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Abstract 
We propose optimal mean-variance dynamic hedging strategies in discrete 
time under a multivariate Gaussian regime-switching model. The methodol-
ogy, which also performs pricing, is robust to time-varying and clustering risk 
observed in financial time series. As such, it overcomes the main theoretical 
drawbacks of the Black-Scholes model. To support our approach, we provide 
goodness-of-fit tests to validate the model and for choosing the appropriate 
number of regimes, and we illustrate the methodology using monthly S & P 
500 vanilla options prices. Then, we present the associated out-of-sample 
hedging results in the context of harvesting the implied versus realized volatil-
ity premium. Using the proposed methodology, the Sharpe ratio derived from 
the strategy doubles over the Black-Scholes delta-hedging methodology. 
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1. Introduction 

In complete, frictionless capital markets with no transaction costs and where the 
underlying securities follow geometric Brownian motions, the Black-Scholes 
framework [1] provides an elegant and tractable solution for pricing and 
hedging derivative securities, typically vanilla calls and puts. Unfortunately, 
actual financial markets are far more complex and empirical testing of the Black- 
Scholes model has highlighted its many shortcomings. Indeed, it is well docu- 
mented [2] [3] [4] that the observed properties of financial time series are not 
consistent with its underlying assumptions. Time-varying volatility, the presence 
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of higher-order moments and serial correlation are now well established stylized 
facts of asset returns. Furthermore, [5] [6] [7] and [8] demonstrate that un- 
realistic assumptions about continuous-time hedging can lead to large hedging 
errors. 

Over the past decade, several studies have proposed discrete time hedging 
models based on different objective functions (see for example [9], [10] and 
[11]). The idea of dynamic hedging, as detailed in [12] and [13], is to find a self- 
financing optimal investment strategy that replicates a terminal payoff. In this 
paper, we build on the previous work of [14] [15] [16] [17] and [18] to derive a 
discrete time hedging strategy minimizing the expected risk of future contingent 
liabilities when asset returns follow a regime-switching random walk. Our 
hedging methodology is therefore robust to serially-correlated and non-Gaussian 
returns. Previous attempts to incorporate conditional returns in option pricing 
include GARCH models (see [19] for a complete review), stochastic volatility 
models [20] [21] [22] and jump models ([23] and [24] to cite a few). These 
approaches have generally been successful at reproducing market prices, 
however none of them offer an effective, let alone optimal, hedging strategy. 

Regime-switching models, popularized by [25] and [26], have many charac- 
teristics that lend themselves nicely to financial time series modeling. They allow 
for time-varying conditional moments, a feature that is consistent with the 
observed non-Gaussian properties of financial returns while being easy to inter- 
pret. Regime-switching models have previously been used by [27] to capture 
interest rate dynamics and by [28] and [29] to model volatility. However, very 
few papers have attempted to apply regime-switching models to returns for 
option pricing and hedging. The aim of this paper is to demonstrate how to 
implement optimal hedging strategies and obtain derivatives prices under this 
class of models. We review the EM algorithm [30], which provides an efficient 
estimation procedure, and propose a novel goodness-of-fit test for selecting the 
optimal number of regimes based on the work of [31]. 

To empirically assess the relevance of our approach, we compare the 
performance of various hedging methodologies in the context of harvesting the 
negative market volatility risk premium. The implied volatility of equity index 
options is known to include a significant negative time-varying premium [32]. 
In economic terms, there is an insurance cost to holding assets that co-vary 
positively with volatility (such as options), because the latter tends to increase in 
unfavorable market states [33] [34]. In their seminal paper, [35] initiate short S 
& P 500 option positions and hedge the underlying risk until expiration. They 
empirically show gains from such strategy are proportional to the volatility risk 
premium. However, they derive daily optimal hedging ratios from the classical 
Black-Scholes approach adjusted for a GARCH conditional volatility. Even 
though their conclusion appears robust to such mis-specification, the impact on 
the strategy is unclear. In fact, investors should optimally account for time- 
varying volatility and discrete-time re-balancing when deriving hedging ratios. 
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The proposed approach achieves this optimality under a quadratic (thus sym- 
metric) risk criterion for regime-switching models. 

We first present empirical pricing results confirming the systematic down- 
ward bias in model prices relative to market prices. Secondly, we apply the 
proposed volatility-timing strategy. Intuitively, we expect the regime-switching 
methodology to under(over)-hedge relative to the Black-Scholes setting in low 
(high) volatility states. This is confirmed empirically as the proposed protocol 
decreases the annualized volatility of the strategy from 3.47% to 2.58% and 
increases the annualized expected return from 1.37% to 1.97% over the classical 
Black-Scholes delta-hedging approach. 

The rest of the paper is structured as follows. Section 2 introduces the model 
by describing the filtering procedure to predict regimes, the estimation 
procedure and the goodness-of-fit test, together with an illustration for the S & P 
500 index daily returns. The implementation of the estimation is presented in 
Appendix A and the implementation of the goodness-of-fit is presented in 
Appendix B. Then, in Section 3, we state the optimal dynamic discrete time 
hedging model for regime-switching processes and finally, in Section 4, we 
implement the proposed algorithm for European vanilla options written on the S 
& P 500 in the context of harvesting the volatility risk premium. 

2. Regime-Switching Geometric Random Walk Models 

Regime-switching models are quite intuitive. At period t , given that the 
previous regime 1tτ −  has value i , the regime t jτ =  is chosen with probability 

ijQ , and given t jτ = , the periodic return tR  has cumulative distribution jF . 
Henceforth, jF  is assumed Gaussian with mean jµ  and standard deviation 

jσ . Following [25], the non-observable regimes ( ) 1t t
τ

≥
, with values in { }1, , l , 

are modeled by a Markov chain with transition matrix Q , and stationary 
distribution ν . A (d-dimensional) discrete time process ( ) 1t t

R
≥

 forms a 
regime-switching random walk if, given the regimes 1 1, , n ni iτ τ= = , the 
random vectors 1, , nR R  are independent, with respective densities 

1
, ,

ni if f  
(associated to cumulative distributions 

1
, ,

ni iF F ). As a result, the stationary 
distribution of tR  is a mixture, with density ( ) ( )1

l
i iif x f xν

=
= ∑ . 

The regime-switching geometric random walk model ( ) 1t t
S

≥
 is then a process 

such that the associated (d-dimensional) log-returns process ( )1logt t tR S S −=  
forms a regime-switching random walk. In general, ( ) 1t t

S
≥

 is not a Markov 
process, unless the regimes are serially independent. However, the process 
( ) 0

,t t t
S τ

≥
 is Markovian. These models are particular cases of Hidden Markov 

Models (HMM). 
The law of financial time series can be modeled adequately by a regime- 

switching model with Gaussian densities 1, , lf f , provided the number of 
regimes is large enough. Indeed, the serial dependence in regimes propagates to 
returns and captures the observed autocorrelation in financial time series. Also, 
the conditional distribution is time-varying, leading to conditional volatility, as 
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well as conditional asymmetry and kurtosis. Finally, the model nests the Black- 
Scholes framework when the number of regimes is forced to one. Indeed, in such 
a case, the log-returns are independent and identically distributed with Gaussian 
density. 

We now state results of practical interest pertaining to regime-switching 
models, including a regime prediction algorithm, an estimation algorithm and a 
goodness-of-fit test to determine the optimal number of regimes. 

