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Abstract 
Fuzzy regression provides more approaches for us to deal with imprecise or 
vague problems. Traditional fuzzy regression is established on triangular fuzzy 
numbers, which can be represented by trapezoidal numbers. The independent 
variables, coefficients of independent variables and dependent variable in the 
regression model are fuzzy numbers in different times and WT , the shape 
preserving operator, is the only T-norm which induces a shape preserving 
multiplication of LL-type of fuzzy numbers. So, in this paper, we propose a 
new fuzzy regression model based on LL-type of trapezoidal fuzzy numbers 
and WT . Firstly, we introduce the basic fuzzy set theories, the basic arithmetic 
propositions of the shape preserving operator and a new distance measure 
between trapezoidal numbers. Secondly, we investigate the specific model al-
gorithms for FIFCFO model (fuzzy input-fuzzy coefficient-fuzzy output mod-
el) and introduce three advantages of fit criteria, Error Index, Similarity 
Measure and Distance Criterion. Thirdly, we use a design set and two refer-
ence sets to make a comparison between our proposed model and the refer-
ence models and determine their goodness with the above three criteria. Fi-
nally, we draw the conclusion that our proposed model is reasonable and has 
better prediction accuracy, but short of robust, comparing to the reference 
models by the three goodness of fit criteria. So, we can expand our traditional 
fuzzy regression model to our proposed new model. 
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1. Introduction 

Fuzzy regression, one of the most popular methods of modeling and prediction, 
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is an important statistical tool in evaluating the functional relationship between 
a set of explanatory variables and explained variable (Montgomery and Peck, 
2006 [1]). It shows particular advantages in analyzing complex systems where 
the vagueness of human subjective judgment doesn’t work, such as economic 
systems, social systems and environmental systems. In most fuzzy regression 
models, deviations between the observed and estimated values are supposed to 
be due to random errors, like classical linear regression model. But in the real 
world, imprecise information, incomplete knowledge, unacquirable data and in-
determinable underlying model can lead to larger error. 

Therefore, fuzzy set theory, introduced by Zadeh (1965) [2], provides us ap-
propriate tools for regression analysis, when relationship between variables is 
vaguely defined or observations are recorded imprecisely. After introducing 
fuzzy set theory, fuzzy regression techniques can be classified into two distinct 
areas. The first approach, possibilistic regression, proposed by Tanaka et al., 
(1982) [3], aims at minimizing the total spread of the output. In this case, the 
problem of fitting a fuzzy model can be viewed as a linear programming prob-
lem. Still in this area, Tanaka and Ishibushi (1991) [4] extended their approach 
for dealing with interactive fuzzy parameters. In the fuzzy literature, several ex-
tensions of this approach have been proposed [5] [6] [7] [8]. Five years later, 
Celmins (1987) [9] and Diamond (1988) [10] put forward another approach, the 
fuzzy least squares regression, which aims to minimize the overall square errors 
between the observed and the estimated values. Hong et al. (2001) [11] studied 
the fuzzy least squares linear regression by using shape preserving operations. 
Moreover, several variants of this approach [12] [13] [14] [15] [16] have been 
used in fuzzy linear regression. 

Both of the above approaches to fuzzy regression are widely used in usual 
fuzzy linear regression. But they are all sensitive to outliers. In such cases, least 
absolutes deviation (LAD) based on least squares deviation (LSD), is preferred to 
be used as a robust method. Especially, when outliers are in the response varia-
ble, the LAD estimator is more robust than the LSD estimator (Stahel and Weis-
berg, 1991 [17]). Based on this method, many researchers made more extension 
about fuzzy linear regression models. However, each has his strong point. When 
there exist no outliers, LSD is similar to LAD, even better for evaluating more 
steady and unique solution [18] [19] [20]. Besides, Yager (1980) [21] proposed 
centroid method to translate fuzzy numbers into crisp numbers. Based on this, 
Zhang (2012) [22] proposed statistical analysis of fuzzy regression model based 
on centroid method. 

In the development of fuzzy linear regression models, a new problem arose 
imperceptibly that the usual multiplication changed the shape of fuzzy numbers 
in some cases. On the one hand, Hojati et al. (2005) [23] proposed to evaluate 
the estimators of fuzzy outputs and parameters, by setting α -set in fuzzy mul-
tiplication, but the estimators of fuzzy outputs depend on the value of α , which 
is unknown. On the other, a shape preserving operator, WT  was proved, by 
Hong (2001) [24], to be the only T-norm which induces a shape preserving mul-
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tiplication of LL-fuzzy numbers. Mesiar (1997) [25] and Hong et al. (1997) [26] 
all made further study based on WT , which can efficiently control the shape of 
estimators and decrease the risk of bias caused by taking minimum (Hong et al., 
2001) [27]. 

However, traditional fuzzy regression is still based on triangle fuzzy numbers 
or partial fuzzy numbers between inputs, coefficients, output. In consideration 
of that trapezoidal fuzzy numbers, which can represent other types of fuzzy 
numbers, take an important role in fuzzy numbers [28] [29] [30]. Some re-
searchers made further study on fuzzy linear regression based on trapezoidal 
numbers [31] [32] [33]. And the distance between trapezoidal fuzzy numbers is 
also an important research topic in the fuzzy set theory, which is a basis for 
many related applications. So many researchers have investigated and obtained 
some meaningful conclusions [34] [35] [36] [37]. Taking advantages of LSD and 
trapezoidal fuzzy number and basing on the paper, written by Wang and Lu 
(2016) [33], we first introduce the basic set theories, the basic arithmetic propo-
sitions of WT  and a new distance between trapezoidal fuzzy numbers. Then we 
want to propose a new model, whose coefficients are trapezoidal fuzzy numbers, 
basing on the shape preserving operator, WT , to expand fuzzy regression, while 
no outliers in sample set and investigate the model algorithms and fulfil model 
complexity analysis. 

