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Abstract 
To develop an efficient numerical scheme for two-dimensional convection 
diffusion equation using Crank-Nicholson and ADI, time-dependent nonli-
near system is discussed. These schemes are of second order accurate in apace 
and time solved at each time level. The procedure was combined with Iterative 
methods to solve non-linear systems. Efficiency and accuracy are studied in 
term of 2L , L∞  norms confirmed by numerical results by choosing two test 
examples. Numerical results show that proposed alternating direction implicit 
scheme was very efficient and reliable for solving two dimensional nonlinear 
convection diffusion equation. The proposed methods can be implemented 
for solving non-linear problems arising in engineering and physics.  
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1. Introduction 

In this paper we have extended our previous approach associated to two 
dimension Convection-diffusion equation. The great Physicist Johannes Martinus 
Burgers discovered Burgers equation, which is non-linear parabolic partial dif- 
ferential equation (PDE) and widely used as a model in many engineering problems, 
which explains such as physical flow phenomena in fluid dynamics, turbulence, 
boundary layer behavior, shock wave formation, and mass transport [1]. Two 
dimensional convection-diffusion equation is given by the following equation. 

( )1 0t x y xx yyu uu uu u u
R

+ + − + =
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where ( ) ( ], , 0,x y t T∈Ω×  
with initial conditions 

( ) ( ) ( )0, ,0 , , ,u x y u x y x y= ∈Ω  

The Dirichlet boundary conditions are given by 

( ) ( ) ( ) ( )1 2, , , , , , , , ,u a y t f x y t u b y t f x y t= =  

( ) ( ) ( ) ( )1 2, , , , , , , , ,u x c t g x y t u x d t g x y t= =  

where ( ) ( ], , 0,x y t T∈Ω× , ( ){ }, : ,x y a x b c y dΩ = ≤ ≤ ≤ ≤  is a rectangular 
domain in 2R , ( ]0,T  is the time interval. 0 1 2 1 2, , , ,u f f g g  are given sufficiently 
smooth functions and ( ), ,u x y t  may represent heat, diffusion, etc. Re is the 
Reynolds number. 

This equation established the interaction between the non-linear convection 
processes and the diffusive viscous processes [2]. As Burgers equation is 
probably one of the simplest non-linear PDE for which it is possible to obtain an 
exact solution [3]. Also depending on the magnitude of the various terms in 
Burgers equation, it behaves as an elliptic, parabolic or hyperbolic PDE, conse- 
quently, it is one of the principle model equations used to test the accuracy of 
new numerical methods or computational algorithms [4]. It is widely known 
that non-linear PDEs do not have precise analytic solutions [5]. The first attempt 
to solve the Burgers equation analytically was done by Batman [6], who derived 
the steady state solution of this equation as a test solution to one dimension, 
which was used to model turbulence nature of the phenomena [7] [8]. The two 
dimensional non-linear Burgers equations are a special form of in compressible 
Naiver-Stokes equations without the pressure term and the continuity equation 
[9] [10]. Due to its wide range of applicability, several researchers, both scientists 
and engineers, have been interested in studying the properties of the Burgers 
equation using various numerical techniques [11]. They have successfully used it 
to develop new computational algorithms and to test the existing ones [12]. 
Vineet and Tamsir [10] used two different test problems to analyses the accuracy 
of the Crank Nicholson(CN) scheme [10]. From literature review, it came to 
know that Newton’s method is also applicable to reform the Jacobean matrix to 
get the linear algebraic sparse matrix. Solution of such algebraic system of 
equations can be found by Gauss elimination with partial pivoting technique [13] 
[14]. Bahadir also used same technique to test the accuracy of scheme, using 
fully implicit finite difference scheme [15] [16]. The terminology of the Burgers 
equation explains that with viscous term the Burgers Equation is parabolic while 
without viscous term it is hyperbolic. In the later case it possesses discontinuous 
solutions due to the non-linear term and even if smooth initial condition is 
considered the solution may be discontinuous after finite time [8]. It also 
governs the phenomenon of shock waves [12]. 

