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Abstract 

The Radon transform fits badly Single Photon Emission Tomography 
(SPECT). However, Thin Holes Collimator (THC) and Radon model are 
widely used. The CACAO project has been proposed to enhance the quality 
of SPECT images. CACAO is a short hand notation for computer aided col-
limation tomography. The main idea of this project is to use collimators 
with much larger holes to increase the sensitivity, and slightly longer holes 
to increase the spatial resolution. The acquisition sequence includes a trans-
lation. The Radon projection is replaced by a 2D sum. A dedicated recon-
struction algorithm has been developed. If the physical advantage of the 
project in terms of sensitivity and spatial resolution is generally admitted, a 
question remains unanswered: Would the ill-posedness of the inverse prob-
lem ruin the quality of the reconstructed images? In this article, a represen-
tation of the 2D direct problem matrix is derived. This allows us to compare 
the two inverse problems (CACAO versus THC). The condition number 
was used for this comparison. We studied the variation of these condition 
numbers with several parameters. For a proper set of parameters, the 
CACAO inverse problem may appear easier to solve and more accurately 
than the THC one. 
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1. Introduction 

Since its invention by H. A. Anger [1], the gamma camera has been used 
extensively in medical practice, mostly with a thin-parallel-hole-collimator 
(THC). It should be noted that, in gamma ray imaging, tomography has taken 
some time to be widely used in clinical practice. In contrast in X ray imaging, 
computer tomography (CT) was a breakthrough, due to the sudden and huge 
improvement in image quality that it brought. The mathematical model 
currently used in THC-SPECT is based on the Radon transform [2]. However, if 
this model is well suited to Xray imaging (CT), we think, it is not well adapted 
for THC-SPECT. In effect, to perfectly fit the Radon transform the collimator 
would need to have infinitely long and infinitely narrow holes. Such an “ideal” 
collimator would not allow any photons to reach the detector, and therefore no 
image could be reconstructed. Needless to say these are the photons which carry 
the information from the patient to the detector. In practice engineers have 
made a trade off. They have tried to deviate slightly from this “ideal” collimator 
but not too excessively. The results is a poor sensitivity: 10,000 photons lost for 
each 1 which reaches the detector and a poor spatial resolution of 8 to 10 mm 
(compared to the detector intrinsic resolution ≈ 3 mm). Furthermore, this poor 
spatial resolution worsens with the source to collimator distance (15 mm in the 
center of a patient). This compromise is the bottleneck of the conventional 
THC-SPECT. To visualize the problem Figure 1 shows the motion followed by a 
gamma camera in a standard THC-SPECT acquisition. Figure 2 shows an 
example of an acquisition made with this system for an object composed of 2 
point sources. 

Several authors have tried to increase the sensitivity of the gamma camera. 
Two-headed cameras or multi-pinholes [3] can increase this sensitivity with the 
number of heads or pinholes. Zhang et al. [4], in their interesting study posited 
the hypothesis that high resolution (very-thin-hole) collimators may not be 
optimal for SPECT. Furthermore, they demonstrated that the tomographic  
 

 
Figure 1. Scheme of a THC-SPECT acquisition motion in a 2D reduction plane. The 
object is composed of only 2 point sources (one in blue, one in red). The gamma camera 
makes a complete rotation around the object. The 2 point sources (blue and red) are 
common to the first 4 figures. 
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Figure 2. Representation of a conventional THC-SPECT acquisition data of an object 
composed of 2 point sources one in blue, one in red. The signal emitted by each source 
has been colored accordingly in blue and red to fit the colors of the point sources of 
Figure 1. These colors are purely fictitious, for the sake of pedagogy. In the real life 2 
sources of the same isotope emit photons of the same energy. Horizontal abcissa linked to 
the detector, vertical axis angle of acquisition φ. 
 
reconstruction could help in restoring part of the “lost” resolution due to the use 
of slightly larger holed collimators. Lodge [5] proposed a further increase in 
sensitivity through the use of very large holes in one dimension but still thin in 
the other. To acquire sufficient information, a double rotation motion is applied 
to the collimator-detector head during the acquisition. The reconstruction 
program needs to use 2 inversions of the radon transform. 

We stopped the introduction here temporarily to depict the plan of the article. 
A complete understanding of the problem cannot be attained without some 
knowledge of the alternative model. This is described in Chapter 2. This section 
presents the definition of the project (2.1) followed by the mathematical 
analytical model (2.2) and then the physical advantages of the project are briefly 
described (2.3). After this description, the problem discussed in this article can 
be described in Chapter 3. This chapter completes this long but necessary intro- 
duction. The method used for the comparison of the classical THC-Radon 
inverse problem versus the alternative CACAO project is detailed in Chapter 4. 
The results are described in Chapter 5. The results are followed by a discussion 6 
and a conclusion 7. The methods, Chapter 4 are divided as follow: Subchapter 
(4.1) gives a reminder of the condition number definition. Then we derive the 
impulse response function of the CACAO project (4.2) in a total and a partially 
attenuating collimator model (4.3). Section (4.4) explains the calculation of the 
transfert matrix. The THC model used is described in Section (4.5). The results 
begin with a study of the condition number in relation to the geometry of the 
collimator (5.1). This study is first presented with very small matrix dimensions 
in order to get a better grasp of the intervening parameters (5.2, 5.3). The 
following 2 chapters of the results (5.4 to 5.6) show a comparison of the 
condition number for the two problems. This comparison is studied with more 
realistic matrix sizes (up to 64 × 64). Finally noiseless and noisy image 
simulations are depicted (5.7, 5.8). 
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2. Purpose, the CACAO Project 

To improve the quality of SPECT images, and avoid the drawbacks of the Radon 
modelling, we proposed the CACAO project. Subchapters 2.1 to 2.3 give the 
necessary background to understand the problem described in Subchapters 2.1. 

2.1. Definition 

The CACAO project [6] was proposed to avoid the bottleneck caused by 
conventional thin-hole-collimators. For the sake of simplicity, the CACAO 
project is presented here in a 2D reduction. This project shares with THC-SPECT 
a gamma ray detector position and energy sensitive. It differs by having a 
collimator with larger and longer holes, an added linear motion in the 
acquisition sequence, and a mathematical model which takes full account of the 
geometry of the collimator. It must be understood that larger holes means 
dramatically larger holes. Figure 3 may help to provide an understanding of the 
CACAO project. The hole has been chosen as large as 2/3rds the length of the 
object. 

The exact response of the system will be calculated in the following section 
with the help of Figure 5. An initial examination of this Figure, may allow a 
better understanding of the subject. 

During the linear scan the set collimator + detector travels from the left to the 
right of Figure 5. This Figure is divided vertically into 3 rows and horizontally 
into 5 columns. The 5 sectors or columns (from 1 to 5) are limited by 4 special 
positions of the set that have been labeled with the letters a, b, c, d. The bottom 
part of the figure shows a point source (S) and the set collimator + detector in 
the 4 special position limits (detector is shaded blue, collimator is pinstriped). 
The upper part of the figure is a drawing representing the acquired data after the 
linear scan. And the text between the upper and the lower parts represents the 
algebra which will be explained later. Let us start with the left part of the figure,  
 

 
Figure 3. Scheme of a CACAO acquisition sequence in a 2D reduction plane, the object is 
composed of only 2 point sources (one in blue, one in red). The gamma camera with a 
very-large-hole collimator begins the acquisition with a linear motion from left to right, 
then the camera turns counterclockwise by 90 and goes from bottom to top. for a second 
linear scan. In this example the acquisition is finally composed of 4 linear scans. 

https://doi.org/10.4236/ami.2017.72002


C. Jeanguillaume et al. 
 

 