The structure of this paper is as follows. In Section 2, we introduce some basic 
notions, and prove the good arithmetic property of WT  and our proposed dis-
tance. In Section 3, we propose fuzzy regression model based on least squares 
deviation with FIFCFO (fuzzy input-fuzzy coefficient-fuzzy output), investigate 
its steps detailedly, evaluate the performance of our model and introduce the 
measures of errors, such as error index, similarity measure and distance crite-
rion. In Section 4, we use three examples to illustrate our proposed model and 
make comparisons with existing fuzzy regression models. In the last section, we 
do comprehensive analysis about our proposed model and give the results and 
conclusion. 

2. Preliminary 

For the sake of rigor and clarity, the basic fuzzy set theories and the basic arith-
metic propositions of the shape preserving operator, used in this paper, will be 
introduced in this section. Throughout this paper, we use R to denote all the real 
numbers, FN stands for the set of the all fuzzy numbers in R. 

Definition 1. (Zadeh, 1965 [2]). Suppose that A  is a fuzzy set in R and satis-
fies the following properties: 

1) Regularity: ( )0 0, 1x R A x∃ ∈ = . 
2) Bounded closed interval: ( ]0,1 , ,A A Aλ λ λλ − + ∀ ∈ =    is a bounded closed 

interval. 
Then we call A  a fuzzy number in R. 
Definition 2. (Hu, 2010 [38]). Set A  is a fuzzy number in R, if the  

[ )0,suppA⊆ +∞ , then we call A  a positive fuzzy number, and denote the set of 
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all the positive fuzzy numbers in R by PFN. If the ( ],0suppA⊆ −∞ , then we call 
A  a negative fuzzy number, and denote the set of all the negative fuzzy numbers 

in R by NFN. 
Definition 3. (Hu, 2010 [38]). Suppose that the membership function of 

LR-type fuzzy number A  is defined as follows: 

( )
,

,

A

A

a xL x a
A x

x aR x a

α

β

  −
≤  

  = 
 − ≥   

                      (1) 

where ,L R  satisfy 
1) ( ) ( ) [ ], : , 0,1L R x −∞ +∞ →  
2) ( ) ( ) ( ) ( ),L x L x R x R x= − = −  
3) ( ) ( )0 0 1L R= =  
4) ( )L x  and ( )R x  are non-increasing functions on [ )0,∞ . 
Here, a  is the center point, Aα  is the width of the left side and Aβ  is the 

width of the right side of the fuzzy number A , respectively. a R∈  and 
, 0A Aα β ≥ . Besides, we call A  a LL-fuzzy number, when ( ) ( )L x R x= . 

Suppose ( )1 2, , ,A AA a a α β=  a trapezoidal fuzzy number in  
( )2 1, 0,A AR a aα β ≥ ≥ . If the membership function of A  can be represent as 

that in Definition 3, then we call A  a LL-trapezoidal fuzzy number and denote 
the set of the all LL-trapezoidal fuzzy numbers as LLTFN . Therefore, we let 

LL LL LLPNTFN PTFN NTFN= ∪ , where LLPTFN  and LLNTFN  stand for the 
positive LLTFN  and the negative LLTFN  in R, respectively. 

Definition 4. (Hu, 2010 [38]). For any [ ], , , 0,1a b c d ∈ , mapping  
[ ] [ ] [ ]: 0,1 0,1 0,1T × →  satisfies the following conditions: 

1) commutative law: ( ) ( ), ,T a b T b a=  
2) associative law: ( )( ) ( )( ), , , ,T T a b c T a T b c=  
3) monotonicity: ( ) ( ), , ,a c b d T a b T c d≤ ≤ ⇒ ≤  
4) boundary condition: ( )1,T a a= . 
Then we use T to denote T-norm on [ ]0,1 . 
Proposition 1. (Hu, 2010 [38]) T is T-norm on [ ]0,1 , it is generally acknow- 

ledged that W MT T T≤ ≤ , here 

( ) ( )
( )

0, max , 1
,

min , , othersW

a b
T a b

a b
<

= 


              (2) 

( ) ( ) [ ], min , , , 0,1MT a b a b a b= ∈                 (3) 

where WT  is called drastic product and MT  is called minimax operator. 
Definition 5. (Hu, 2010 [38]). Let ,A B FN∈  , ∗“ ”  stands for the arithmetic 

operations on R, such as , ,+ − ⋅“ ” “ ” “ ” , and “ ”  stands for its arithmetical op-
erations on FN, such as , ,⊕ “ ” “ ” “ ” : 

( )( ) ( ) ( )sup , ,
x y z

A B z T A x B x z R
∗ =

 = ∀ ∈ 
              (4) 

Hence, we use ,W WA B A B⊕    and WA B 

  to stand for extended addi-
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tion, extended subtraction and extended multiplication of WT , respectively.  
Proposition 2. Let ( ) ( )1 2 1 2, , , , , , , ,A A B B LLLL LLA a a B b b TFN k Rα β α β= = ∈ ∈  , 

so we can get 

1) 
( )
( )

1 2

2 1

, , , , 0
, , , , 0

A A LL
W

A A LL

ka ka k k k
k A

ka ka k k k
α β
β α

≥=  <


  

2) ( ) ( )( )1 1 2 2, ,max , ,max ,W A B A B LL
A B a b a b α α β β⊕ = + +               (5) 

3) ( ) ( )( )1 2 2 1, ,max , ,max ,W A B A B LL
A B a b a b α β β α= − −   

Proposition 3. Let  

1 2 1 2( , , , ) , ( , , , ) , ,A A LL B B LL LLA a a B b b PNTFN k Rα β α β= = ∈ ∈ 

 

so we can get  

( ) ( )( )
( ) ( )( )
( ) ( )( )