2.1. Regime Prediction 

Since the regimes are not observable, we have to find a way to predict them. This 
will be of outmost importance for pricing and hedging derivatives. 

In many applications, one has to find the most likely regime at period t , 
given the values of the returns 1, , tR R . This is known as a filtering problem. 
More precisely, one needs to compute ( ) ( )1 1, ,t t t ti P i R x R xη τ= = = = . It is 
remarkable that for the present model, one can compute exactly this conditional 
distribution, given a starting distribution 0η .  

2.1.1. Filtering Algorithm 
• Choose an a priori probability distribution 0η  for the regimes. Equivalently, 

one can choose a non-negative vector 0q  and set ( ) ( )0 0 0i q i Zη = , where 
( )0 01

l
jZ q j
=

= ∑ . The choice of 0q  or 0η  is not critical, since its impact on 
predictions decays in time and have virtually no impact on terminal regime 
probabilities for any reasonable time series length. For simplicity, we assume 
a uniform distribution, that is 0 1q ≡ . 

• For any 1t ≥ , once t tR x=  is observed, compute, for every 1, ,i l=  ,  

( ) ( ) ( )1
1

,
l

t i t t ji
j

q i f x q j Q−
=

= ∑
                   

(1) 

and  

( ) ( ) ,t
t

t

q i
i

Z
η =

                         
(2) 

where ( )1
l

t tjZ q j
=

= ∑ .  
Having computed the conditional probabilities, ( )t iη , one can finally 

estimate tτ  by  

( )ˆ arg max ,t ti
iτ η=

                       
(3) 

that is as the most probable regime.  
Remark 2.1. Note that since ( ) ( ) ( )1 k

t
t t kkq i E i f xττ

=
 = = ∏ , tZ  is the 

joint density of ( )1, , tR R  at ( )1, , tx x . One can also write (1) only in terms 
of 1tη −  viz.  

( ) ( ) ( )1
1| 1

,
l

i t
t t ji

jt t

f x
i j Q

Z
η η −

=−

= ∑
                   

(4) 

where ( ) ( )| 1 11 1
l l

t t i t t jii jZ f x j Qη− −= =
= ∑ ∑  is the conditional density of tR  at 
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tx , given 1 1 1 1, ,t tR x R x− −= = .  

2.1.2. Conditional Distribution and Stationary Law 
From Remark 2.1, the joint density of 1, , tR R , 1:tf , can be expressed as tZ . 
Also, for any 2t ≥ , the conditional density of tR  given 1 1, , tR R − , :1tf , can 
be expressed as a mixture:  

( ) ( ) ( ) ( ) ( ):1 1 1 | 1 1 1
1 1 1

, ,
l l l

t t t t t i t t ji i t t
i j i

f x x x Z f x j Q f x W iη− − − −
= = =

= = =∑ ∑ ∑

   
(5) 

where  

( ) ( ) { }1 1
1

, 1, , .
l

t t ji
j

W i j Q i lη− −
=

= ∈∑ 

                
(6) 

Note that ( ) ( )1 1 1 1 1, ,t t t tW i P i R x R xτ− − −= = = = , for all 1t > . We can show 
that the conditional law of t kR +  given 1, , tR R  has density  

( ) ( ) ( )( ):
1 1

,
l l

k
t k k i t jii j

f x f x j Qη+
= =

= ∑ ∑
                

(7) 

which is also a mixture with densities if  and weights ( )( )1
l k

tj ji
j Qη

=∑ , for 
{ }1, ,i l∈  . 

If the Markov chain τ  with transition matrix Q  is ergodic, then the 
conditional law of t kR +  given 1, , tR R , converges as k →∞  to the stationary 
distribution ( ) ( )1

l
i iif x f xν

=
= ∑ . That is, for long term predictions the 

behaviour of t kR +  becomes independent of its past. 

2.2. Estimation of Parameters 

As proposed in [25], the EM algorithm is a quite efficient estimation procedure 
for incomplete data sets. Under regime-switching models, observations are 
partial since τ  is unobservable. The algorithm proceeds iteratively to converge 
to the maximum likelihood estimation of parameters [30]. Its implementation 
for regime-switching random walks is described in details in Appendix A. The 
optimal number of regimes must be known a priori, an issue that will be dealt 
with next. 

As shown in [36] and [37], when the densities are Gaussian with mean 
{ } 1

l
i i

µ
=

 and covariance matrix { } 1

l
i i

A
=

, the EM estimators tQ  of Q  and tθ  
of ( )1 1, , , ,l lθ µ σ µ σ=   are 1 2t -consistent. In other words, ( )1 2

tt Q Q−  and 
( )1 2

tt θ θ−  are asymptotically Gaussian. Furthermore, they are regular in the 
sense that parametric bootstrap can be applied. For more details, see [37]. 

2.3. Goodness-of-Fit Test 

Having estimated the parameters for a fixed number of regimes, one must next 
test the adequacy of the fitted model in order to select the optimal number of 
regimes. This is generally done by using a test based on likelihoods. However, as 
expressed in [25], hypothesis testing using maximum likelihoods methods can 
be problematic due to singularities and unidentifiable parameters. Furthermore, 
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[36] show that goodness-of-fit tests based on likelihood ratios are not recommended 
for regime-switching models. 

Building on [38] [39] proposed to evaluate the conditional distribution 
function at the observed data points. Intuitively, for univariate time series, these 
resulting pseudo-observations should approximately be uniformly distributed 
under the null hypothesis. To overcome the problem of unknown parameters, 
[39] suggest to estimate the parameters from the first half of the time series and 
use the second half to perform the goodness-of-fit test, as if the parameters were 
known. This can hardly be justified theoretically since the limiting distribution 
of the test statistics usually depends on the unknown parameters. Furthermore, 
the approach is less powerful since only half the data set is used for testing. 

Building on [39], a solution based on Khmaladze’s transform was proposed by 
[40] in the univariate case and extended in the multivariate case in [41]. 
However, its implementation can be quite difficult and computationally ex- 
pensive. We opt for a simpler approach based on parametric bootstrapping. It 
was shown to work for a large class of dynamic models, including regime- 
switching random walks. Its implementation is detailed in Appendix B. 

Choosing the Optimal Number of Regimes 
The goodness-of-fit test methodology described in Appendix B produces 
P-value from a Cramér-von Mises type statistic, for a given number of regimes, 
l . As suggested in [17], it makes sense to choose the optimal number of regimes, 

*l , as the first l  for which the P-value is larger than 5%. An illustration of the 
proposed methodology is given in Section 2.4. 

2.4. Application on S & P 500 Daily Returns 

To illustrate the model, we fit the close-to-close log-returns of the daily price 
series of the S & P 500 index from January 2nd 1985 to January 31th 2012 (6831 
observations). As illustrated in Figure 1, the time series includes persistent 
periods of low and high volatility. For example, from Figure 1, the 1992-1996 and 
2003-2006 represent low periods of volatility, since the variability is much smaller 
than everywhere else, while the period 2008-2010 is a good example of high 
volatility, since the variability in the returns is large. The latter coincides with the 
last financial crisis. It is thus a natural candidate for regime-switching models. 

We performed the proposed goodness-of-fit test (see Appendix B) for 
Gaussian densities. The results are displayed in Table 1. According to Section 
2.3.1, the first 3 P-values are 0, so according to our criteria, the number of 
regimes must be greater than 3. For 4 regimes, the P-value is 26.2% which is 
greater than 5%, so we optimally select a four-regime model, since 4 is the 
smallest number of regimes for which the P-value is larger than 5%. 