Many different researchers used Burgers equation to develop new algorithms 
and to test various existing algorithms [4]. For exact solution of such non-linear 
problem, researchers used Hopf-Cole transformation to linearize the Burgers 
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equations into parabolic partial differential equation [17]. Some of the resear- 
chers also tried to tackle the non-linear Burgers equation directly (without 
Hopf-Cole transformation), by applying Crank-Nicholson finite difference 
method to the linearized Burgers equation by Hopf-Cole transformation which 
is unconditionally stable and is second order convergent, in both space and time 
with no restriction on mesh size [10]. In another result due to Kutluay et al. a 
direct approach via least square quadratic B-spline finite element method is 
discussed [18]. Recently Pandey et al. discussed Douglas finite difference scheme 
on linearized Burgers equation which is fourth order convergent in space and 
second order convergent in time [1] [18]. 

1.1. Problem 1 

From literature review, [19] we found that earlier work done by Mittal,Jain and 
Holla in 2012 [20] on convection-diffusion equation in one dimension. We 
extended our work to enhance our knowledge towards two dimensional Convection 
diffusion equation.Two test problems were taken to understand the numerical 
solution with finite difference schemes. By setting some parameters with arbitrary 
constants in bounded domain ( ){ }, : 0.5 0.5, 0.5 0.5x y x yΩ = − ≤ ≤ − ≤ ≤ . Exact 
solution of the above two dimensional equation is  

( ) ( ), , 0.5 tanh
2

x y t R
u x y t

+ − 
= −  

                  
(2) 

where ( ),x y ∈Ω , 0t >  and R is a parameter, known as Reynolds number. 
Boundary conditions and initial conditions can be taken from exact solution of 
u(x,y,t) [21]. 

1.2. Problem 2 

In this problem the rectangular domain of two dimensional nonlinear convection- 
diffusion Equation (1) is given as ( ), : 0 1,0 1x y x yΩ = ≤ ≤ ≤ ≤   . Exact 
solution of the above two dimensional equation is  

( ) ( )
1, ,

1
2

u x y t
x y t R

=
+ −

+
                   

(3) 

where ( ),x y ∈Ω , 0t >  and R is a parameter, known as Reynolds number. 
Boundary conditions and initial conditions can be taken from exact solution of 
( ), ,u x y t . where Ω  is a rectangular domain in 2R . The main objective of the 

paper is to find efficient solution of unknown ( ),u x t . Two test problems were 
described to understand the numerical solution by taking two finite difference 
schemes. Also Convection diffusion equation has been extensively studied to 
describe various kinds of phenomena which can be seen from equation [21].  

2. Numerical Methods 

Numerical solution of the two dimensional non-linear equation in a finite 
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domain Ω . The first step is to choose integers L and M to define step sizes 
( )hx b a L= −  and ( )hy d c M= −  in x and y directions respectively. 

Partition the interval [a, b] into L equal parts of width xh  and the interval [c, d] 
into M equal parts of width yh . Place a grid by drawing vertical and horizontal 
lines through the points with coordinates ( ),l mx y , where lx a lh= +  for each 

0,1,2, ,l L=   and my c mk= +  for each 0,1,2, ,m M= 

 also the lines 

lx x=  and my y=  are grid lines, and their intersections are the mesh points of 
the grid. For each mesh point in the interior of the grid, ( ),l mx y , for 

1,2, , 1l L= −  and 1,2, , 1m M= −

, we apply different algorithms to 
approximate the numerical solution to the problem in equation [21] also we 
assume , 0,1, ,nt nk n NT= =   where t is the time. 