1 1 2 2 1 1 2 2

2 2 1 1 2 2 1 1

1 2 2 1 2 1 1 2

, ,

, ,

, ,

, ,max , ,max ,

, ,max , ,max ,

, ,max , ,max ,

LLLL

W LLLL

LL LLLL

A B A B

A B A B

A B A B

A B PTFN

A B A B NTFN

A NTFN B PTFN

a b a b b a b a

a b a b b a b a

a b a b b a b a

α α β β

β β α α

α β β α

∈

= ∈

∈ ∈








 

  



 

 (6) 

Proof. Let ( )1 2, , ,A A LLA a a α β= , ( )1 2, , ,B B LLB b b α β= , and their membership 
function of satisfy Definition 3. We consider the case of , LLA B PTFN∈  , which 
means 1 2 1 2, , , 0a a b b > . Then, 

1) For 1 1z a b≤ , 

( )( ) ( ) ( )( )

( ) ( )

1 1

1 1 1 1

1 1 1 1

1 1

1 1 1 1

sup ,

max ,

max ,

max ,

max ,

W W
x y z

A B

A B

A B

A B z T A x B y

z zA B
b a

a z b b z aL L

a b z a b zL L
b a

L a b z b a

α α

α α

α α

⋅ =
=

    
=          

    − −
=          

    − −
=          

= −  

  



 

 

2) For 1 1 2 2a b z a b≤ ≤ , 

( )( ) ( ) ( )( )

( )( ) ( )( )( )
( )

1 1 2 2

1 2 2 1 1 2 2 1

1 1

1 1 1 1

sup ,

max ,

max ,

max max , max

max 1,1
1

W W
x y z

a b z a b

A B

a p a b b b q b a a

A B z T A x B y

z zA B
b a

a z b b z aL L

A p B q

α α

⋅ =

≤ ≤

≤ ≤ ≤ ≤

=

    
=          

    − −
=          

=

=

=

  



 

 

 

3) For 2 2z a b≥ , 
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( )( ) ( ) ( )( )

( ) ( )

2 2

2 2 2 2

2 2 2 2

2 2

2 2 2 2

sup ,

max ,

max ,

max ,

max ,

W W
x y z

A B

A B

A B

A B z T A x B y

z zA B
b a

z b a z a bL L

z a b z a bL L
b a

L z a b b a

β β

β β

β β

⋅ =

    
        

=

=

    − −
=          

    − −
=          
=  



− 



  



 

 

It follows that ( ) ( )( )1 1 2 2 1 1 2 2, ,max , ,max ,W A B A B LL
A B a b a b b a b aα α β β= 

 ,
, LLA B PTFN∈  . For the other cases, we can similarly get the same formulas as 

the cases in (6) and omit the proof. 
Remark. The propositions 1.3 in Wang (2016) [33] are the special cases of our 

proposition 2 and proposition 3. 
Proposition 4. WT  is the only T-norm which can induce a shape preserving 

multiplication of LLPNTFN . 
Proof. From proposition 3, we can get that WT  induces a shape preserving 

multiplication of LLPNTFN . The following work is to prove WT  is the unique 
one induces a shape preserving multiplication on LLPNTFN .  

Now, give ( )L x m−  be a non-increasing continuous function form [ ),m +∞  
to [ ]0,1  with ( ) ( )lim 0, 0 1, 2

x
L x m L m

→+∞
− = = ≥ , which induces the case of 

( )1 0L =  and assume ( ){ } { }1x L x m m− = = . Let  
( ), ,1,1 LLLLA B m m PTFN= = ∈  . Then { }1T mA B ≠ 


. For this, suppose  

( )0 0, 0T x y > , for some ( )0 0, 0,1x y ∈ , then there exist ( )0 0, ,a b m∈ +∞  such 
that ( )0 0L a m x− = , ( )0 0L b m y− = . Then 

( ) ( ) ( )( ) ( ) ( )( )
( )

0 0
0 0 0 0

0 0

sup , ,

, 0
x y a b

A B a b T A x B y T L a m L b m

T x y
⋅ = ⋅

⋅ = ≥ − −

= >

 



 

Let ( ){ } [ ], hx L x m h m L m− ≥ = + . Then by Nguyen’s theorm (1978) [39] 
( ){ } ( ) ( )2 22 2, ,

MT h hz A B z h L m m m L m ≥ = − + − ∪  
 + 

 

  for 0 1h≤ ≤ . Now 
suppose ( ), , ,TA B m m α α= 

  for some 0 2α< < , and hence  

{ } ( ) ( ), ,T h hz A B h L m m m L mα α≥ = − + − ∪ +      
 

 . But, since  

MT TA B A B≤  

  , ( ) ( )2
h hL m L mα+ ≥ +  for any [ ]0,1h∈ . Then 0α = , a 

contradiction. Hence TA B 

  is not a fuzzy number of LL-type. Therefore, we 
have proved this proposition. 

Proposition 5. Let ( )1 2, , ,A A LLA a a α β= , ( )1 2, , ,B B LLLLB b b PNTFNα β= ∈ , 
[ ]0,1α ∈ , 0,k k R≠ ∈ , so we can get 

( )
( )
( )
( )

(3)

(

(1)

(

4

2

)

)

W

W

W

W

A B A B

A B A B

k A k A

A B A B

α α

α α

α

α α

⊕ ⊆ +

⊆ −

= ⋅

⊆ ⋅

  

  

 



  




                       (7) 
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Proposition 6. Let ( )1 2, , ,A A LLA a a α β= , ( )1 2, , ,B B LLB b b α β= ,  

( )1 2, , ,C C LLLLC c c PNTFNα β= ∈ , 1 2, ,k k k R∈ , then 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )

(1) ,

(2) ,

(3) 0 , 0 0,0,0,0 0

(4) 1 , 1 1,1,0,0 1

(5) ,

, , or ,

(6)