The estimated parameters are presented in Table 2, where the mean and 
standard deviation of each Gaussian regime density if  are respectively denoted 
by iµ  and iσ . Note that they are presented as annualized percentage values.  
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Figure 1. Log-returns of the S & P 500 Index (01/02/1985-12/31/2012). 

 
Table 1. P-values (in percentage) for the proposed goodness-of-fit test using 1000N =  
bootstrap samples on the S & P500 daily returns (01/02/1985-12/31/2012). 

Number of regimes 1 2 3 4 

P-value 0 0 0 26.2 

 
Table 2. Parameters estimation for the four-regime model on the S & P 500 daily returns 
(01/02/1985-12/31/2012). µ  and σ  are presented as annualized percentages.  

 Regime 

Parameter 1 2 3 4 

µ  17.93 21.77 2.12 −52.75 

σ  4.76 11.88 18.44 46.59 

nη  0.29 0.69 0.02 0.00 

ν  0.16 0.37 0.40 0.07 

Q 

0.16 0.81 0.03 0.00 

0.36 0.64 0.00 0.00 

0.01 0.00 0.98 0.01 

0.00 0.00 0.04 0.96 

 
The table further contains the estimated long-term, or stationary, regime 
probabilities iν , together with the terminal conditional regime probabilities, 

( )n iη , and the estimated transition matrix, Q. 
In Table 2, regimes are ordered by increasing standard deviation for 

convenience. Firstly, we observe that volatility tends to be inversely related to the 
expected premium. Indeed, the latter goes from −52.75% for the high-risk 
regime to 17.93% for the low-risk regime. Such observation is consistent with 
previous findings on the contemporaneous asymmetry between risk and returns 
[42]. Regime 1 and 2 are associated to bull markets, which are characterized by 
strong positive premiums and low risk. Regime 3 can be interpreted as an 
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intermediate state. It displays less directionality with an expected return of 
roughly 2% and medium-risk with a standard deviation close to the long run, or 
unconditional, value. Finally, regime 4 is associated to bear markets, as 
highlighted by its strong negative premium of −52.75% and very high risk of 
46.59%. Even though its steep premium could suggest the presence of crashes, 
such interpretation can be misleading. Indeed, the persistence of regime 4 is 
quite high as highlighted by a the value of 44Q  of 0.96. Intuitively, given we are 
in a stressed market environment today, it will remain stressed for the 
forthcoming days with high probability. However, in the long-run, such state is 
rare. Indeed, we expect its realization only roughly 7% of the time as given by 
the stationary probability 4ν . In contrast, markets are expected to be in a bull 
market state (regime 1 or regime 2) roughly 53% of the time. Such findings are 
consistent with common perceptions about financial markets. Indeed, periods of 
high uncertainty and abrupt decreases in levels are usually very concentrated in 
time (but can last for days), while recoveries are slower processes that extend 
over several years. 

Figure 2 displays the filtered most probable regimes (see Section 2.1 for the 
filtering procedure) for the whole time series. The regimes are depicted by 
different shades of grey, ranging from dark for the high risk regime to white for 
the low risk regime. The 1987 crisis is correctly captured by the high volatility 
state, together with the early 2000’s bubble burst and the recent financial 
meltdown (2008-2009). 

3. Optimal Discrete Time Hedging 

Denote the price process by S , that is, tS  is the value of d  underlying assets  
 

 
Figure 2. Most probable regimes for the four-regime model fitted on the S & P 500 index 
from 01/02/1985 to 12/31/2012, together with the cumulative performance of the S & P 
500 index. Darker areas represent higher volatility states. 
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at period t  and let { }, 0, ,t t n= =    a filtration under which S  is 
adapted. Further assume S  is square integrable. Set 1 1t t t t tS Sβ β − −∆ = − , where 
the discounting factors tβ  are predictable (that is tβ  is 1t− -measurable for 

1, ,t n=  ). We are interested in the optimal initial investment amount 0V  and 
the optimal predictable investment strategy ( ) 1

n
t t

φ φ
=

=


 that minimizes the 
expected quadratic hedging error for a given payoff, C, at time n (for example a 
call option). Formally, the problem is stated as  

{ } ( ){ }
0

2

0
,

min , ,
V

E G V
φ

φ 
  





                      
(8) 

where ( ) ( )0 , n nG V C Vφ β= −


, and tV  is the current value of the replicating 
portfolio at time t . In other words, it is the current value of the optimal 
predictable investment strategy, φ



. 
To solve (8), set 1 1nP + = , and define, for , ,1t n=  ,  

( )1 1 ,t t t t tA E PΤ + −= ∆ ∆   

( )1
1 1 ,t t t t tb A E P−
+ −= ∆   

( )1
1 1 ,t t n t t tA E C Pα β−
+ −= ∆   

( )1 .
n

t j j
j t

P bΤ

=

= − ∆∏  

We can now state Theorem 1 of [18], which is an extension of a result from 
[16].  

Theorem 1. Suppose that ( )1 0t tE P − ≠  P-a.s., for 1, ,t n=  . This 
condition is always respected for regime-switching models. Then, the solution 
( )0 ,V φ



 of the minimization problem (8) is ( ) ( )0 1 1nV E CP E Pβ= , and  

1 1 , 1, , .t t t t tV b k nφ α β − −= − =                    (9) 

Remark 3.1. Note that 0V  is chosen such that the expected hedging error G
is zero. [18] also showed that tC  (defined by  

( )
( )

1

1

, 0, , ,n t t
t t

t t

E CP
C t n

E P
β

β +

+

= = 




               

(10) 

is the optimal investment at period t  so that the value of the portfolio at period 
n  is as close as possible to C  in terms of mean square hedging error G . As 
such, tC  can be interpreted as the option price at period t . By increasing the 
number of hedging periods, tC  tends to a price under a risk neutral measure 
[43]. For example, when there is only one regime and the density is Gaussian, 

tC  tends to the usual Black-Scholes price, as the number of hedging periods 
tends to infinity.  

The proposed optimal hedging implementation appears in Appendix C. 

3.1. Global Hedging 

In practice, an expected hedging error characterized by t tV C−  will emerge. In 
other words, the replicating portfolio at period t will not be worth the optimal 
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investment tC . Under the Black-Scholes setting, such error is unaccounted for 
since derivatives can be replicated perfectly. In contrast, under the proposed 
optimal hedging protocol, the exposures tφ  linearly depend on the replicating 
portfolio value 1tV −  (see Equation (9)), which in turn depend on the past 
strategy path. 

Under extreme scenarios, the replication of a call option might lead to optimal 
exposures φ  greater than one share. Intuitively, this feature is optimal with 
respect to closing the gap between V  and C . 

3.2. Implementation Issues 

There are two main problems related to the implementation of the hedging 
strategy: tC  and tα  defined by expressions (21) and (22) must be approximated 
and regimes must be predicted. 

We discretize tC  and tα  with a grid G constituted of 103 equidistant points 
representing the underlying values s marginally covering at least 3 standard 
deviations under the respective highest volatility regimes. To solve the 
recursions given by (21) and (22), we interpolate or extrapolate linearly the 
simulated outcomes on G. 104 simulations are generated according to a stratified 
Monte Carlo sampling procedure. The details for the interpolations are 
presented in Appendix C2. 