DOI: 10.4236/ami.2017.72002 17 Advances in Molecular Imaging 
 

when the detector is further left than position a, no photons (emitted by S) can 
reach the detector. At the right of position a and before position b the left part of 
the detector is illuminated. It is important to remember that the hole is a lot 
larger than the detector’s spatial resolution. In this example we have chosen a 
collimator hole with a width of 21 pixels. So if we represent the position of the 
set detector + collimator in the horizontal axis and the signal recorded by the 21 
pixels in the vertical axis, (left part up, right part down) the progressive 
illumination of the detector during the scan can be represented by a triangle 
(zone 2). Between positions b and c the detector is completely illuminated. The 
drawing of the set detector + collimator at position c has been represented 
behind position b and in a lighter shade of gray. In this area 3 the illumination 
can be represented by a rectangle. Using symetry we have a triangle in area 4. 
And nothing in area 5. Finally the data resembles a parallelogram. Due to 
geometrical considerations the greater the distance between the source and the 
collimator, the larger and the more slanted the parallelogram. Figure 4 shows a 
2D example of the 2 point sources CACAO acquisition from Figure 3. The 
response of each point source has been colored accordingly in blue and red. One 
can observe that when the source is near the entrance to the collimator the 
parallelogram is in an upright position. The center of the parallelogram evolves 
along sinusoids similar to Figure 2 but limited to only 4 different angles. 

2.2. Analytical Description 

The analytical description of the CACAO transform is described here in a 2D 
reduction. With the Radon transform the integration is made on a line (the 
projection line). With CACAO the integration is made over a trapezoidal 
surface. 
 

 
Figure 4. Representation of CACAO acquisition data of an object composed of 2 point 
sources. The signal of each source has been colored accordingly in blue and red to fit 
Figure 3. Horizontal abcissa: χ , vertical axis: product ν ϕ⋅ . For reasons which will 
become clear in the next chapter, each point source gives a signal shaped like 
parallelograms. The 4 subfigures, correspond to the 4 linear scans previously described in 
Figure 3. 
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Figure 5. Schema representing the CACAO response function to 
one source in a linear scan. 

 
Figure 6 depicts the variables used. 

 

 
Figure 6. Scheme of the notations used to describe the 
2D direct problem. 

 
A transverse section of the patient is represented by the density of radio-active 

sources ( ),x yρ . The collimator has been simplified to a unique hole (width D, 
depth P). This hole can rotate around the patient and can also perform a linear 
motion along the u axis. The coordinate system x, y is considered at rest while 
the rotating coordinates u, w follow the rotation of the collimator-detector, 
measured by φ . 

Photons entering the detector are localized by their position in the hole ν , 
the position of the hole in the u coordinate measured by χ , and the angle of 
rotation φ . Therefore, the description of the direct problem aims to define the 
acquisition function ( ), ,g χ ν φ , knowing the distribution of the radioactive 
sources ( ),x yρ . Elementary geometry considering only photons traveling in 
the air (no attenuation in the patient), leads to an integral equation for the direct 
problem. This equation gives ( ), ,g χ ν φ  in terms of ( ),x yρ  or equivalently 
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( ),u wφρ . It is obtained by considering the surface integration in a polygon 
bounded by the 2 extreme rays touching the 2 corners of the collimator entrance 
hole. This polygon is also limited by the largest camera orbit ( τ≤ ) and the 
entrance face of the collimator (nearest distance of observation P≥ ) [6]. 

( ) ( )2
2

2

cos, , cos sin , sin cos d d
w D
P
w DP
P

g u w u w u w
d

χ ν ντ
φ

χ ν ν

θ
χ ν φ ρ φ φ φ φ

  + − −  
  
  + − +  
  

= + − +∫ ∫ (1) 

where  
- ( ), ,g χ ν φ  represents the intensity of the detected photons with χ  measu- 

ring the position of the camera head, ν  the coordinate on the detector 
surface and φ  measures the inclination of the camera head in the ( ),x y  
coordinates. 

- ( ),u wφρ  is the distribution of the radioactive source in the rotating ( ),u w  
coordinates (relative to the detector, u is parallel to the detector, w is perpen- 
dicular). 

- θ  is the angle between the gamma ray direction and the perpendicular line 
to the surface of the detector (direction w). 

- d  is the source to detector distance. 
- 2cos dθ  represents the law of illumination. 
- ,P τ  are the limits of integration in the direction w, P is the depth of the 

collimator, and τ  represents the farthest limit of integration. (limited by 
the camera orbit radius). 

- D  is the width of the collimator hole. 

2.3. A Brief Reminder of the Physical Advantages of the CACAO  
Project 

These potential advantages have already been published [6] [7], and are com- 
mented here for the sake of clarity. 

2.3.1. Sensitivity 
The sensitivity of a thin parallel hole collimator can be estimated by the 
following formula (valid in 3D). The sensitivy   is the percentage of the 
number of photons emitted by the patient to the number of photons passing 
through the collimator. 

2 2D DK
P D t

   =    +   
                      (2) 

where D is the diameter of the collimator hole, P is the length of the collimator 
hole, K is a coefficient depending on the shape of the holes (rectangular, 
hexagonal…) and t is the thickness of the septa. This formula is valid for 
conventional thin-hole-collimators (THC), and it would stand for the CACAO 
project for a multiholes collimator. Compared to THC, the CACAO sensitivity  

could be superior, by a factor of 100 or more by increasing D  in D
P

. To give  

some order of magnitude, conventional THCs work with geometrical sensitivities  
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of 410−  for a 0.04D
P
≈ . In this article, for the CACAO system we have chosen 

1D
P
≈ . Such a value allows us to hope for an increase of the sensitivity of the  

system by 625 times in 3D. For the sake of simplicity, the description in this paper 
involves only one hole. But a real implementation of the system will have many 
holes arranged in a compact pattern. This multi-hole realization will justify the 
formula (2), and will reduce the extent of the linear scanning motion required 
during the acquisition, at the price of a larger detector. It is to be noted that the 
third term of the formula (2) represents the ratio of free surface of the detector to 
the hidden surface (commonly covered by lead). It will be discussed later. 

2.3.2. Spatial Resolution 
In the conventional THC case, increasing the hole diameter deteriorates the 
spatial resolution. In contrast, in the CACAO project this fact is no longer true. 
This point may be difficult to understand due to the commonly held belief that:  

large hole poor spatial resolution.=    

To better understand why this fact is only true for THC, let us draw a parallel 
with Computerized Tomography. In this system, the signal emanating from a 
line of voxels is recorded in an acquisition element. The volume corresponding 
to this line of voxels is thin but quite long (generally 20 cm at the level of the 
patient’s head and 70 cm at the belly). However a huge number of acquisitions 
combined with the reconstruction process allow to achieve a milimetre 
resolution in this long volume. 

The following figure examines the physical and geometrical factor governing 
the spatial resolution of both systems. 

The left part of Figure 7 represents a THC collimator with a detector of 
intrinsic spatial resolution dr . The spatial resolution deteriorates with  

THC THCL D P⋅  If THCD  is the diameter of the thin holes, THCP  is the length 
of these thin holes L the distance source-entrance face of the collimator, the 
following formula is largely accepted:  

( )
2THC

2THC
THC d

L Dr r
P

 ⋅
= + 

 
                 (3) 

This formula is based on a gaussian model, where the FWHM: Full width at 
Half Maximum of the convolution of 2 gaussians, is given by a mean square of 
the corresponding FWHM’s. 