W W W W

W W W W W W W W

W LL

W LL

W W W W W

LL LL

W

A B B A A B B A

A B C A B C A B C A B C

A A here

A A here

A B C A B A C

B C PTFN B C NTFN

k

⊕ = ⊕ =

⊕ ⊕ = ⊕ ⊕ =

⊕ = = =

= = =

⊕ ⊇ ⊕

∈ ∈

      

 

          

   

   

   



     

  

  

 ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

(7) , 0

, 0

, 0

W W W W

W W W W

W W W W

W W W W

A C k A k B

k k A k A k A k k

k k A k A k A k k

k k A k A k A k k

⊕ = ⊕

+ ⊇ ⊕ >

+ ⊆ ⊕ <

+ = ⊕ =

   

 

  

  

  

  

  

  

 (8) 

Definition 6. (Xu and Li, 2001) Set ,A B FN∈  , then the distance between 
,A B   is defined as follows: 

( ) ( ) ( )( )
1

1 22
0

, , dd A B f d A Bλ λλ λ= ∫                   (9) 

where ( ) ( ) ( )( ) ( ) ( )( )2 22 , l l r rd A B a b a bλ λ λ λ λ λ= − + −  , ( ) ( ),l rA a aλ λ λ=   
 , 

( ) ( ),l rB b bλ λ λ=    , ( )f λ  is an increasing function on [ ]0,1 , ( )0 0f = , and 

( )1

0

1
d

2
f λ λ =∫ . 

Theorem 1. Set ( ) ( )1 2 1 2, , , , , , ,A A B B LLA a a B b b PNTFNα β α β= = ∈  , their 
membership function can be represented as the form of that in Definition 3, 
then the distance can be defined as follows: 

( ) ( ) ( ) ( ) ( )
( )( ) ( )( )

2 2 2 22
1 1 1 1 2 2 2 2

3 1 1 3 2 2

, A B A B

A B A B

d A B a b a b

a b a b

α α β β

α α β β

= ∆ − + ∆ − + ∆ − + ∆ −

− ∆ − − + ∆ − −

 

 (10) 

where ( )1
1 0

df λ λ∆ = ∫ , ( )1 2
2 0

df Lλλ λ∆ = ∫ , ( )1
3 0

2 df Lλλ λ∆ = ∫ , ( )1L Lλ λ−= . 

Proof. For ( ) ( )1 2 1 2, , , , , , ,A A B BA a a B b bα β α β= =  , we can get the λ -set of 
,A B  : 

[ ] [ ]1 2 1 2, , ,B BA AA a L a L B b L b Lλ λ λ λ λ λα β α β= − + = − +  

so, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )( )

2 22
1 1 2 2

2 2
1 1 2 2

2 2 2 22 2
1 1 2 2

1 1 1 1

,

2 2

A B A B

A B A B

A B A B

A B A B

d A B a L b L a L b L

a b L a b L

a b a b L L

L a b L a b

λ λ λ λ λ λ

λ λ

λ λ

λ λ

α α β β

α α β β

α α β β

α α β β

= − − − + + − +

= − − − + − + −      

= − + − + − + −

−

     

+ −



− − −

 

further, we can get 
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( ) ( ) ( )
( ) ( ) ( ) ( )
( )( ) ( )( )

2 1 2
0

2 2 2 2
1 1 1 1 2 2 2 2

3 1 1 3 2 2

, , d

A B A B

A B A B

d A B f d A B

a b a b

a b a b

λ λλ λ

α α β β

α α β β

=

= ∆ − + ∆ − + ∆ − + ∆ −

− ∆ − − + ∆ − −

∫  

 

Hence, we complete the proof of Theorem 1. 
In the following discussion, we set ( )f λ λ= , ( ) { }max 0,1L λ λ= − , then we 

can get 

( ) ( ) ( )1 1 12
1 2 30 0 0

1 1 1d , d , 2 d
2 12 3

f f L f Lλ λλ λ λ λ λ λ∆ = = ∆ = = ∆ = =∫ ∫ ∫  

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

2 2 2 2 2
1 1 2 2

1 1 2 2

1 1 1 1,
2 2 12 12

1 1
3 3

A B A B

A B A B

d A B a b a b

a b a b

α α β β

α α β β

= − + − + − + −

− − − + − −

 

 

3. Fuzzy Least Squares Linear Regression Model 

In this section, we consider a group of n sample data, denoted by  

( )1 2 3, , , ,i i i iX X X Y   

 , 1,2, ,i n=  . Let ( )1 2
, , ,

ij ijij ij ij X XX x x α β=  be the depen-
dent variable, and ( )1 2

, , ,
j jj j j B BB b b α β=  be the LLPNTFN  regression coeffi-

cient, ( )1 2
, , ,

i ii i i ε εε ε ε α β=  be the random error. Here , ,ij j i LLX B PNTFNε ∈ 

 , 
( )0,1, , , 1,2, ,i n j p= =  . Then the general trapezoidal fuzzy linear regression 
model can be represented as follows: 

0

p

i W j W ij W i
j

Y B X ε
=

= ⊕∑  


                      (11) 

Now, we define set P  and set N , { }ˆ 0, 1,2, ,jP j b j p= ≥ =  ,  

{ }ˆ 0jN j b= < . If ,j LLB PTFN j P∈ ∈ , otherwise, j N∈ . Then this linear re-
gression model has the following form (specify ( )0 1,1,0,0iX = ). According to 

WT , we can calculate the model: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2 1 2

1 2

1 1

1 2

0

0 1 1

, , , , , ,

, , , ,

,

, ,

j j ij ij

j j ij ij

j jW

p

i W j W ij W i
j

W W i W W p W ip W i

W ij W W ij W iW
j P j N

j j B B ij ij X X
W

W

W W W i

j ij

LLj P

j j B B ij ij X X
W LLj

W
j

N

b b

Y B X

B B X

x x

b b x x

B X

B X B X

b x b

α β α β

α β α

ε

ε

εβ

ε
∈

∈

∈

=

∈

=

= ⊕

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕

⊕

=

⊕

=

∑ ∑

∑

∑

∑  




    