Next, we need to predict 1τ  based on ( )1 0,R τ , and so on. The predicted 
regime τ̂  is the one having the largest probability given the information on 
prices up to time t , that is the most probable regime given by (3). See Section 
2.1 for more details on regime prediction. 

Then, according to (15), the optimal weights tφ  for period [ )1,t t−  are 
approximated by  

( ) ( ) ( )1
1 1 1 1 1 1

ˆ ˆ ˆ, , 1, , ,t t t t t t t tS V D S t nφ α τ ρ τ−
− − − − + −= − =          (11) 

where 0V  is approximated by ( )0 0 0̂,C S τ . In particular, the initial number of 
shares held 1φ  is approximated by  

( ) ( ) ( )1
1 1 0 0 0 0 2 0
ˆ ˆ ˆ, ,S V D Sφ α τ ρ τ−= −                (12) 

while the remaining monies, 0 1 0
ˆV SφΤ− , are invested in the riskless asset. Next, 

as 1S  is observed, one first computes the actual portfolio value 1V , then one 
predicts the current regime 1τ  and finally we approximate the optimal new 
weights 2φ . This process is iterated at each rebalancing period. 

4. Out-of-Sample Vanilla Pricing and Hedging 

To exhibit the proposed hedging protocol, we systematically sell vanilla options 
on the S & P 500 and hedge them until expiration. We then assess the impact of 
model specification on the delta-hedging strategy by examining the statistical 
properties of the harvested realized variance risk premium [35] [32]. All hedging 
portfolios are re-balanced on a daily basis, as is often assumed in the volatility 
timing literature (see for example [44]). 
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The market price of an option is defined as the last (i.e. at 4:15 PM EST) mid 
point between the bid and the ask. The price of the underlying is its listed close 
value. For simplicity, we neglect issues related to time-varying discount rates by 
assuming constant continuously compounded daily rates. Risk free rates, r, are 
linearly interpolated for a given maturity, n, from the zero-coupon U.S. yield 
curve. 

4.1. The Underlying Asset 

We make the reasonable assumption the spot S & P 500 is investable and 
tradable at a minimal cost. The forward rate is retrieved for the maturities of 
interest directly from the option data at hand, as proposed by [8]. From put-call 
parity, the option implied forward value nF  at n is  

( ) ( )( ), , e ,nr n
nF C K n P K n K= − +      

where ( ),C K T  and ( ),P K T  are respectively the call and put market values 
expiring at T with strike K and K  is the at-the-money strike value minimizing 

( ) ( ), ,C K T P K T−     for all strikes offered by the exchange. We use at-the- 
money options because they are the most liquid and are thus less likely to 
provide cash-and-carry type arbitrage opportunities. We then compute the daily 
forward rate as ( )0

1 logn nf F S
n

=  and the associated daily discounting factor 
e nfβ −= , which reflects the current risk-free return on capital net of the implied 

continuous dividend yield. 

4.2. Option Data Set 

Exchange-traded options on the S & P 500 are European, heavily traded and 
have a high number of listed strikes and maturities. 

Assuming 21 trading days per month, we select all dates from December 31th 
1999 to January 31th 2012 that have at least one strike listed with 21 trading days 
to maturity. The period from January 2nd 1985 to December 30th 1999 is used as a 
burn-in to fit the various models. This gives a total of 165 inception dates from 
which we initiate the hedging protocols. Since options are listed monthly, this 
specification maximizes the sample size while avoiding overlaps. 

Furthermore, under general continuous time stochastic volatility models, [35] 
demonstrate the expected hedged short option gain is a first-order homogeneous 
function of the sensitivity of the option value with respect to volatility, 
commonly called vega. We thus build a data set maximizing the exposure to the 
volatility premium by maximizing the vega. 

It is well known that vega is maximized for at-the-money options. However, 
the vega difference with in-the-money and out-of-the-money options tends to 
decrease as volatility increases. This can easily be verified under the Black- 
Scholes framework. Thus, it makes sense to condition our selection in such a 
way that more strikes are included in the data set when expected volatility is high. 
With the at-the-money B & S implied volatility (IV) as a proxy for market 
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expectations, we select all strikes that are within one IV deviation from the 
current underlying value,  

2 2

0 0
IV IV

exp IV , exp IV ,
2 252 2 252

n n
n n n n

n nK S f n S f n
       

∈ − − − +                  
 

where IV is annualized. This essentially allows us to filter out deeply in-the- 
money and out-of-the-money options, for which the expected volatility premium 
is low. Overall, we selected a total of 3189 strikes (6378 options including calls 
and puts). All selected options had significant open interest and non-zero bids at 
inception. 

4.3. Back-Testing  

We apply the Gaussian regime-switching (OH-HMM) hedging methodology 
with a number of regimes ranging from 1 to 4. The case with 1 regime cor- 
responds to the Black-Scholes (OH-B & S) model and will serve as a benchmark, 
together with the Gaussian mixture (OH-GM) model. We are especially 
interested in the case with 4 regimes (OH-HMM4), since it was previously (see 
Section 2.4) identified as the optimal number of regimes for the S & P 500. 

For each inception date, we estimate HMM parameters on the available S & P 
500 log-returns from January 2nd 1985. The estimation sample window increases 
from inception date to inception date. The stability of parameters is highlighted 
in Figure 3 for the 4 regimes model.  

The top graph shows the volatility of each regime versus the B & S at-the- 
money implied volatility, while the bottom graph shows the expected return 
under each regime versus the cumulative performance of the S & P 500. The 
three lower volatility regimes have quite stable parameters. The higher volatility 
regime parameters stabilize after 2003 and are later shocked by the 2008-2009 
financial meltdown. Such behaviour is not surprising as the number of high 
volatility observations is low. Thus, stressed market observations entering the 
estimation window have a large impact on high volatility regime parameters.  

From [45], for a given moneyness (that is the strike value divided by the 
underlying value), the value of an option is homogeneous of degree one with 
respect to the underlying value. Thus, for each inception date, we normalize the 
option prices, the strike values and the underlying path at an initial S & P 500 
value of 100. Results can thus be aggregated through time and interpreted as a 
percentage of S & P 500. Note that for each inception date, the hedging protocols 
are applied out-of-sample for the next 21 days, before re-estimating parameters. 

To ensure comparability, the OH-GM assumes the stationary distribution of 
the OH-HMM, while the OH-B & S volatility match the stationary volatility of 
both the OH-HMM and OH-GM. Thus, OH-GM4 is a mixture of four Gaussian 
laws, corresponding to the stationary distribution of OH-HMM4. Both the OH- 
GM and OH-B & S optimal hedging exposures are derived from an algorithm 
similar to the one presented in Section 3. Optimal hedging under unconditional  
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Figure 3. Fitted regime volatility (top figure) and regime expected return (bottom figure) 
from December 31th 1999 to January 31th 2012 for the four-regimes HMM model, both 
presented as annualized percentage. 

 
distributions is presented in [46]. All strategies minimize the expected quadratic 
hedging error under their respective null hypothesis, namely that return follow a 
regime-switching model (OH-HMM), a Gaussian mixture model (OH-GM) or a 
Gaussian model (OH-B & S). 