The right part of Figure 7 represents a CACAO collimator with the same 
detector intrinsic spatial resolution dr  and the same source collimator distance 
L . By using a similar integration as classical tomography the dimensions of the 

volume studied by an element of the detector are not important here. The spatial 
resolution will be governed by the steepness of the slope deliminating this 
volume. Mathematically a derivative of this slope, will give a gaussian, from 
which a FWHM can be derived. Clearly this steepness will be in the order of:  
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Figure 7. Scheme showing how the physical dimensions of the collimators influence the 
spatial resolution in THC (left) and in CACAO (right). The dimensions have been 
exaggerated for the sake of pedagogy. The upper part of the figure describes the geometry 
of both collimators, each one is associated with a detector pixel, and the extreme rays 
emanating from this detector pixel. The lower part of the figure shows the signal recorded 
by these detector pixels (THC left, CACAO right) when a point source is scanned along 
the bottom line of the upper subfigure. See text for a detailed description. 
 

CACAO dr Lr
P
⋅

=                        (4) 

where P is the depth of the collimator hole (CACAO) and dr  and L are the 
same intrinsic spatial resolution and object to collimator distance as previously 
described. Two points need to be emphasized here: First D which greatly 
influences the sensivity in the THC case is no longer present. Hence the 
sensitivity-resolution trade-off is different to the THC case. Second by choosing 
a longer P, longer than L we can obtain a better spatial resolution than the 
intrinsic one. To make the things clearer let us fix some dimensions: In the 
comparison chapter, we will use 21P =  pixels. With a 3 mm pixel width 
(comparable to the resolution of the actual gamma camera) we will have  

63 mmP =  mm. This value is slightly greater than conventional system currently 
in use (order of magnitude: 35 mm or less). This figure gives potentially a spatial 
resolution of the acquisitions of 4.5 mm at 100 mm from the entrance of the 
collimator, if not degraded by other factors. It must be emphasized that P also 
governs the speed with which the spatial resolution worsens with the source to 
collimator distance. With the parameters given, the resolution of the THC case 
will degrade roughly 2 time as fast as the CACAO case. Also this effect will not 
be clearly apparent in this article (due to the very small size of the images 
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presented). Finally the step of the linear scanning motion could be another way 
to improve the spatial resolution in the CACAO case. According to Shannon 
criteria a step of half a pixel size is optimum. Our calculations and simulations 
use a step equal to dr . 

2.3.3. Quality of Collimation 
Another advantage of the CACAO project is the possibility to use larger septa 
(the walls between the holes of the collimator). The width of the septa has already 
appeared in the formula (2). Currently THCs use very thin septa (t = 0.015 mm 
for example) which let 5% of the photons to go through the septa and be 
detected. Due to the huge number of holes (40,000), a tiny increase of the 
thickness of the septa will dramatically reduce the sensitivity of conventional 
systems. On the contrary, for CACAO with only 10 holes or so, in the 600 mm 
field of view of the camera, a thickness of 2 mm or more will have a very limited 
effect in the sensitity. By the same token, it can greatly reduces the septal 
penetration. 

2.3.4. Pixelated Detectors 
Finally, it has been published that a conjoint use of the CACAO project with 
pixelated detectors presents a synergistic improvement [8]. These semiconductor 
detectors can greatly improve the spatial resolution of the currently used 
detector. For a NaI detector the intrinsic resolution ( dr ) is of the order of 3 mm. 
With a pixelated detector of 1mm the intrinsic resolution is divided by 3. The 
diameter of the hole of a thin-hole-collimator would have to be divided by at 
least the same value to benefit from this improvement. The sensitivity would be 
reduced by 3 3 9× =  due to the same token. With CACAO there is no need to 
reduce the surface of the hole. The improvement of the intrinsic spatial resolution 
will automatically improve the sharpness of the edge of the parallelogram, 
without impairing the sensitivity. 

3. The Problem 

The physical advantages of the CACAO project in term of increased sensitivity 
are clear and have possibly been accepted by many readers. With larger holes, 
one can collect more photons. It is also clear that the information is carried by 
these photons. However two arguments can be raised against this project. 

The first is the following: Do the photons collected with CACAO carry the 
same information quality as the photons collected with THC SPECT in terms of 
location? 

The second question is: Would the gain obtained by the increased number of 
collected photons be hampered by the difficulty of solving the inverse problem? 
In other words: which factor will be the greatest: 1) the noise amplification 
inherent in the mathematical calculation of the reconstructed image or 2) the 
improvement of the signal to noise ratio of the acquisition brought about by the 
increased number of photons? 
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Both these questions are addressed in this article. In fact a positive answer to 
these questions based on information theory argument has already been published 
[9]. In this article we studied the multiplex volume (the volume of the object 
sending photons to a single detector pixel), and we showed that: one can obtain 
better reconstructed image with a large multiplex volume with precise boundaries 
(CACAO), than with a small multiplex volume with blurred boundaries (THC). 

But we offer here another mathematical argument, based on linear algebra 
theory. This article studies the difficulty in solving the CACAO problem and 
compares it to the conventional THC-SPECT problem. To derive this comparison 
we first calculated the direct matrix of both the CACAO project and the 
THC-SPECT. The physical considerations for both systems were chosen so as to 
be equivalent. Then we calculated the condition number of these matrices. The 
condition number of a matrix measures the accuracy of the solution of the linear 
equation system and its noise sensitivity. Therefore, with equivalent noise in the 
data (second member of the equation), a better (lower) condition number of the 
transfer matrix will give a better solution, e.g. better images. 

4. Methods 
4.1. Condition Number, Inverse Problem 

The condition number [10], here noted ( )cond  has the following interest:  
Considering the linear system =AX B , with B  noisy:  
If ( )δ δ+ = +A X X B B  then:  

( )cond
δ δ

≤ ⋅
X B

A
X B

                   (5) 

For practical reasons the tomographic reconstruction is nowadays calculated 
by computer and the reconstructed image has a finite number of pixels:  

n∈ℜX , B  which represents the acquisition is also discrete m∈ℜB . For a 
rectangular matrix m by n (m rows and n columns), the estimation is done by a 
singular value decomposition that is: †=A U VΣ  Where U  and †V  are 
orthogonal matrices (respectively mxm and nxn) and Σ  is a nm×  matrix 
whose only non zero elements are along the diagonal and they are called singular 
values. In this article, the condition numbers are calculated by the ratio of the 
greatest singular value over the smallest non zero singular value. In this article, 
we use very overdetermined systems ( m n� ) which are not rank deficient, the 
number of non zero singular values is equal to the number of columns: n. Every 
comparison between the two systems (CACAO and THC) will be done with the 
same n. 

In SPECT the main source of noise is due to photon counting (shot noise) and 
is well modelled by a Poisson distribution. For a large number of collected  

photons, 
δB
B

 depends on the inverse square root of the number of collected  

photons. 
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Here is an illustration of the meaning of the condition number. Let us take 
two extreme cases. We will begin by the easiest problem to inverse. For example, 
a problem whose direct matrix is identity. In this case, whatever the matrix 
dimension, the condition number will be one. One is the smallest condition 
number possible. In this simple case, the inverse problem is obviously very easy 
because no calculations are needed. The data measured is the results, without 
any further calculations. 

To show an example fo a difficult (badly conditioned) problem: Imagine a 
matrix full of 1 with 1 ε+  on the diagonal. A small ε  leads to a very difficult 
problem. In fact, the smaller the ε  value, the bigger the condition number of 
the matrix is. Increasing the dimensions of the matrix will make the problem 
worse. This example is sufficient to obtain a bad condition number, but not 
necessary. It is even rather extreme because when 0ε =  the system become 
rank deficient. 

4.2. Impulse Response Function in the Total Attenuation Model  
(Perfect Collimator) 

To shorten the notation, all the distances are expressed as a ratio with the 
width of the pixel of the image, and of the detector (for the sake of 
simplicity we consider the image pixel having the same width of the 
detector pixel). All the dimensions are then given by a pure number 
without units. 

We will develop in this chapter an analytical calculation of the response 
function ( )0, ,I wχ ν  of the CACAO project. This calculation will be done for a 
point source placed at the coordinate 0w  and 0 0χ = , and for a given angle φ  
(Figure 5). In this chapter we consider the walls of the collimator, made in an 
ideal attenuating medium with an infinite power of attenuation. In the next 
chapter the correction needed to represent a real attenuating medium will be 
studied. 