  

   


 






( ) ( )( )
( ) ( )( )

( )

2 2 1 1 2 2

1 2 2 1 2 1 1 2

1 2

,max , ,max ,

, ,max , ,max ,

, , ,
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We determine each estimated value ˆ
jB  of the regression coefficient jB  

based on the least squares deviation criterion by minimizing the overall square 
error according to the proposed square distance and obtain the following objec-
tive function: 

( )

2
ˆ 0, , 1 0

ˆmin ,
j

pn

i j W ij
B j p i j

Wd Y B X
= = =

 
  
 

∑∑




  

                 (14) 

Finally, we draw the conclusion: 

0

ˆˆ p

W j W ij
j

i B XY
=

= ∑  



                       (15) 

Considering the efficiency of evaluation, we design the specific steps in the 
following. The whole process is solved by using MATLAB. 

Step 1: Calculate ,
c cij iX Y , the centers of ijX  and iY , with centroid method, 

then the estimates 
1 0

ˆ arg min
c c

pn

j i j ij
i j

b y b x
= =

= −∑ ∑ , 1,2, , , 0,1, ,i n j p= =  . 

Step 2: Determine set P  and set N . 
Step 3: Compare the sign of ˆ

jB  and the estimates of ˆ
jb , if they are same, we 

can determine ˆ
jB , or we need to modify set P  and set N  and repeat Step 2, 

until the sign of ˆ
jB  is consistent with preset. 

3.1. Independent Variable, Dependent Variables and  
Regression Coefficients Are in LLPNTFN   

Based on the above, we can conclude least-squares regression of FIFCFO  
model:  

( ) ( )0 1 1i W W i W W p W ip W iY B B X B X ε= ⊕ ⊕ ⊕ ⊕    






            (16) 

where, 

( )1 2
, , ,

ij ijij ij ij X X LL
X x x α β= , ( )1 2

, , ,
i ii i i Y Y LL

Y y y α β= , 

( )1 2
, , ,

j jj j j B B LL
B b b α β= , ( )0 1,1,0,0i LLX = ,  

,ij j LLX B PNTFN∈  , 1,2, ,i n=  , 0,1, ,j p=  . 

Let ij LLX PTFN∈ , 
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The other cases can be calculated as the above similarly. 

3.2. Error Management Criterion 

For the fuzzy linear regression model (14), let iY  and ˆ
iY  be the observed and 

estimated fuzzy response for the ith observation, respectively. iE  represents 
the difference of membership values between two membership functions, iS  
represents the similarity of membership values between two membership func-
tions, iR  represents the relative difference of membership values in shape be-
tween two membership functions, ( )iY x  and ( )ˆ

i xY  are the membership 
functions of iY  and ˆ

iY , respectively, 
iYS


 and ˆ
iY

S


 denote the support of iY  
and ˆ

iY .  
1) Error Index (Kim and Bishu, 1998 [40]) 
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2) Similarity Measure (Rezaei et al., 2006 [41]) 
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3) Distance Criterion 

ˆ ˆi ii i

i i

Y YY Y
i

Y Y

R
α α β β

α β

− −
= +

 

 

 

                   (20) 

Inspired by Chen and Hsueh (2007) [42], we proposed iR  to measure the 
fitting effect on the shape. 
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For each index having its own pros and cons. In general, smaller iE  and 

iR , larger iS , better effect of the fitting model has. So, in this paper, we com-
pare the fitting effect from different points. 

4. Numerical Analysis 

Example 1. The source sample data was produced by MATLAB randomly. 
First, we consider the model: 0 1i W W i W iY B B X ε= ⊕ ⊕   


 . Then, we set the true 

value of  

( )0 3, 2,0.5,1 LLB = − − , ( )1 1,2,0.25,0.5 LLB = , 

( )1 2
, , ,

i ii i i X X LL
X x x α β= , ( )1 2

, , ,
i ii i i LLε εε α β=    

where i LLX PNTFN∈ , ( )
1

~ 2,3ix U , ( )
2

~ 3,4ix U , ( ), ~ 0,1
i iX X Uα β , and 

,i LLPNTFNε ∈  ( )
1 1 2 2

, , , ~ 0,0.01 ,
i ii i i i Nε εα β− +      

1 1 2 2i ii i i iε εα β− ≤ ≤ ≤ +    . Let ( ) { }max 0,1L x x= − . The sample size is 50. 
Then, we can get the data set presented in Table 1. Now, we can use (14) to con-
struct fuzzy regression model, obtain the estimated output and use Error Index, 
Similarity Measure, Distance Criterion to evaluate deviation. 

( )
( )

ˆ 2.9679, 1.9909,0.5273,0.6661

0.9873,1.9973,0.2503,0.5003
SL

W W

Y

X

= − −

⊕





  

( )
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18 14

ˆ 2.2344,4.6114 10 ,5.0184,1.4784

0.5093,0.2058,2.1246 10 ,6.2998 10

CO

M M

Y

X

−

− −

= − ×

⊕ × ×







 

( )
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ˆ 2.7155, 2.7155, 1.3188, 0.4816

0.7574,0.8908,1.8053,1.8053
Z

M M

Y

X

= − − − −

⊕







 

From Table 2, we can find that the sum of iE  and iR  of our proposed 
model are smaller than that of the reference models, and the sum of iS  of our 
proposed model is larger than that of the reference models, that means our pro-
posed model has lower deviations than the reference models. 