OH-B & S is different from the classical Black-Scholes delta hedging. Indeed, 
the terminology only reflects the fact that we hedge and price under the Black- 
Scholes framework hypothesis, namely that assets follow geometric Brownian 
motions. Even though the OH-B & S prices converge to the usual Black-Scholes 
prices as the number of hedging periods tends to infinity, the discrete time 
hedging strategies will not necessarily be the same. The classical Black-Scholes 
delta-hedging methodology (B & S) is thus also considered. Similarly to OH-B & 
S, the B & S volatility is calibrated to the stationary volatility of OH-HMM and 
OH-GM. 

4.4. Empirical Results—Pricing 
4.4.1. One-Period Pricing Result 
In Table 3, we present normalized model prices for the 21 days at-the-money 
puts on 01/19/2012. This day was characterized by a low-volatility regime for all 
HMM models. 

The prices are increasing with the volatility of the regime, the lowest volatility  
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Table 3. 21 trading days to expiration at-the-money put prices on 01/19/2012 (for 
OH-HMM4 the most probable regime is highlighted in gray). Confidence intervals are 
computed from a sample of 100 pricing assuming normality.  

 Regime-1 Regime-2 Regime-3 Regime-4 

B & S 2.31    

OH-B & S 2.31 0.01±     

OH-GM4 2.28 0.03±     

OH-HMM4 1.43 0.01±  1.47 0.01±  2.37 0.01±  4.64 0.03±  

Market 1.97    

 
Table 4. 21 trading days to expiration at-the-money put prices on 10/23/2008 (for OH- 
HMM4 the most probable regime is highlighted in gray). Confidence intervals are 
computed from a sample of 100 pricing assuming normality. 

 Regime-1 Regime-2 Regime-3 Regime-4 

B & S 2.08    

OH-B & S 2.10 0.02±     

OH-GM4 2.08 0.05±     

OH-HMM4 1.35 0.01±  1.39 0.00±  2.41 0.02±  4.16 0.05±  

Market 6.88    

 
regime having the lowest price. The normalized market price for that day is 
1.97%. For the four regimes model, the option price ranges from 1.43% to 4.64%. 
However, since on that day, the most probable regime is 1, the most probable 
OH-HMM4 option price is 1.43%. The market is overvalued with respect to this 
model, but undervalued with respect to B & S, OH-B & S and OH-GM4. 

We present the same results for a highly volatile day during the 2008-2009 
financial crisis. From Table 4, on 10/23/2008, the at-the-money put is priced at 
6.88% by the market. On this day, the HMM is in its highest volatility state. 
Consequently, we estimate the option price for the four regimes HMM to be 
4.16%, considerably lower than the market price. In this case, the market is 
overvalued with respect to all models.  

Finally, to illustrate the behaviour of prices across strikes and maturities, we 
present Black-Scholes implied volatility surfaces on a low-volatility day in 
Figure 4. We first price the options using the different models and then solve for 
the Black-Scholes volatilities that return the computed prices. 

Across strikes, the market displays a strong smirk effect that suggests high 
implied-skewness and high implied-kurtosis in the S & P 500 log-return 
distribution. Since OH-B & S is in line with Black-Scholes assumptions, we don’t 
expect it to price any skewness or excess kurtosis, which is confirmed by its flat 
surface. Thus, both the OH-HMM and the OH-GM overvalue out-of-the-money 
options with respect to Black-Scholes. Clearly, the HMM captures more kurtosis 
than the Gaussian mixture as evidenced by its very pronounced smile. However, 
neither of them succeed at matching the negative implied-skewness. Indeed,  
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Figure 4. Out-of-the-money implied Black-Scholes volatility surfaces for 21, 40, 50, 64, 
103 and 113 trading days to expiration and a 10% moneyness range on 01/19/2012.  

 
out-of-the money puts are considerably more expensive on the market than 
out-of-the-money calls. Even though both the OH-GM and OH-HMM can 
theoretically accommodate negatively skewed distributions, their smirk effect are 
almost unnoticeable, suggesting markets are overvaluing skewness with respect 
to models. 

Since volatility is low, longer maturity options are priced at a higher implied 
volatility in the market to account for the mean-reverting nature of volatility. 
The OH-HMM captures this term-structure effect, while, unsurprisingly, both 
the OH-B & S and OH-GM failed to do so. Indeed, only the HMM allows for 
time-varying distributions. 

4.4.2. Back-Test Pricing Results 
In Table 5, we present the pricing results for 21 trading days to expiration puts 
for the whole period, from December 31th 1999 to January 31th 2012. Letting 0C  
the model price and 0V  the market price, we consider the root-mean-squared 
pricing error:  

( )2
0 0Ê C V −   

where Ê  denotes the sample mean. Similarly, we let the pricing bias be:  

[ ]0 0Ê C V−                               

The pricing bias is negative, ranging from −0.41 to −0.20, which suggests  
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Table 5. Root-mean-squared pricing error and pricing bias for 21 trading days to 
expiration puts for all selected strikes from December 31th 1999 to January 31th 2012.  

Pricing results for puts 

 B & S OH-B & S OH-GM OH-HMM4 

RMS pricing error 1.13 1.13 1.12 0.72 

Pricing bias −0.41 −0.41 −0.41 −0.20 

 
options are indeed overpriced with respect to historical observations in the 
market. In other words, under their respective null hypothesis, each model is 
expected to generate a profit from the volatility premium strategy. Overall, 
pricing results are very similar for all static models, namely B & S, OH-B & S and 
OH-GM, with a bias of 0.41% and a pricing error of roughly 1.13%. Interestingly, 
the smaller bias of the OH-HMM4 suggests the other models overvalue the 
premium. 

4.5. Empirical Results—Hedging 

We now turn to the terminal value of the replicating portfolio nV  minus the 
liability C  at expiration, nV C− , for all inception dates from December 31th 
1999 to January 31th 2012. Once actualized, this quantity can be interpreted as 
the excess profits & losses (PNL) of the strategy in percent of initial S & P 500 
value. 

First, the annualized root-mean-squared hedging error, ( )2ˆ12 n n nE V Cβ β −  , 
are presented in Table 6 for put options. This realized risk is the empirical 
counterpart of the quantity we minimized (see program (8)) and as such, is the 
most relevant metric for comparing the different models. Results for call options 
are similar and can be found in Tables 8-10 of Appendix D. 

Surprisingly, OH-GM and OH-B & S perform worse than B & S. In fact, the 
classical delta-hedging strategy performs relatively well with a RMSE of roughly 
3.48 versus 3.82 for the worst performer, namely the four regimes Gaussian 
mixture. Furthermore, the performance of both OH-GM and OH-HMM 
increases with the number of regimes (results not shown). Overall, the OH- 
HMM performs best by decreasing the RMSE from 3.48 for the B & S 
benchmark to 2.64. 

Next, we present the profits & losses statistics for all models in Table 7. Both 
OH-B & S and OH-GM perform worse than B & S under all PNL metrics. The 
OH-HMM4 yields greater profits, increasing the annualized expected excess 
PNL from 1.37% for the classical delta-hedging to 1.96%. Furthermore, all 
higher moments are more desirable under the OH-HMM4 protocol. Indeed, the 
skewness goes from −2.16 to −0.64 and the kurtosis from 13.35 to 7.69. 
Furthermore, the extreme negative PNL are better controlled, with a 99% value- 
at-risk of 2.57% versus 4.11% and a maximum drawdown of 4.63% versus 6.52%. 