The response function for other values of φ  will be calculated with a 
standard rotation of the coordinates. For a point source situated at other values 
than 0χ =  a simple translation will give the result. Figure 5 has been introduced 
in a preceding chapter. It shows the 5 zones studied (① to ⑤) separated by 4 
special positions (a, b, c, d). These positions of the set collimator + detector 
correspond to specific χ  values. 

First, the extreme lateral zones (① and ⑤ on Figure 5). They are defined for:  
0

2
DwD

P
χ < −  and 0

2
DwD

P
χ>− + . In these extreme zones, the detector will not  

receive any photon (full attenuation model), so 0I = . The septa of the 
collimator do not allow any rays (starting from the point S) to reach the 
detector. 

For the central zone (③ on Figure 5) 
2 2
D D

χ− < <  the whole detector will  

light up and the illumination will follow the Lambert’s cosine law and inverse  
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square law.: 2

cos
rI B

d
θ

= ⋅  where rB  represents a constant value which  

depends on the brightness of the source; d is the distance from the source to the 
detector, and θ  is the angle between the normal to the detector surface and the 
ray considered. The element of the detector considered is placed at the abcissa 
χ ν+ . The distance d is given by the Pythagore theorem: ( )22 2

0d wχ ν= + + .  

The angle θ  can be calculated by 0cos
w
d

θ =  Replacing these values in the  

illumination law:  

( )
( )( )

0 0
0 2 3 3

2 2 2
0

cos, , r r
w wI w B K B

d d
w

θ
χ ν

χ ν

= ⋅ = ⋅ = ⋅

+ +

        (6) 

This law of illumination is also valid for the two remaining domains (② and 
④ on Figure 5). 

However, in these domains, the detector is not completely lit up. Notice, for 
example, the 2nd domain (Figure 8) the detector is lit up under the abcissa maxν  
and similarly, in the area 4 it is lit up above minν  with:  
 

 
Figure 8. Schema depicting the geometry of the calculation of maxν . 

 

0 0

max min
0 0

2 2,

Dw DwP P

w P w P

χ χ
ν ν

⋅ + ⋅ −
= =

− −
              (7) 

The upper part of Figure 5 shows the parallelogram representing the support 
of the impulse function in the plane ( ),χ ν  for the 3 central zones. The limit of  

this parallelogram are: max 2
D

ν = +  and min 2
D

ν = −  for the upper and the lower  

edges and maxν  and minν  (7) for the lateral edges. 

4.3. Septal Penetration 

To extend the previous calculation in a more realistic model, we study the 
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shadow areas (for example above maxν ). This area can be illuminated by rays 
which have crossed the edge of the collimator in the entrance plane. Let us begin 
with the case maxν ν> . Figure 9 gives the notations used. 
 

 
Figure 9. Septal penetration notations. 

 
By considering the similar triangles made by the w axis and the ray’s path, 

elementary geometry leads to the length of the path in the attenuating medium: 
( Ad ). The Equation (6) can be extended in the shadow area by:  

( )
( )( )

( )( ) ( )
( )

2 2
max 0 00

0 3
2 02 2

0

, , e withAd
r A

w P wwI w B d
w

w

µ ν ν χ ν
χ ν

χ ν
χ ν

− − − + +
= ⋅ =

+
+ +

(8) 

where µ  represents the linear attenuation coefficient in the considered 
medium. A similar expression for Ad  can be calculated for minν ν< . Using the 
µ  corresponding for the attenuation of 140 KeV photon by the lead, we observed 
(Figure 10) a rapid decrease of the intensity of illumination in the dark area. In  
 

 
Figure 10. Example of the impulse response function with septal penetration calculation 
(red dashed line) and without (blue continuous line). y axis: intensity recorded, x axis: 
part of the ν  coordinate centred to maxν . 
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consequence, we did not further extend the model to hold the width of the septa. 
(see section 5.2). We did not pay attention to rays crossing the edge of the 
collimator close to the detector. With a single hole collimator this event will be 
irrelevant because the detector and the collimator can be fitted to the same size. 

4.4. Direct Matrix Calculation 

This section describes the calculation of the direct matrix, in a discrete-discrete 
form [11]. As we derived a continuous impulse function in the preceding 
chapter, we have to make it discrete. The emitting source is considered 
composed of point sources situated in the center of the pixels. This choice is 
guided by the possibility of high spatial resolution study. At the detector level, 
we integrate the response function over the width of the detector pixel (model 
well adapted to semiconductor detectors). This approach is used for both cases. 

A program (written in Python) calculates the impulse function ( )0, ,I wχ ν . 
This impulse function, is composed by the response function (6) in the lit up 
zones and the penetration septal function (8) in the shadow areas. For a given 
dimension of the image to be reconstructed, the coordinates of all the pixel 
centers situated in a disc (defined by its radius cR ) are calculated. The pixel size 
is fixed to 3 mm to match actual gamma detectors. Due to the rotation of the set 
detector + collimator, it is useless to reconstruct the pixels situated in the 
corners of the image. 

As a simple example, for a 4 × 4 image matrix only 12 pixels are considered 
(Figure 11). The matrix of the direct problem, will be composed by 12 columns. 
The columns are sorted as in Figure 11. Let M  be the matrix which gives the 
complete projections ( ), ,g χ ν φ  in digital form. Each row of this matrix will 
thus correspond to all the possible measurements acquired. These measurements 
are calculated by integrating the function g  in the width of the detector pixels. 
As g  depends from three variables, we needed to choose an order of these 
measurements along the column of the matrix. The order chosen is: , ,χ ν φ . 
That is the inner loop runs on χ  the middle loop runs on ν  and the outer 
loop on φ . In a digital form, the Equation (1) becomes: ρ=G M . 

 

 
Figure 11. Schema exhibiting for a 4 × 4 reconstruction im-
age, the numbering of the pixels in the disc of interest. 2cR = . 
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We further calculated the extent Lχ  of the χ  value where G  is different 
from zero. Figure 12 exhibits the geometry of the problem. 
 

 
Figure 12. Schema exhibiting the geometry of the calculation of the field 
width ( Lχ ). 

 
We introduce cR  the radius of the circular area (Figure 11) and gR  the 

distance between the entrance plane of the collimator and the center C of 
rotation (see Figure 12). g cR R≥  The range Lχ  of the possible χ  values is 
calculated (Figure 12):  

2 tan with arctan
cos

c
g

R DL R D
Pχ α α

α
   = + + =   

  
          (9) 

Due to the possible septal penetration, we use a Lχ  value slightly superior to 
the one of Equation (9). It is preferable to add rows of zero to the matrix than to 
work with incomplete data. We verified that rows full of zeros do not affect the 
condition number. Figure 13 gives a small extract of the matrix M  represented  
 

 

Figure 13. Small extract of a CACAO direct problem matrix ( )M  (represented in gray 

scale, white = 0, black = maximum value). Only 50 rows are represented horizontally, the 
number of columns is preserved (52). 
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in gray scale, with 5D = , 20P = , 3.9cR = , image size 8 8= × , 52n = ,  
4.8gR = , 6µ = , 8aN = . Where aN  represents the number of φ  values. The 

dimensions of the complete matrix is 350 52×  i.e. ( )aL D Nχ × × , multiplied 
by the number of pixels in the circular area. Only 50 rows of the matrix are 
depicted in Figure 13. 