Example 2. The source sample data comes from Table 1 in Zhang (2012) 
[16], where the inputs are crisp real numbers, and the outputs are trapezoidal 
fuzzy numbers. In consideration of the applicability, we enlarge the sample size 
from 8 to 16, and expand the crisp inputs to fuzzy inputs. First, add  

0.5,1.5, ,7.5ix =   and corresponding iy  into the sample data, then expand the 
crisp input to fuzzy input by setting. Now, we get the final sample in data Table 
3. We still use (14) to construct fuzzy regression model, obtain the estimated 
output and use Error Index, Similarity Measure, Distance Criterion to evaluate 
deviation. Besides, the results in Table 4, we also illustrate the results through 
Figures 1(a)-(d) (we use iOT  to denote the observed output, iCO  to denote 
Li’s estimated output, iZ  to denote Zhang’s estimated output, and iLS  to 
denote our estimated output), which represent the fitting effect of components 
of trapezoidal fuzzy number between observed outputs, ˆ

COY , ˆ
ZY  and ˆ

SLY , re-
spectively. In Figures 1(a)-(d), the horizontal axis represents the central value  
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Table 1. Sample data in Example 1. 

i x y 

1 (2.7342, 3.0370, 0.5068, 0.6493) (−0.2622, 4.0825, 0.6835, 1.5185) 

2 (2.1042, 3.9744, 0.3281, 0.7629) (−0.9008, 5.9466, 0.5261, 1.9872) 

3 (2.7926, 3.7264, 0.7535, 0.5757) (−0.2184, 5.4421, 0.7535, 1.8632) 

4 (2.7827, 3.1480, 0.8360, 0.6319) (−0.2115, 4.3029, 0.8360, 1.5740) 

5 (2.5324, 3.1479, 0.2537, 0.2782) (−0.4656, 4.2993, 0.6331, 1.5739) 

6 (2.2534, 3.7048, 0.5344, 0.8398) (−0.7496, 5.4072, 0.5633, 1.8524) 

7 (2.0710, 3.3810, 0.4352, 0.4268) (−0.9361, 4.7564, 0.5177, 1.6905) 

8 (2.6258, 3.0764, 0.1577, 0.6316) (−0.3719, 4.1577, 0.6565, 1.5382) 

9 (2.0247, 3.4108, 0.6005, 0.8335) (−0.9709, 4.8273, 0.6005, 1.7054) 

10 (2.0620, 3.1430, 0.9375, 0.2702) (−0.9306, 4.2934, 0.9375, 1.5715) 

11 (2.1296, 3.7989, 0.1078, 0.4008) (−0.8828, 5.5940, 0.5324, 1.8995) 

12 (2.4506, 3.9302, 0.9000, 0.5543) (−0.5421, 5.8741, 0.9000, 1.9651) 

13 (2.6723, 3.0047, 0.5505, 0.4439) (−0.3177, 4.0214, 0.6681, 1.5024) 

14 (2.8561, 3.6500, 0.4274, 0.0904) (−0.1567, 5.2887, 0.7140, 1.8250) 

15 (2.4984, 3.6785, 0.1524, 0.7444) (−0.5114, 5.3499, 0.6246, 1.8393) 

16 (2.0488, 3.2536, 0.2475, 0.0326) (−0.9579, 4.5015, 0.5122, 1.6268) 

17 (2.3138, 3.8432, 0.4474, 0.4297) (−0.6842, 5.6912, 0.5785, 1.9216) 

18 (2.6416, 3.2940, 0.5328, 0.0373) (−0.3679, 4.5792, 0.6604, 1.6470) 

19 (2.7864, 3.0269, 0.3547, 0.9758) (−0.2210, 4.0525, 0.6966, 1.9516) 

20 (2.2892, 3.0933, 0.7731, 0.5223) (−0.7074, 4.1906, 0.7731, 1.5467) 

21 (2.4979, 3.7979, 0.8817, 0.9096) (−0.4932, 5.6112, 0.8817, 1.8989) 

22 (2.8184, 3.7114, 0.7341, 0.3832) (−0.1934, 5.4187, 0.7341, 1.8557) 

23 (2.5951, 3.7834, 0.4064, 0.8845) (−0.4112, 5.5614, 0.6488, 1.8917) 

24 (2.5364, 3.6239, 0.6042, 0.2550) (−0.4520, 5.2606, 0.6341, 1.8120) 

25 (2.3309, 3.8254, 0.6411, 0.9090) (−0.6721, 5.6505, 0.6411, 1.9127) 

26 (2.4117, 3.0350, 0.1275, 0.8946) (−0.5863, 4.0741, 0.6029, 1.7891) 

27 (2.7940, 3.4055, 0.4962, 0.3985) (−0.2158, 4.8057, 0.6985, 1.7027) 

28 (2.3432, 3.2497, 0.3105, 0.6250) (−0.6466, 4.5151, 0.5858, 1.6248) 

29 (2.4626, 3.4809, 0.5786, 0.5676) (−0.5319, 4.9685, 0.6157, 1.7404) 

30 (2.3678, 3.8808, 0.9436, 0.8945) (−0.6274, 5.7675, 0.9436, 1.9404) 

31 (2.6796, 3.2807, 0.4269, 0.2142) (−0.3241, 4.5581, 0.6699, 1.6403) 

32 (2.5678, 3.5991, 0.0331, 0.0039) (−0.4311, 5.2096, 0.6419, 1.7996) 

33 (2.6518, 3.0262, 0.9294, 0.8806) (−0.3449, 4.0569, 0.9294, 1.7612) 

34 (2.4911, 3.1552, 0.9250, 0.2351) (−0.5033, 4.3215, 0.9250, 1.5776) 

35 (2.3985, 3.8339, 0.3583, 0.2449) (−0.6072, 5.6628, 0.5996, 1.9170) 

36 (2.4775, 3.1949, 0.2600, 0.6409) (−0.5151, 4.3977, 0.6194, 1.5974) 

37 (2.0666, 3.8298, 0.7869, 0.3045) (−0.9204, 5.6728, 0.7869, 1.9149) 
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38 (2.4110, 3.3381, 0.5116, 0.8256) (−0.5957, 4.6724, 0.6028, 1.6690) 

39 (2.9691, 3.6711, 0.5625, 0.8837) (−0.0226, 5.3533, 0.7423, 1.8356) 