Finally, we present two common performance metrics, the Sharpe and Omega 
ratio. The former should be used with caution since its underlying normality  
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Table 6. Root-mean-squared hedging error for the different hedging strategies applied to 
21 trading days to expiration puts for all selected strikes. 

Hedging results for puts 

 B & S OH-B & S OH-GM4 OH-HMM4 

RMS Hedging Error 3.48 3.80 3.83 2.64 

 
Table 7. Descriptive statistics and various performance metrics of the excess PNL, 

n n nV Cβ β− , for the four regimes hedging strategy applied to 21 trading days to expiration 
puts for all selected strikes from December 31th 1999 to January 31th 2012. The mean and 
volatility statistics are annualized. Since all returns are already discounted, the Sharpe and 
Omega ratio are computed by assuming a zero threshold. The value-at-risk is estimated 
as an empirical quantile.  

Descriptive statistics of short hedged put excess PNL 

 B & S OH-B & S OH-GM4 OH-HMM4 

Mean 1.37 0.69 0.70 1.96 

Volatility 3.46 3.80 3.82 2.57 

Skewness −2.16 −3.17 −3.18 −0.64 

Kurtosis 13.35 20.89 21.08 7.69 

Median 0.23 0.23 0.22 0.21 

Max. drawdown 6.52 9.04 9.19 4.63 

VaR 99% 4.11 4.63 4.74 2.57 

Sharpe ratio 0.11 0.05 0.05 0.22 

Omega ratio 0.67 0.57 0.57 0.89 

 
assumption is clearly violated for the resulting profits & losses. Overall, the 
Sharpe ratio doubles over the delta-hedging protocol, while the Omega ratio 
shows gains from 0.67 to 0.89. Overall, the OH-HMM4 outperforms the other 
specifications, including Black-Scholes both in terms of expected return and risk. 

5. Conclusions 

In this paper, we propose a discretized version of the continuous time regime- 
switching model used by [25], and demonstrate how to implement an optimal 
hedging strategy when the underlying asset returns are modeled as regime- 
switching random walks. 

We first present estimation and filtering procedures for regime-switching 
models. Building on the work of [39] [40], and [31], we then propose a novel 
goodness-of-fit test for univariate and multivariate Markovian regime-switching 
models that builds from Rosenblatt’s transform. This test is particularly useful to 
determine the optimal number of regimes. 

To illustrate the proposed methodology, we model the daily return series of 
the S & P 500. The resulting dynamics is consistent with commonly assumed 
characteristics of financial markets, such as the contemporaneous asymmetry 
between volatility and expected returns. 
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Furthermore, we state the regime-switching specialization of the optimal 
hedging algorithm [18] which generates optimal discrete-time (in our case, daily) 
exposures minimizing a symmetric quadratic criterion for the hedging error risk. 
It further performs pricing from which we confirmed a downward bias with 
respect to market prices. Such finding is consistent with the presence of a 
volatility risk premium and motivated the implementation of a systematic 
hedged short option strategy [35]. We compare our hedging results to the 
classical delta-hedging protocol and to optimal hedging protocols when the 
underlying asset returns are either modelled by a Gaussian or a Gaussian 
mixture distribution. Gaussian regime-switching models generate lower hedging 
errors than static models. Interestingly, they further yield greater profits and 
have favourable PNL distribution characteristics, such as less kurtosis and less 
negative skewness. Overall, the Sharpe ratio of the regime-switching hedging 
methodology doubles over the classical delta-hedging framework and the Omega 
ratio increases by roughly 0.2. 

The hedging algorithm could easily be extended to American options, and 
further adapted to conditional volatility models, such as GARCH models. One 
limitation of our work is the weak dependence induced by the regimes. It would 
be preferable to have serial dependence involving also the past returns. This will 
be done in a future work. 
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Appendix 
Appendix A. Estimation of Regime-Switching Models 

The EM algorithm for estimating parameters consists of two steps, expectation 
and maximization:  

(E-Step) Compute the conditional probabilities.  

( ) ( ) ( ) ( )1 1 1, , and , , , , ,t t n t t t ni P i R R i j P i j R Rλ τ τ τ += = Λ = = =   

for all 1 t n≤ ≤  and { }, 1, ,i j l∈  .  
(M-Step) Estimate the new parameters.  

First, a rough estimate of the parameters must be provided. Then, the two- 
step procedure is repeated until a stopping criteria is met. The E-Step is 
described next for any densities, whilst the M-Step is stated only for Gaussian 
densities. For more details on the EM algorithm, see, for example, [36]. 

A1. Conditional Distribution of the Regimes (E-Step) 
First, define, for all { }1, ,i l∈  ,  

( ) 1 ,n i lη =  

( )
( ) ( )

( ) ( )

1 1
1

1 1
1 1

, 1, , 1.

l

t i t

t l l

t t

Q f R
i t n

Q f R

β β
β

αβ β
α β

η β
η

η β

+ +
=

+ +
= =

= = −
∑

∑∑
  

Then, for all { }, 1, ,i j l∈  , one can check that  

( ) ( ) ( )

( ) ( )
1

, 1, , ,t t
t l

t t

i i
i t n

α

η η
λ

η α η α
=

= =
∑



               

(13) 

( ) ( ) ( ) ( )

( ) ( ) ( )
1 1

1 1
1 1

, , 1, , 1,ij t t j t
t l l

t t t

Q i j f R
i j t n

Q f Rαβ β
α β

η η

η α η β

+ +

+ +
= =

Λ = = −
∑∑



      

(14) 

( ) ( ), .n n iji j i QλΛ =  

We can now verify (13) and (14) are consistent. Indeed, for all 1 1t n≤ ≤ − ,  

( )
( ) ( ) ( )

( ) ( ) ( )
( )

1 1
1

1
1 1

1 1

, ,

l

t ij t j tl j
t tl lj

t t t

i Q j f R
i j i

Q f Rαβ β
α β

η η
λ

η α η β

+ +
=

=
+ +

= =

 
 
 Λ = =
 
 
 

∑
∑

∑ ∑
 

using the definition of tη . Also, ( ) ( ) ( )1 1,l l
n n ij nj ji j i Q iλ λ

= =
Λ = =∑ ∑ . Similarly, 

for all 1 1t n≤ ≤ − ,  

( ) ( )1
=1

, .
l

t t
i

i j jλ +Λ =∑  

A2. Estimation for Gaussian Regime-Switching Models (M-Step) 
For the estimation procedure, we assume the densities 1, , lf f  are Gaussian 
with means ( ) 1

l
i i

µ
=

, and covariance matrices ( ) 1

l
i i

A
=

. 
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The M-step consists of updating the parameters ( ) 1

l
i i

ν
=

, ( ) 1

l
i i

µ
=

, ( ) 1

l
i i

A
=

 and 
Q  according to  

( )
1

,
n

i t
t

i nν λ
=

′ = ∑  

( )
1

,
n

i t t
t

x w iµ
=

′ = ∑  

( )( ) ( )
1

,
n

i t i t i t
t

A x x w iµ µ Τ

=

′ ′ ′= − −∑  

( ) ( ) ( )
1 1 1

1, , ,
n n n

ij t t t i
t t t

Q i j i i j
n

λ ν
= = =

′ ′= Λ = Λ∑ ∑ ∑  

for all { }, 1, ,i j l∈   and where ( ) ( ) ( )1
n

t t llw i i iλ λ
=

= ∑ .  
Note that ν ′  is not the stationary distribution for Q′  since for any 
{ }1, ,j l∈  ,  

( ) ( ) ( ) ( )1
1 1

1 1 1 2

1 1, .
l n l n

n
i ij t t j j

i t i t

j j
Q i j j

n n n
λ λ

ν λ ν ν
+

+

= = = =

−
′ ′ ′ ′= Λ = = + ≠∑ ∑∑ ∑  

However,  

1 1
max 1 .

l

i ij jj l i
Q nν ν

≤ ≤ =

′ ′ ′− ≤∑  

Hence, when n is large, ν ′  is close to the stationary distribution of Q′ . In practice, 
we estimate the stationary distribution from Q′ , rather than ν ′ , for consistency. 