4.5. The THC Direct Problem Matrix 

Several possibilities have been proposed to derive the THC-SPECT transform in 
a discrete form. To be comparable with the previous calculation, we needed a 
model which took into account the septal penetration and the variation of the 
collimator response with the source to collimator distance. A Gaussian model 
was chosen to fulfill a compromise between simplicity and accuracy. We used 
the experiment driven measurements of Youngho Seo et al. [12]. These authors 
proposed the following parameters for the Gaussian FWHM for a VPC-45 LEHR 
collimator and for a Tc99m source without scatter or attenuation correction in the 
sources:  

( )FWHM 2.3548 0.0733 0.0183w= × +             (10) 

where all the measurements are expressed in centimeters, and where w is the 
source to collimator distance. As described earlier, the calculation is limited to 
the points located in a circular area (Figure 11). To match the former description, 
we evaluate the coordinates of each pixel center in this circular area. The 
corresponding Gaussian functions are integrated through the boundaries of the 
detector pixels (fixed to 3 mm). We then obtain a matrix ( A ) giving the acqui- 
sition values ( rp ) (projections) for each point of the object ( ρ ). r ρ= ⋅p A . 

An example of matrix A  for the radon direct problem is given in Figure 14 
for the reconstruction of an 8 8×  image size, 52n =  with 3.9, 4.8c gR R= =  
and 120AN = . The dimensions of the complete matrix are 1320 52×  but only 
a limited number of rows is shown in gray scale in Figure 14. 
 

 

Figure 14. Small extract of a matrix ( )A  for the THC direct problem. (represented in 

gray scale, white = 0, black = maximum value). Only 50 rows are represented horizontally, 
the number of columns is preserved (52). 
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4.6. Simulation and Reconstruction by the Least Square Method 
4.6.1. SNR, SNRG, ppp 
To illustrate the effect of the condition number, we have simulated some 
acquisitions of a resolution pattern (64 × 64). The noise free acquisition was 
calculated for both systems (THC and CACAO) by a simple product with both 
direct matrices. A gaussian noise was drawn in both acquisitions. Let ppp  be 
the average number of simulated photons per non zero acquisition pixel. The 
standard deviation of the simulated gaussian noise is chosen to ppp . To study 
the response at various level of noise, ppp  has been varied from 102 to 1010 by 
step of 102. In each set the drawing is performed 10 times and averaged to 
produce the final measurement. For each sample the signal to noise ratio is 
calculated using the following formula:  

( )2 2
noise

SNR i i

de id
i i

p p

p pσ

     = =     −    

              (11) 

where  means the average calculated on the non zero pixels:  
max

1

max

i

i
i

i

p
p

i
==
∑

                        (12) 

and noiseσ  represents the deviation between the ideal and the degraded signal. 

ip  is the number of photon in the pixel i. 
de
ip  is the number of photon in the pixel i in the degraded image. 
id
ip  is the number of photon in the pixel i in the ideal image. 

This formulae can be applied either to the acquisition or the reconstructed 
image. For a reconstructed image obtained from a noise free simulated acquisition 
the degraded image comes from the roundoff errors, and the ideal image is the 
initial simulated object. 

For noise free acquisition-reconstruction this SNR is expressed in decibels 
(db) ppp  is then replaced by the mean number of photon per pixel in the 
original image, pppρ ) id

ip  is the value of the pixel in the original image 
pattern ( ρ ), and de

ip  is the reconstructed image with roundoff errors ( x̂ ):  

( )
db 10 2

SNR 10 log
ˆi i

ppp

x
ρ

ρ

 
 = ⋅  − 
 

               (13) 

For the noisy data, a snrg is calculated by the ratio of the SNR of the 
reconstructed image ( x̂ ) versus ρ  to the SNR of the noisy acquisition ( †G  or 

†
rP ) versus noise free ones. The snrg will be used in chapter 5.8  

( )
( )

ˆSNR
snrg

SNR
x
b

=                      (14) 

4.6.2. Resolution Pinstripe Pattern 
For the whole simulation we have chosen a resolution pinstripe pattern define as 
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follow: If iρ  is the intensity of the column i of the image,  

i pppρρ =  if i is even  
0iρ =  otherwise. 

The square image formerly described is then chopped according to cR  and 
Figure 11. Then the rows are concatenated in a vector ρ . 

4.6.3. Acquisition Simulation 
The pinstripe pattern is then simply multiplied by both direct matrix to give the 
noise free acquisitions. 

, rρ ρ= =G M P A                   (15) 

For noisy simulation, a Gaussian noise is added to each non-zero pixel of the 
acquisition. However to vary the SNR, the data are scaled by a simple multi- 
plication. The numbers of non zero pixels ( maxi ) were slightly different for both 
acquisition data (8960 for the classical acquisition and 19,232 for the CACAO 
acquisition). See chapter 5.8. The Gaussian drawing has a standard deviation of 

ppp  (pseudo-Poisson). 

† †
, ,

,

19232 8960noise, noisei i r i r i
i r i

ppp pppG G P P
G P

  ⋅ ⋅
= + = +        ∑ ∑

   (16) 

But the SNR’s were nearly the same at acquisition level (depending only on 
the draw). To illustrate that point, the following Figure 15 and Figure 16 show 
both acquisitions for a pseudo-Poisson expectancy of 10 photons per pixels. 

10ppp = . 
For each simulated acquisition sample we reconstructed an image by the least 

square method. This method is easily done by the calculation of a pseudoInverse 
P+  The following formulas are used to calculated both least square estimate x̂ :  
 

 
Figure 15. Classical THC acquisition †

rP  of the resolution pinstripe pattern after 
random drawing of a noise for 10ppp =  Horizontally abcissa linked to the detector, 
vertically angle of acquisition φ . Gray scale: black = minimum value, white = maximum 
value. The medium gray surrounding the picture represents zero, confirming the 
presence of negative values due to the weak signal to noise ratio and the choice of a 
Gaussian noise. All the others parameters are identical to chapter 5.8. 
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Figure 16. CACAO acquisition †G  of the resolution pinstripe pattern after random 
drawing of a noise for 10ppp =  Horizontal abcissa χ , vertical axis product ν ϕ⋅  
Gray scale: black = minimum value, white = maximum value. The medium gray 
surrounding the picture represents zero, confirming the presence of negative values due 
to the weak signal-to-noise ratio and the choice of a Gaussian noise. All the others 
parameters are identical to chapter 5.8. 

 

( ) 1T T
THCˆ rx A A A P

−
=                   (17) 

( ) 1T T
CACAOx̂ M M M G

−
=                 (18) 

In the last equation, G  and rP  represent the acquisitions without noise, 
†G  and †

rP  with noise. 

5. Results 

Three parts can be differentiated in the results: in the first we study the 
condition number with the parameters of the model, with calculation on small 
matrix size, subchapters: 5.1 to 5.3. 

In the second part we make the condition number comparison: THC versus 
CACAO, with more realistic matrix sizes (up to 64 × 64), subchapters: 5.4 to 5.6. 

The final part is devoted to the simulations and reconstructions of noise free 
and noisy images. 5.7 to 5.8. 

5.1. Variation of the CACAO Condition Number with the  
Collimator Dimensions 

Figure 17 shows an example of the variations of the condition number of the 
CACAO direct problem with the value of D ranging from 2 to 55 for 2 different 
P values ( )21, 30P P= = . The condition number increases for larger values of 
D . But this variation appears very low and follows a steep fall for small D 
values. ( 4AN = , 1.9cR = , image size 4 4= × , 12n = , 5gR = ). 

In the following chapters, we will study the variations of the condition 
numbers for both systems (THC and CACAO) with the common parameters of 
the problem. We will first focus on the parameters that are important to 
understand the validity of this paper. 
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Figure 17. CACAO condition number versus D for two P values: 21 (blue 
curve) and 30 pixels (red curve). 