40 (2.7807, 3.0524, 0.6848, 0.9454) (−0.2268, 4.0990, 0.6952, 1.8907) 

41 (2.7290, 3.7343, 0.0924, 0.3908) (−0.2659, 5.4758, 0.6823, 1.8672) 

42 (2.7657, 3.4995, 0.8726, 0.8013) (−0.2445, 4.9945, 0.8726, 1.7497) 

43 (2.7566, 3.9433, 0.9429, 0.1571) (−0.2564, 5.8819, 0.9429, 1.9716) 

44 (2.8433, 3.2898, 0.0966, 0.6252) (−0.1618, 4.5774, 0.7108, 1.6449) 

45 (2.7702, 3.3766, 0.8459, 0.6990) (−0.2269, 4.7568, 0.8459, 1.6883) 

46 (2.9787, 3.1138, 0.9094, 0.0859) (−0.0286, 4.2232, 0.9094, 1.5569) 

47 (2.1114, 3.9649, 0.0113, 0.5312) (−0.8998, 5.9267, 0.5278, 1.9824) 

48 (2.3961, 3.4325, 0.5237, 0.8886) (−0.5973, 4.8722, 0.5990, 1.7771) 

49 (2.4921, 3.0846, 0.6503, 0.2637) (−0.5003, 4.1778, 0.6503, 1.5423) 

50 (2.2581, 3.7167, 0.3851, 0.2348) (−0.7506, 5.4280, 0.5645, 1.8583) 

 
Table 2. Comparison of the fitting effect in Example 1. 

Model Sum of iE  Sum of iS  Sum of iR  

ˆ
SLY  0.0933 49.9068 0.5426 

ˆ
COY  3.9547 46.2495 9.8448 

ˆ
ZY  65.2061 21.6200 145.6092 

 
Table 3. Sample data in Example 2. 

i x y 

1 (0.45, 0.55, 0.045, 0.045) (4.30, 4.40, 0.30, 0.40) 

2 (0.90, 1.10, 0.090, 0.090) (3.75, 4.25, 0.25, 0.25) 

3 (1.35, 1.65, 0.135, 0.135) (5.10, 5.40, 0.30, 0.40) 

4 (1.80, 2.20, 0.180, 0.180) (5.25, 5.75, 0.25, 0.25) 

5 (2.25, 2.75, 0.225, 0.225) (5.70, 6.00, 0.30, 0.50) 

6 (2.70, 3.30, 0.270, 0.270) (7.00, 8.00, 0.50, 0.50) 

7 (3.15, 3.85, 0.315, 0.315) (6.50, 7.00, 0.25, 0.50) 

8 (3.60, 4.40, 0.360, 0.360) (6.25, 6.75, 0.25, 0.25) 

9 (4.05, 4.95, 0.405, 0.405) (6.90, 7.65, 0.25, 0.25) 

10 (4.50, 5.50, 0.450, 0.450) (8.25, 8.75, 0.25, 0.25) 

11 (4.95, 6.05, 0.495, 0.495) (8.00, 8.50, 0.25, 0.50) 

12 (5.40, 6.60, 0.540, 0.540) (7.50, 8.50, 0.50, 0.50) 

13 (5.85, 7.15, 0.585, 0.585) (8.50, 9.50, 0.50, 0.50) 

14 (6.30, 7.70, 0.630, 0.630) (10.25, 10.75, 0.25, 0.25) 

15 (6.75, 8.25, 0.675, 0.675) (9.25, 10.40, 0.55, 0.60) 

16 (7.20, 8.80, 0.720, 0.720) (9.25, 9.75, 0.25, 0.25) 
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(a)                                                          (b) 

  
(c)                                                          (d) 

Figure 1. The fitting effect of the 1st, 2nd, 3rd and 4th component. 
 
Table 4. Comparison of the fitting effect in Example 2. 

Model Sum of iE  Sum of iS  Sum of iR  

ˆ
SLY  13.6770 8.6117 12.8646 

ˆ
COY  15.0234 7.3054 15.8693 

ˆ
ZY  14.3705 7.4931 15.2849 

 
of the independent variable, the vertical axis represents the value of the compo-
nents of trapezoidal fuzzy number. 

( )
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= ×
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( )
( )

ˆ 3.9860,3.9860,3.9860,4.0511

0.7755,0.7755,0.7755,0.7755
Z

M M

Y

X

=
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From Table 4, we can find that the sum of iE  and iR  of our proposed 
model are smaller than that of the reference models, and the sum of iS  of our 
proposed model is larger than that of the reference models, that means our pro-
posed model has lower deviations than the reference models. From Figure 1(a) 
and Figure 1(c), we can see our proposed model is on par with the reference 
models. From Figure 1(b) and Figure 1(d), we can obviously find that the 2nd 
and 4th component has perfect fitting effect, they can more aptly describe the 
trend of the shape of output fuzzy numbers. From Figure 2, we can find the es-
timated outputs of our proposed model have better coverage than the reference 
models, especially the 1st, 3rd, 4th. In conclusion, our proposed model has better 
fitting effect in this case. 

Example 3.The source sample data comes from Table 2 in Zhang (2012) [16], 
where the inputs are crisp real numbers, and the outputs are trapezoidal fuzzy 
numbers. In consideration of the applicability, we modify the sample data, and 
expand the crisp inputs to fuzzy inputs. The specific steps are similar to Example 
2. After obtaining the proper sample data in Table 5, we still use (14) to construct 
fuzzy regression model, obtain the estimated output and use Error Index, Simi-
larity Measure, Distance Criterion to evaluate deviation shown in Table 6. 
 