A3. Fitting of Sample Moments 
Interestingly, the first two sample moments are preserved in the Gaussian case. 
In other words, the two first fitted stationary moments are coherent with the 
sample mean and covariance matrix, defined as  

( )( )
1 1

1 1and .
n n

t t t
t t

x x S x x x x
n n

Τ

= =

= = − −∑ ∑  

Indeed, from the M-step definitions, the stationary mean is  

( ) ( )

( )
( )

1 1 1 1 1 1 1

1

1 1 1 ,
l l n n n l n

t t
i i l t t tn

i i l t t i t
l

l

x i
i x i x x

n n ni

λ
µ ν µ λ λ

λ= = = = = = =

=

 
   ′ ′ ′≡ = = = =   
 
 

∑ ∑ ∑ ∑ ∑∑ ∑
∑

 

Similarly,  

( )( )( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 1 1

1 1 1 1

1 1 1 1

1 1

1

1 1

1 1
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l l n
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i i t
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n
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x x
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ΤΤ

= = = =

Τ Τ
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Finally, from the previous result, the stationary covariance matrix is given by  

( ) ( )

( ) ( )

( )( )

1 1

1 1 1

1

1

1 .

l l

i i i i i
i i

n l l

t t i i i i i i
t i i
n

t t
t

A A

x x x x
n

x x x x S
n

ν ν µ µ µ µ

ν µ µ ν µ µ

Τ Τ

= =

Τ ΤΤ Τ

= = =

Τ

=

′′ ′ ′ ′ ′ ′ ′≡ + −

′′ ′ ′ ′ ′= − + −

= − − =

∑ ∑

∑ ∑ ∑

∑

 

Appendix B. Goodness-of-Fit Test for Regime-Switching Models 

In this Appendix, we state the goodness-of-fit test, which can be performed to 
assess the suitability of a regime-switching model as well as to select the optimal 
number of regimes, *l . The proposed test, based on the work of [39], [31] and 
[37], uses the Rosenblatt’s transform. For conciseness, we detail the implementation 
for two dimensional Gaussian regime-switching models, but the approach can 
be easily generalized.  

B1. Conditional Distribution Functions and Rosenblatt’s Transform 
Let { }1, ,i l∈   be fixed and iR  be a random vector with density if . For any 

{ }1, ,q d∈  , denote by ,1:i qf  the density of ( ) ( )( )1 , , q
i iR R , and by ,i qf  the 

density of ( )q
iR  given ( ) ( )( )1 1, , q

i iR R −
 . Further denote by ,i qF  the distribution 

function associated with density ,i qf . By convention, ,1if  denote the 
unconditional density of ( )1

iR . Then, the Rosenblatt’s transform  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )1 1 2 1
,1 ,2 ,, , , , , , d

i i i i dx T x F x F x x F x x
Τ

=    

is such that ( )i iT R  is uniformly distributed in [ ]0,1 d . 
For example, if if  is the density of a bivariate Gaussian distribution with 

mean iµ  and covariance matrix  
( ) ( ) ( )

( ) ( ) ( )

1 1 2

1 2 2
,i i i i

i

i i i i

v v v

v v v

ρ

ρ

 
 Σ =
 
 

 

,2if  is the density of a Gaussian distribution with mean ( ) ( ) ( )( )2 1 1
i i i iyµ β µ+ −  

and variance ( ) ( )2 21i iv ρ− , with ( ) ( )2 1
i i i iv vβ ρ= . 

However, for regime-switching random walk models, past returns must also 
be included in the conditioning information set. For any ( ) ( )1 , , dx x ∈  , the 
(d-dimensional) Rosenblatt’s transform tΨ  corresponding to the density (5) 
conditional on 1 1, , d

tx x − ∈   is given by  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 1 1 1
1 1 1 ,1

1
, , ,

l

t t t t t t i t
i

x x x x W i F x− −
=

Ψ = Ψ =∑  

and  
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )

1 1
1 1

1 1
1 ,1: 1 ,

1

1 1
1 ,1: 1

1

, , , , , , ,

, ,
.

, ,

q q q q
t t t t t t t

l
q q

t i q t t i q t
i

l
q

t i q t t
i

x x x x x x

W i f x x F x

W i f x x

−

−
− −

=

−
− −

=

Ψ = Ψ

=
∑

∑
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


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for { }2, ,q d∈  . 
Suppose 1, , nR R  is a size n sample of d-dimensional vectors drawn from a 

joint (continuous) distribution P . Also, let   be the parametric family of 
Gaussian regime-switching models with l  regimes. Formally, the hypothesis to 
be tested is  

{ }0 1: ; vs :P P Pθ θ∈ = ∈Θ ∉     

Under the null, it follows that  

( ) ( ) ( )1 1 1 2 2 1 2 1, , , , , , , , ,n n nU R U R R U R Rθ θ θ= Ψ = Ψ = Ψ   

are independent and uniformly distributed over [ ]0,1 d , where ( ) ( )1 , , , ,nθ θΨ ⋅ Ψ ⋅  
are the Rosenblatt’s transforms conditional on the set of parameters θ ∈Θ . 

Since θ  is unknown, it must be estimated by some nθ . Then, the pseudo- 
observations, ( ) ( )1 1 1 1

ˆ ˆ, , , , , ,n n n n nU R U R Rθ θ= Ψ = Ψ   are approximately 
uniformly distributed over [ ]0,1 d  and approximately independent. We next 
propose a test statistic based on these pseudo-observations. 

B2. Test Statistic 
The test statistic builds from the following empirical process:  

( ) ( ) ( )( )
( ) ( )( ) [ ]

1 1

1

1 ˆ ,

, , 0,1 .

dn
q q

n t
t q

dd

D u U u
n

u u u

= =

= ≤

≡ ∈

∑∏




 

To test 0  against 1 , we propose a Cramér-von Mises type statistic:  

( )

[ ] ( ) ( )

( ) ( )( ){ } ( )( )

1

2

0,1
1

2
1

1 1 11 1

ˆ ˆ, ,

d

1 1ˆ ˆ ˆ1 max , 1 .
2 3

d

n n n

d
q

n
q

d dn n n
q q q

t k td d
t k tq q

S B U U

n D u u u

nU U U
n

=

−
= = == =

≡

 
= − 

 

= − − − +

∏∫

∑∑ ∑∏ ∏



 

Since ˆ
iU  is almost uniformly distributed on [ ]0,1 d  under the null 

hypothesis, large values of nS  should lead to rejection of the null hypothesis. 
Unfortunately, the limiting distribution of the test statistic will depend on the 
unknown parameter set, θ . Since it is impossible to construct tables, we use a 
different methodology, namely parametric bootstrap, to compute P-values. The 
validity of the parametric bootstrap approach has been shown for a wide range 
of assumptions in [31]. These results were recently extended to dynamic models 
[37], including regime-switching random walks. 