5.2. Variation of the Condition Numbers with the Cut-Off Value 

As we have used a Gaussian model for the THC system and an exponential 
attenuation for the CACAO system, these two functions extend to infinity. These 
functions were integrated numerically (Python with Scipy and Numpy package). 
Obviously, very small values (under 810−  for example) are meaningless. We 
thus introduce a cut-off value to chop the results. This decreases the number of 
non zero elements in our matrices. In addition, this choice speeds up the 
calculation of the matrix and the condition number. As the condition number 
involves the smallest non zero singular value, it was compulsory to study the 
variation of the condition number with the cut-off value. It is to be noted that 
the cut-off is applied to the impulse response function and that no cut-off was 
applied to the singular values of the matrix. 

Table 1 shows the condition numbers calculated for the two systems for 
various cutoff. The condition number levels off in a wide range of cut-offs. For 
higher values of cut-offs the condition number began to decrease ( 410− ) as 
depicted in the table for the CACAO row. The condition number of the THC 
began to decrease for bigger cut-off values (102). In the following calculations the 
cut-off was fixed to 610−  well inside the plateau range for both case (THC and 
CACAO). 

 
Table 1. Variation of the condition number with the cut-off value. 

Cutoff 810−  710−  610−  510−  410−  

CACAO 213 213 213 213 210 

THC-SPECT 224 224 224 224 224 

5.3. Variation of the Condition Numbers with the Number of  
Acquisition Angles 

The variations of the condition numbers of the system matrices, versus the 
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number of acquisition angles, exhibit a rather similar behaviour for both 
systems. As the number of angles increases, the condition number decreases 
until it reaches a plateau (Figure 18). 
 

 
Figure 18. Comparison of the condition number with the number of 
acquisition angles. THC: Blue curve, CACAO: Red curve. 

 
Values for this figure: Pixel width = 3 mm, THC: VPC-45 LEHR, CACAO:  

7D = , 9P = , 1.9cR = , image size 4 4= × , 12n = , 5gR = , 6µ = . Number 
of acquisition angles ( AN ), ranging from 8 to 36 by step 2. There are obvious 
differences between the two systems. For THC a small number of angles is 
meaningless. Even for a very small number of unknowns, a minimal number of 
acquisition angles is compulsory in order to have more data than unknowns. 
With the CACAO project, due to the addition of a linear scanning motion, one 
angle of acquisition may allow an image reconstruction (Figure 3 and Figure 5). 
The examination of Figure 18 shows us that the plateau is more rapidly reached 
in the CACAO approach than with the THC approach. This is, of course, 
counterbalanced by the scanning linear motion required by the CACAO system. 
For this choice of parameters, a plateau of value 25.1 is reached with the CACAO 
approach, while the THC system levels off at 62.8. In the following, the 
comparison was performed with a large number of acquisition angles, to stay in 
the plateau. 

5.4. Variation of the Condition Numbers with the Orbital Radius 

The orbital radius Rg determines the source to detector distance. For both 
acquisitions (THC or CACAO) increasing Rg increases the condition number as 
shown in Figure 19. 

Pixel width = 3 mm, 3.9cR = , image size 8 8= × , 52n = , 36µ = , Orbital 
radius ( gR ), ranging from 15 to 65 pixels. THC: VPC-45 LEHR, 128AN = . 
CACAO: 20D = , 21P = , 4AN = . 
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Figure 19. Condition number versus orbital radius gR . THC: Blue curve, 

CACAO: Red curve. 

5.5. Variation of the Condition Numbers with the Size of the  
Reconstructed Image 

The size of the reconstructed image matrix is obviously a very important factor. 
The caculations performed so far have been made with a dramatically small 
image size, for the sake of simplicity. For real applications, however, enormous 
matrix size becomes compulsory. Figure 20 exhibits the influence of the image 
size, while ranging from 8 8×  to 64 64× . While the image radius follows the  

image matrix size with the formula: image size 0.1
2cR = − . 

 

 
Figure 20. Condition number versus size of the image. THC: Blue curve, 
CACAO: Red curve. 

 
Rg follows the formula: 9g cR R= + . 
The number of acquisition angles for the THC configuration was chosen high: 

128AN = . Calculations have been made to check that this number was high 
enough (variations of the result less than 10%  between the last 2 steps while 
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increasing the number of angles). 
Pixel width = 3 mm, 6µ = , image size 8 8= ×  to 64 64× , 52n =  to 3196, 

3.9cR =  to 31.9, 9g cR R= +  THC: VPC-45 LEHR, 128AN =  CACAO: 
20D = , 21P = , 8AN = . 

With a 64 × 64 matrix size the number of columns of the matrix was 3196 
(number of pixels in the circular cache). 

Table 2 gives the values corresponding to Figure 20. 
 

Table 2. Condition number versus image size. 

Image Size 8 12 16 24 32 48 64 

CACAO 86.1 129.8 182.9 420.7 517.9 756 1224.8 

THC-SPECT 197.8 210.4 417.8 815.5 1699.4 10,050.2 51,255.6 

5.6. Study of the Spectrum of the Singular Value Decomposition 

Figure 21 was calculated from the complete spectrum of the singular values for 
the classical THC approach and the CACAO project. This figure does not 
represent the singular values themselves but rather the ratio of the greatest  

singular value over the ith. 0

i

σ
σ

 
 
 

. As the range of variation of these ratios is  

very large we have used a logarithmic scale. The singular values are sorted in 
descending order. Therefore the greatest is the first ( 0σ ) and both curves begin 
with a value of 1 (zero on the logarithmic scale). The condition number of the 
whole matrix is given by the right hand side extremity of the curves. Both curves 
have the same number of points (3196). The THC curve is lower or equal to the 
CACAO curve for the first 2252 values, then climbs to its highest value. 
 

 
Figure 21. Log of the ratio of the largest singular value to the ith singular value for the 
transfer matices of an image 64 × 64 41gR = , 64AN =  and others parameters identical 

to the former Figure 21 THC: Blue curve, CACAO: Red curve. 
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Figure 22 shows the position of the cross point which is where the two curves 
on Figure 21 meet. Figure 22 shows the cross point position variation 
depending image size. The position is measured as a percentage of the matrix 
rank (number of singular values). The curve begins by a small climb, due to the 
limited number of singular values. For example the point of the curve 12n = , 
only the last singular value ratio for THC is below the CACAO one, and 
therefore the percentage is limited by ( )100 11 12 91.6%= . Then, the curve 
reaches its maximum level and begins to show a clear decreasing trend. 

 

 
Figure 22. Cross point position measured in percentage of SVD for image 4 × 4, 8 × 
8, 16 × 16, 32 × 32 and 64 × 64 and others parameters identical to the former figure. 

5.7. Reconstruction Results from Noise Free Acquisitions 

In the following two sections the parameters of the collimation and of the acqui- 
sition will remain fixed. These parameters are given in the following Table 3. 
 
Table 3. Parameters chosen for the two systems in the last two chapters. 

 THC CACAO 

Name VPC-45 LEHR no name 

Reference [12] This article 

Response function Gaussian analytical 

Pixel size 3 mm 3 mm 

Bore Hole Not mentioned 20 × 3 = 60 mm 

Bore Depth Not mentioned 21 × 3 = 61 mm 

µ  Not mentioned 6 (Lead) 

Number acquisition angles 128 8 

Tomographic Radius ( gR ) 41 × 3 = 123 mm 41 × 3 = 123 mm 

Image Size 64 × 64 p = 192 × 192 mm 64 × 64 p = 192 × 192 mm 

Direct Matrix Size 16,384 × 3196 25,080 × 3196 

Condition Number 51,255 1225 

SNR pinstripe rec. No noise 22.5 86.8 
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The same digital pinstripe resolution pattern (64 × 64) (24) is first multiplied 
by both direct matrices (THC and CACAO), to give the 2 (noise free) acquisitions. 
The two estimates are calculated by a simple matrix multiplication with both 
pseudo Inverses (18). Due to the relatively small size of the image and the 
absence of noise, both results are excellent. These two estimates are not depicted 
here, because the human eye cannot detect difference from the original image 
(24). However, the computer can: both SNR in decibels are given in the last row 
of the previous Table 3. 