Table 5. Sample data in Example 2. 

i 1x  2x  3x  y 

1 (9.975, 11.025, 0.525, 0.525) (8.360, 9.240, 0.440, 0.440) (14.820, 16.380, 0.780, 0.780) (6, 7, 1, 1) 
2 (8.455, 9.345, 0.445, 0.445) (8.360, 9.240, 0.440, 0.440) (14.820, 16.380, 0.780, 0.780) (8, 8, 1, 2) 
3 (9.880, 10.920, 0.520, 0.520) (8.360, 9.240, 0.440, 0.440) (15.865, 17.535, 0.835, 0.835) (6, 7, 1, 1) 
4 (11.875, 13.125, 0.625, 0.625) (13.015, 14.385, 0.685, 0.685) (21.090, 23.310, 1.110, 1.110) (5, 5, 1, 1) 
5 (8.550, 9.450, 0.450, 0.450) (7.790, 8.610, 0.410, 0.410) (14.820, 16.380, 0.780, 0.780) (2, 3, 1, 1) 
6 (10.165, 11.235, 0.535, 0.535) (8.455, 9.345, 0.445, 0.445) (15.105, 16.695, 0.795, 0.795) (5, 5, 1, 1) 
7 (14.820, 16.380, 0.780, 0.780) (9.975, 11.025, 0.525, 0.525) (14.820, 16.380, 0.780, 0.780) (4, 5, 1, 1) 
8 (9.120, 10.080, 0.480, 0.480) (7.505, 8.295, 0.395, 0.395) (14.155, 15.645, 0.745, 0.745) (2, 3, 1, 1) 
9 (9.120, 10.080, 0.480, 0.480) (6.840, 7.560, 0.360, 0.360) (12.635, 13.965, 0.665, 0.665) (5, 5, 1, 1) 

10 (10.450, 11.550, 0.550, 0.550) (6.935, 7.665, 0.365, 0.365) (14.155, 15.645, 0.745, 0.745) (7, 8, 1, 1) 
11 (10.735, 11.865, 0.565, 0.565) (7.695, 8.505, 0.405, 0.405) (13.015, 14.385, 0.685, 0.685) (4, 5, 1, 1) 
12 (10.260, 11.340, 0.540, 0.540) (8.265, 9.135, 0.435, 0.435) (14.630, 16.170, 0.770, 0.770) (6, 7, 1, 1) 
13 (10.735, 11.865, 0.565, 0.565) (8.170, 9.030, 0.430, 0.430) (14.725, 16.275, 0.775, 0.775) (6, 7, 1, 1) 
14 (9.215, 10.185, 0.485, 0.485) (8.075, 8.925, 0.425, 0.425) (15.105, 16.695, 0.795, 0.795) (5, 5, 1, 1) 
15 (9.595, 10.605, 0.505, 0.505) (5.415, 5.985, 0.285, 0.285) (11.305, 12.495, 0.595, 0.595) (7, 8, 1, 1) 
16 (10.925, 12.075, 0.575, 0.575) (13.965, 15.435, 0.735, 0.735) (19.000, 21.000, 1.000, 1.000) (2, 3, 1, 1) 
17 (11.875, 13.125, 0.625, 0.625) (14.725, 16.275, 0.775, 0.775) (19.950, 22.050, 1.050, 1.050) (2, 3, 1, 1) 
18 (9.500, 10.500, 0.500, 0.500) (9.405, 10.395, 0.495, 0.495) (15.390, 17.010, 0.810, 0.810) (4, 5, 1, 1) 
19 (14.250, 15.750, 0.750, 0.750) (8.360, 9.240, 0.440, 0.440) (11.400, 12.600, 0.600, 0.600) (4, 5, 1, 1) 
20 (8.075, 8.925, 0.425, 0.425) (5.700, 6.300, 0.300, 0.300) (14.820, 16.380, 0.780, 0.780) (7, 8, 1, 1) 
21 (9.215, 10.185, 0.485, 0.485) (7.030, 7.770, 0.370, 0.370) (16.435, 18.165, 0.865, 0.865) (7, 8, 1, 1) 
22 (13.965, 15.435, 0.735, 0.735) (6.270, 6.930, 0.330, 0.330) (15.010, 16.590, 0.790, 0.790) (8, 8, 1, 2) 
23 (11.685, 12.915, 0.615, 0.615) (8.360, 9.240, 0.440, 0.440) (19.665, 21.735, 1.035, 1.035) (8, 8, 1, 2) 
24 (8.740, 9.660, 0.460, 0.460) (5.510, 6.090, 0.290, 0.290) (16.340, 18.060, 0.860, 0.860) (8, 8, 1, 2) 
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Figure 2. The shape of the four estimated outputs. 
 
Table 6. Comparison of the fitting effect in Example 3. 

Model Sum of iE  Sum of iS  Sum of iR  

ˆ
SLY  22.1635 10.5348 29.5841 

ˆ
COY  25.6571 10.3127 5.4190 

ˆ
ZY  34.7905 5.5778 26.5890 
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From Table 6, we can find that the sum of iE  of our proposed model is 
smaller than that of the reference models, and the sum of iS  and iR  of our 
proposed model is larger than that of the reference models, that means our pro-
posed model has lower deviations than the reference models, but bad shape es-
timation. 

5. Conclusions 

In this study, we took advantages of drastic product and classic LSD and used 

WT  to design the a kind of trapezoidal fuzzy number ( LLPNTFN ) regression 
model, which handles regression problem with fuzzy inputs, fuzzy coefficients 
and fuzzy outputs represented as FIFCFO . The first two examples show great 
support for our model, and the last example is inferior in iR . In general, our 
proposed model has better performance than the reference models when on out-
liers in sample sets, that means our proposed model is short of robust property. 

Although the experimental results show that our proposed model has better 
performance, but the complexity of computation is still a potential problem even 
though it is solved to a certain extent by optimized program. The sample size or 
the number of variables is larger; the computation is more complex. In the fu-
ture research, we will further study how to perform better when sample size is 
large, or there are outliers in sample sets and apply it to non-linear fuzzy regres-
sion analysis. 
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