B3. Parametric Bootstrap 
• For a given number of regimes, estimate parameters with nθ  computed 

from the EM algorithm applied to ( )1, , nR R .  
• Compute the test statistic,  

( )1
ˆ ˆ, , ,n n nS B U U=   
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from the estimated pseudo observations, ( )1
ˆ , , ,i i i nU R R θ= Ψ  , for { }1, ,i n∈  .  

• For some large integer N  (say 1000), repeat the following steps for every 
{ }1, ,k N∈  :  

- Generate a random sample { }1 , ,k k
nR R  from distribution 

n
Pθ . 

- Compute k
nθ  by applying the EM algorithm to the simulated sample, 

{ }1 , ,k k
nR R .  

- Let ( )1
ˆ , , ,k k k k

i i i nU R R θ= Ψ   for { }1, ,i n∈  , and finally compute  

( )1
ˆ ˆ, , .k k k

n n nS B U U=   
Then, an approximate P-value for the test based on the Cramér–von Mises 

statistic nS  is given by  

( )
1

1 .
N

k
n n

k
S S

N =

>∑   

Appendix C. Optimal Hedging 
C1. Optimal Hedging Algorithm 
For any d-dimensional vector x, let ( )D x  be the diagonal matrix with diagonal 
elements )((1) ,, dxx  , and further let ( )xexp  denote the vector with 
components 

( )
e

jx , 1, ,j d=  . We assume a constant discounting factor, e nr− , 
with nr  the daily continuously compounded discounting rate corresponding to 
the maturity, n, of C. Next, for every { }1, ,i l∈  , set  

( ) ( ){ } ( )

( ) ( ){ } ( ){ } ( )

d ,

d .

i

i

i y r f y y

B i y r y r f y y

κ
Τ

= − −

= − − − −

∫
∫

exp 1 1

exp 1 1 exp 1 1
 

According to [18], if tφ  denotes the number of shares of the d  risky assets 
in the portfolio at the beginning of period 1t − , and tV  is the value of the 
portfolio at period t , the choice of 0V  and 1, , nφ φ  minimizing the mean 
square hedging error for a given payoff C  at maturity n  is ( )0 0 0 0,V C S τ=  and  

( ) ( ) ( )1
1 1 1 1 1 1, ,t t t t t t t tS V D Sφ α τ ρ τ−
− − − − + −= −              (15) 

First, let ( ) ( ){ } ( ){ }1

1 1 1
l l

n ij ijj ji Q B j Q jρ κ
−

+ = =
= ∑ ∑ . Then, for all , ,1t n=   

and every { }1, ,i l∈  ,  

( ) ( ) ( ) ( ){ }1 1
1

1 ,
l

t ij t t
j

i Q j i jγ γ ρ κΤ+ +
=

= −∑
              

(16) 

( ) ( ) ( ) ( ) ( )
1

1 1
,

l l

t ij t ij t
j j

i Q j B j Q j jρ γ γ κ
−

= =

   
=    
   
∑ ∑

          
(17) 

 

( ) ( ) ( ) ( ) ( ){ }

( ) ( )( ){ } ( )

1 1
=1

1

e, ,

1 d ,

nr l

t ij t t
jt

t n j

C s i Q j C D s x j
i

i x r f x x

γ
γ

ρ

−

− +

Τ
+

=

× − − −

∑ ∫ exp

exp 1 1
        

(18) 

( ) ( ) ( ) ( ) ( )

( ) ( ){ } ( ){ } ( )

1
1

1 1
1 1

, e

, d .

n
l l

r
t ij t ij t

j j

t n j

s i D s Q j B j Q j

C D s x j x r f x x

α γ γ
−

− −
+ +

= =

 
=  

 
× − −

∑ ∑

∫ exp exp 1 1
      

(19) 
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(16) and (17) can be evaluated independently of the payoff, C, through offline 
computations. However, this is not the case for (18) and (19) for which integrals, 
or expectations, depending on C must be solved. This can be achieved with the 
Simulation/Interpolation method proposed in [17], which we briefly describe 
next. 

C2. Monte Carlo and Interpolation 
Expression (18) and (19) are of the form  

( ) ( ){ } ( ) ( )1
1

, , , , , d , 1, ,0,
l

t ij t t j
j

g s i Q g s x j w x i j f x x t nπ+
=

= = −∑ ∫   

where 0 , , nw w  and ng  are known functions, and ( ) ( ) ( ) ( )
, e

kk k x rs x sπ −= , 
1, ,k d=  . The methodology proposed in [47] for American options and in [17] 

for hedging is basically to use a Monte Carlo method to approximate ( ),tg s i  
for all points s in some finite grid G. Since the values of 1tg +  are approximated 
at discrete points only, an interpolation method is necessary to evaluate tg . 

To estimate ( ),tg s i  for every s G∈ , one can: 
• Fix { }1, ,i l∈  .  
• For 1, ,k N=  , repeat the following steps:  

- For every { }1, ,j l∈  , generate ~kj jX f .  
• For every s G∈ , set  

( )

( ){ } ( )1
1 1

ˆ ,
1 ˆ , , , , .

t

l N

ij t kj t kj
j k

g s i

Q g s X j w X i j
N

π+
= =

= ∑∑
 

where ( ){ }1ˆ ,t kjg s Xπ+  is the linearly interpolated value from the discretized 

1tg + . 

Appendix D. Call Results 
Table 8. Root-mean-squared pricing error and pricing bias for 21 trading days to 
expiration calls for all selected strikes from December 31th 1999 to January 31th 2012. 

Pricing results for calls 

 B & S OH-B & S OH-GM OH-HMM 

RMS pricing error 1.12 1.12 1.11 0.71 

Pricing bias −0.40 -0.40 −0.41 -0.20 

 
Table 9. Root-mean-squared hedging error for the different hedging strategies applied to 
21 trading days to expiration calls for all selected strikes from December 31th 1999 to 
January 31th 2012.   

Hedging results for calls 

 B & S OH-B & S OH-GM OH-HMM 

RMS hedging error 3.48 4.81 3.91 2.64 
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Table 10. Descriptive statistics and various performance metrics of the excess PNL, 

n n nV Cβ β− , for the two-regime hedging strategies applied to 21 trading days to 
expiration calls for all selected strikes from December 31th 1999 to January 31th 2012. The 
mean and volatility statistics are annualized. Since all returns are already discounted, the 
Sharpe and Omega ratio are computed by assuming a zero threshold. The value-at-risk is 
estimated as an empirical quantile.  

Descriptive statistics of short hedged call excess PNL 

 B & S OH-B & S OH-GM4 OH-HMM4 

Mean 1.37 0.76 0.76 1.97 

Volatility 3.47 3.76 3.79 2.58 

Skewness −2.18 −3.20 −3.20 −0.67 

Kurtosis 13.40 21.64 21.66 7.71 

Median 0.22 0.23 0.22 0.21 

Max drawdown 6.38 8.88 9.06 4.62 

VaR 99% 4.14 4.44 4.44 2.55 

Sharpe ratio 0.11 0.06 0.06 0.22 

Omega ratio 0.67 0.58 0.57 0.89 
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