5.8. Noisy Simulations Results 

For the two chosen systems, (whose parameters are given in Table 3) and for 5 
choices of signal to noise ratio at the acquisition level, we simulated noisy 
acquisitions then we reconstructed the corresponding least square estimates. By 
the same token, for both systems, the acquisition is different and simulated 
noises are different. To average these necessary differences, 10 simulations of 
noise were drawn at each noise level. for both systems. Two very noisy 
acquisitions are depicted in Figure 15 and Figure 16. For each of these 100 
simulations (5 × 10 × 2) we calculated the gain in SNR by formula 14. The 
different values of snrg are depicted in Figure 23. 
 

 
Figure 23. Signal to noise gain (snrg) for the 2 problems (THC and CACAO). The gain is 
obtained by the ratio of the signal to noise of the reconstructed image divided by the 
signal to noise of the acquisition. In abcissa the random realization samples. Successively 
with an increasing snr of the acquisition from 102 to 1010 photon per non zero acquisition 
pixel (ppp). 
 

Even though some fluctuations are clearly visible in the different simulations, 
there is a clear gap between the two systems. The following Table 4 gives the  
 
Table 4. Average signal to noise ratio gain for THC and CACAO. 

 snrg 1/snrg condition Number 

THC 0.000384 2604 51,255 

CACAO 0.0061 164 1225 

Ratio THC
CACAO

  15.87 41.84 

https://doi.org/10.4236/ami.2017.72002


C. Jeanguillaume et al. 
 

 

DOI: 10.4236/ami.2017.72002 39 Advances in Molecular Imaging 
 

mean of all the snrg for both systems. 
Figure 24 depicts 10 reconstructed images next to the original pinstripe 

pattern. 
 

 
Figure 24. Reconstructed image of a resolution pinstripe pattern by the pseudoinverse method, for the 2 matrices (THC and 
CACAO) for various number of photons per non zero acquisition pixel (ppp). 

6. Discussion 
6.1. Condition Number in the Literature 

The value of the condition is well described in the inverse problem literature and 
linear algebra textbooks [10] [13]. The SPECT and PET literature has also 
recognized and used this tool [14]-[20]. Our results, for example, agree with the 
work of [19] which shows that a sufficient number of acquisitions angles in THC 
are necessary to reduce the condition number. These authors showed that the 
system even becomes rank deficient if the number of projection angles ( AN ) is 
too low. As depicted in this article the result of the least square reconstruction is 
well predicted by the condition number of the direct matrix. In addition to this, 
for a standard regularization procedure by Tikhonov and Phillips [21] [22] the 
condition number is also the parameter to consider, as claimed by Hansen [23]. 
In this last article the author emphasized the similarities between the Tikhonov 
method and the truncated singular value decomposition (TSVD) which can also 
be used to regularize the inverse problem. Here again the condition number is of 
paramount importance. The TSVD approach was applied by Jorgensen and 
Zeng in [20] to multipinhole SPECT. The results, depicted in Figure 5 of their 
article, comparing the TSVD version to the global condition number do not 
show dramatic differences between both approaches. In addition, in the second 
part of this article these authors used only the condition number and advocated 
the fact that it is easier to calculate. We can thus conclude that even if the 
condition number is not a perfect and universal way to evaluate the difficulty of 
an inverse problem, it does exist, it is simple, it is general and it is particularly 
accurate. 
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6.2. Why Have Not We Used another Performance Index? 

The medical imaging literature is full of papers intended to measure the 
performance or the quality of a tomographic image. Some papers even try to 
evaluate the usefulness of the images related to a specific task [24]. Some of these 
performance indices apply to the reconstructed images: we can cite the Standard 
Deviation [25] or the Contrast Recovery Coefficient (CRC) [26] or the SNR gain 
[27]. But all these performance measurements do not apply to the same thing. 
The condition number applies solely to the geometry of the system, meaning, the 
system direct matrix. With the exception of the last 2 subchapters we did not 
mention images. The condition number applies whatever the image studied, and 
in addition applies whatever the reconstruction algorithm used. It is simply an 
intrinsic property of the transfer matrix. In the last two subchapters we needed 
to choose an image (pinstripe resolution pattern), a noise distribution and a 
reconstruction algorithm. In this chapter we use the snrg in a similar manner to 
[27]. With more hypothesis (the type of lesion to detect in the observer model) 
we can go further with the specialization, but with a narrower result. This was 
not the purpose of this article which tries to compare 2 geometries with a 
minimum of extra hypothesis. 

6.3. So, What Does the Results Mean? 

In chapter 3 we introduced 2 questions. The first was: Do the photons collected 
with CACAO carry the same information quality as the photons collected with 
THC SPECT in terms of location? 

If the location were imprecise, the direct matrix would be rank deficient. The 
fact that the rank of the matrix equals the number of unknowns means that, in 
the absence of noise, the reconstructed image would be perfect. In linear algebra 
we say: the matrix has full rank. This result is the consequence of the added 
linear scan in the acquisition sequence. This ensures an overdetermined linear 
system. Hence the system is accurate in terms of location (comparable to the 
THC-SPECT). 

We introduced the condition number to evaluate the difficulty of solving an 
inverse problem, which helped us respond to the second question. The graphs 
speak for themselves: when the dimension of the system increases and when 
rotation radius increases, the CACAO project presents a smaller condition 
number than the THC-SPECT. 

6.4. Can the Geometry Explain These Results? 

The limited performance of the THC SPECT is probably due to the gaussian 
shape of the response. In fact it is quite difficult to distinguish the difference 
between the sum of 2 Gaussians, shoulder to shoulder, from a sole gaussian 
slightly taller. And when we have to separate a large number of Gaussians of 
various widths the problem becomes worse. Moreover, these Gaussian responses 
differ only slightly with the source to collimator distance. On the contrary, the 
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added scanning motion combined with the increased depth of the collimator 
hole produce responses which are easier to distinguish. This difference leads to 
the difference in condition number. 

People familiar with the difficulty of solving deconvolution problems may 
find our results strange. Large kernel deconvolutions have a reputation for 
ill-posedness and large condition number. Several years ago we published a 
reconstruction algorithm for the CACAO problem with a deconvolution step 
[6]. A transformed matrix of the system led to a deconvolution problem. 
Condition number calculations of this transformed matrix led to us abandoning 
this method. Effectively, the use of the complete and direct response matrix 
(without a deconvolution step) leads to a better conditioned problem. 

The difficulty of the conventional tomographic inverse problem is often 
underestimated. It is this difficulty which allows us to believe that the approach 
of the rotating slat [5] may be not optimal. Although this rotating slat can 
dramatically increase the acceptance angle of the collimator hole (at least in one 
direction), it needs a double application of the inverse radon transform. 
Considering the bad conditioning of the inversion of only 1 stage radon 
transform, we have some doubt as to the quality of the reconstruction. Another 
quite different approach is the one proposed by Zhang [4]. In this work, the 
increase of the acceptance angle (referred as cone angle in this article) is very 
weak: 6˚ for the largest collimator hole considered. In addition, these authors 
reported that “The blurring of this last collimator hole is too severe to be 
corrected…”. This may be related to the fact that this article uses a gaussian 
shaped response, which is hard to deconvolute. 

6.5. What Are the Consequences for the Noise Amplification? 

Not only, is the condition number related to the geometry of the tomographic 
model, it is a property of the response matrix of the model. The direct 
consequence is that for the same δB B , then δ X X  for CACAO will 
be lower than δ X X  for THC. This is assuming a proper choice of the 
system parameters for CACAO was made, and for the same image dimension, 
with the same source to collimator distance. 

