( ) ( )1 1 2 2, ,qx x x x
q

µ λ µ λ
′

= = −
               

(40) 

then by (21), (22) and (40)  

( )
2

1 2 32 O ,q r q r pRe Re
p p q q

µ µ
 ′ 

− = − + +   
                

(41) 

Thus, by (31) and (30), (39) holds. Since (27) satisfies all the conditions for the 
asymptotic result [3, section 2], it follows that as x →∞ , (27) has two linearly 
independant solutions. 

( ) ( ) ( )( )o 1 exp d
x

k k ka
Z x e t tµ= +   ∫

               
(42) 

with ke  the coordinate vector with k-th coponment unity and other coponments 
zero. 

Finally, on transforming back to y via (10), (11), (4) and making use of (40), 
(21), (22) and (30), we obtain (33), also (32) after adjusing 1y  by a constant 
multiple, and similary for 2y  and 2y′ .□ 

5. Examples 

Example 1. We consider the cofficients in (1) given by  

( ) ( ) ( ) 31 2
1 2 3, , .r x c x q x c x p x c xαα α= = =  

iα  and ic  ( )1 3i≤ ≤  are real constants with 0ic ≠ . Then (15) and (17) of 
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Theorem 4.1 hold under the conditions  

2 1 32 0.α α α− − >                        (43) 

Also (29) true if  

1 2 1 0α α− + >                         (44) 

Now in (30) 2

q p
q

′′ 
 
 

 is ( ),L a ∞  if  

2 3 1 0α α− + >                         (45) 

wich is true by (43) and (44). 

Also, in (30), 
2

3

r p
q

 is ( ),L a ∞  if  

2 1 33 2 1.α α α− − >                       (46) 

So all conditions of theorem 4.1 are true under (43), (44) and (46). For 
example if we take 1 2α α= . 

Then all condition are true if  

2 3 1.α α− >                          (47) 

Example 2. Let ( ) ( )1
1 exp ar x c x xα= , ( ) ( )2

2 exp 4 bp x c x xα= − ,  
( ) ( )3

3 exp bq x c x xα= −  
where 0b a≥ > , iα  and ic  ( )1 3i≤ ≤  are real constants with 0ic ≠ .  

Again it is easy to check that all conditions of Theorem 4.1 are satisfied. 
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