6.6. What Can Be Said about the Simulated Images? 

To illustrate this noise amplification, we conducted some simulations. These 
simulations raise a number of questions. First the choice of the pseudo inverse 
reconstruction method (unpenalized least square) may be criticized because, as 
already mentioned, it is not the best method for solving difficult inverse 
problems. It is known to amplify the noise. It was chosen here for several 
reasons. First it is a well known method, and intensively theoretically studied. 
Second it is quick, simple and has great efficacy in exact or near exact data. 
Everyone can judge it by looking at the simulations with a high number of ppp. 
Finally every regularized method which would have given better results at low 
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SNR would have needed the choice of a frequency cut-off, a regularization 
parameter or a stopping criteria for an iterative method. The OSEM (which is 
the accepted method in emission tomography) not only needs the choice of the 
number of iterations and the number of subsets, but it has been developed for 
the THC-SPECT, meaning for a large number of acquisition angles. Such a big 
number does not hold for CACAO and a comparison based on this algorithm 
may have been unfair to CACAO. For all these reasons, reinforced by the fact 
that the condition number has been calculated in the L2 Norm, we chose a least 
square estimator. A Gaussian noise is then a choice consistent with the least 
square reconstruction. We are well aware that in emission tomography the noise 
is better modelled by a Poisson statistic. We chose a ppp  value of the 
standard deviation of the Gaussian noise, because it is known that the Poisson 
statistic tends towards the Gaussian one as soon as the number of photons per 
pixel (ppp) exceeds 104. With these choices the result presented in Figure 24 
may at first glance appear a little gloomy. Quite the opposite, it must be 
emphasized that the pinstripe image test with 3 mm width for the line is 
extremely difficult to observe with a standard gamma camera equipped with a 
thin hole collimator. So the result can only be attained with a very high 
signal-to-noise ratio for the acquisition and a well adapted model of the point 
spread function of the collimator. Table 4 perfectly sums up the concept of 
condition number. From Equation (5) and Equation (14) we can see the 
resemblance:  

( )1 .
snrg

cond
δ
δ

= ≤
X X

A
B B

               (19) 

Figure 23 and Figure 24 show the power of the condition number, predicting 
a lower snrg for the THC SPECT than for the CACAO project for a large range 
of SNR at the acquisition level. Table 4 gives a ratio for the 2 snrg of 15.87 
compared to 41.84 for the ratio of the condition numbers. 

6.7. What Can We Say about Highly Regularized Reconstruction? 

Our simple model allows us to go further in the comparison. We can effectively 
predict the performance of a regularized method. This performance is depicted 
in Figure 21. The condition number related to a TSVD truncated at the ith  

element is given by the ratio: 0

i

σ
σ

. The explanation of the figure is: if one gets  

rid of half the singular values, the THC is preferable. On the contrary, if one 
wants to collect the maximum amount of detail and precision in the images, and 
tries to work with more singular values, then the CACAO approach would be 
preferable. Keeping a large amount of singular values may seem foolish right 
now, due to the huge uncertainties caused by the use of the thin-hole-collimator. 
In fact, the CACAO approach implies more collected photons, meaning a better 
signal to noise ratio at the acquisition level. Moreover, as shown in Figure 22 the 
point where the curves cross tends to shifts to the left when the size of the image 
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increases. In other words for big data (more realistic) the THC will perform 
better than CACAO, but only with dramatically strong regularization (e.g. very 
low spatial resolution). 

6.8. And What about Real Systems? 

This study was done analytically, with an approximated and simple hypothesis. 
The attenuation or the scattering of the gamma rays in the body of the patient, 
or the scattering in the collimator, were not taken into account in this simplified 
study. We are aware that nowadays advanced methods of reconstruction in 
SPECT use much more complex models [28] [29]. It should be remembered, 
however, that the most impairing phenomenon in SPECT is the photon 
counting noise (sensitivity of a conventional collimator 410− , which means that 
for each detected photon 10,000 are lost!) 

El Fakhri in [30] has shown that the second most important factor influencing 
the contrast and the spatial resolution of the images is the collimator response. It 
is to be noted that our work proposes improvements for both of these factors. 

The feeling that scattering would impair the CACAO reconstruction more 
than the THC reconstruction was opposed to our previous works. Obviously, a 
bad condition number could magnify the noise more than the signal. Smith [31] 
has shown that attenuation and scattering degrade the condition number of the 
SPECT problem. But there is no reason why this phenomena would degrade the 
CACAO problem more than that of the THC. Faced with the improved 
condition number at the start, the opposite seems more likely. In fact, regarding 
our condition number results, all the noise sources (in the patient) impairing 
conventional THC are expected to be reduced in the CACAO project. 

Another point that may be controversial in this study is the lack of a complete 
3D calculation. We did not try it due to the time consuming burden of the 
calculation, added to the complexity of the programming. In addition, this 
simple 2D calculation allows for a better understanding of the involved 
phenomenon combined with a simpler calculation, and so is simpler to verify. It 
also allows a simple analysis of the whole spectrum of singular values. Even 
without a true 3D study, this article presents an interesting message because we 
can already project an application of this article in a real 2D experiment with a 
slit hole. 

6.9. The Problem of DOI and High Count Rate 

There are 2 physical phenomena which can be predicted as being worse for 
CACAO than THC. One is the depth of interaction in the detector. Obviously 
with an angle of 45˚ for the extreme rays 1D P ≈  the intrinsic spatial 
resolution of the detector may be degraded. At 140 KeV, 5 mm of CdTe absorb 
85% of the incoming photons. If we reduce the thickness by 3 mm we can keep a 
3mm spatial resolution at the price of a slight reduction in sensitivity (from 85% 
to 70%). Another possibility is a direct measure of the DOI which is a 
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fashionable subject with semiconductor detectors [32] [33] [34]. 
The other physical limitation is the high count rate which comes directly from 

the dramatic increase in sensitivity provided by the new collimator. Obviously a 
lot of gamma ray detectors present a decrease in their performance with 
increasing count rates. Here again the semiconductor pixellated detector is less 
subject to deterioration than the large NaI scintillator which could only count 
one gamma at a time. 

6.10. Can We Predict the Future? 

This article is purely theoretical and it will not replace a fine Monte Carlo 
simulation or a real experiment. It is of course difficult to predict the future. 
Even the result of an experiment does not guarantee the future. We should 
remember that the first electronic microscope did not provide a better spatial 
resolution than the existing optical microscope. Today the spatial resolution of 
the electronic microscope is 104 times smaller. It is also worth mentioning that 
the neutron, the positron, the rounded shape of the earth and some stars had 
been theoretically predicted before they were discovered and universally 
accepted. So we can let the reader believe what they want and we just offer the 
following Table 5 to sum-up the pros and cons. 
 
Table 5. Pro and cons of CACAO versus THC. 

 THC CACAO 

Compton scattering and attenuation in the patient same same 

Number of collected photons low ×1000 

Septal penetration in the collimator 5% weaker 

Noise Amplification in the reconstruction worse weak 

Noise amplification ↗  with source to collimator distance worse weak 

Noise amplification ↗  with matrix size worse weak 

Benefiting from a intrinsic spatial resolution improvement ↘  sensitivity ++ 

Depth of interaction in the detector weak worse 

Degradation of detector performances due to high count rate weak worse 

Reconstruction highly regularized at low resolution weak worse 

7. Conclusion 

The mathematical inverse problem of SPECT with THC is hard to solve. The 
CACAO project may not only improve the signal to noise ratio at acquisition 
level, but it may also facilitate the calculation of a good reconstructed image and 
the use of a more complete set of data. To put it differently, this article seems to 
demonstrate that the photons recorded by the CACAO project carry better 
localisation information than that carried by the THC photons. For a low 
resolution image, with a small image size and a small gyration radius, the THC 
system is the best method. 
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