2.1. Second Order Implicit Scheme 

We apply Crank-Nicholson implicit finite difference scheme to equation [21], by 
integrating Equation (1) in the compact way: 

1 1
, , , ,

1 1 1 1
1, 1, 1, 1, , 1 , 1 , 1 , 1

1, , 1, , 1 , , 12 2
2 2

,
2

,
4 4

ˆ ˆ ˆ ˆ ˆ ˆ2 2
ˆ ˆ,

n n n n
l m l m l m l m

t

n n n n n n n n
l m l m l m l m l m l m l m l m

x y

l m l m l m l m l m l m
x y

u u u u
u u

k
u u u u u u u u

u u
h h

u u u u u u
u u

h h
δ δ

+ +

+ + + +
+ − + − + − + −

+ − + −

+ +
= = 


− + − − + − = = 


− + − + 
= = 



 

when substitute these terms in to Equation (1), the Crank-Nicholson Scheme is 
given by 

( ){ }1 1 1 1 1 1
, , 1 , , 1, 1, 1, 1, , 1 , 1 , 1 , 1

1 1 1 1 1
2 1, 1, , 1 , 1 , 1, 1, , 1 , 1 ,4 4 0

n n n n n n n n n n n n
l m l m l m l m l m l m l m l m l m l m l m l m

n n n n n n n n n n
l m l m l m l m l m l m l m l m l m l m

u u R u u u u u u u u u u

R u u u u u u u u u u

+ + + + + +
+ − + − + − + −

+ + + + +
+ − + − + − + −

 − + + − + − + − + − 
 + + + + − + + + + − = 

1 2 2where ,
8 2
k kR R
h Rh

= =

(4) 

The scheme shows that the accuracy is of ( )2 2O k h+ . A Jacobian matrix is 
now Penta-diagonal, but unfortunately due to large number of iterations it 
extends from the diagonal at least n entries away in every direction,but another 
methods which can be used to handle such problems (discussed later), because 
of the large bandwidth, increasing grid points the calculation become more 
difficult. To overcome this difficulty another method solution is needed.Newton 
method is used for solving nonlinear task (discussed later). The Crank- 
Nicholson is computationally inefficient. 

2.2. Computationally Efficient Implicit Scheme 

In search of a time efficient alternate, we analyzed that the Crank-Nicholson 
scheme for the two dimensional equation, and find out that scheme is not time 
efficient [8] [11] [12]. To get high time efficiency, the common name of 
Alternating Direction Implicit (ADI) method, can be used [22].  
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In this approach, the finite difference equations are written in terms of 
quantities at two levels However, two different finite difference approximations 
were used alternately, one to advance the calculations from the plane n to a 
plane n*, and the second to advance the calculations from (n*)-plane to the (n + 
1). Same parameters were used in this method as described above. The 
derivation of ADI scheme, we have following steps;  

Sweep in x-direction 

( )
( ) ( )( )

( )( )

* * * *
, , 1 1, , 1, 1, , 1,

2 , 1 , 1, 3 , 1, 1,

3 , , 1 , 1

2 2

2

n n n n
l m l m l m l m l m l m l m l m

n n n n n n
l m l m l m l m l m l m

n n n
l m l m l m

u u P u u u u u u

P u u u P u u u

P u u u

+ − + −

+ − + −

+ −

− = − + + − +

+ − + + −

+ −

      (5) 

( )( ) ( )( ) ( )* 2 * 2
, , 1 , , 2 ,

n n n n
l m l m x l m l m y l mu u P u u P u kF uδ δ− = + + +

         
(6) 

where  

( ) ( )( ) ( )3 , , 3 , ,
n n n n n

l m x l m l m y l mF u P u u P u uδ δ= +  

Sweep in y-direction 

( )
( ) ( )( )

( )( )

1 * 1 1 1 * * *
, , 1 , 1 , , 1 , 1 , , 1

* * * * * *
2 1, , 1, 3 , 1, 1,

* * *
3 , , 1 , 1

2 2

2

n n n n
l m l m l m l m l m l m l m l m

l m l m l m l m l m l m

l m l m l m

u u P u u u u u u

P u u u P u u u

P u u u

+ + + +
+ − + −

+ − + −

+ −

− = − + + − +

+ − + + −

+ −
     (7) 

( )( ) ( )( ) ( )1 * 2 1 * 2 * *
, , 1 , , 2 ,

n n
l m l m y l m l m x l mu u P u u P u kF uδ δ+ +− = + + +         (8) 

where  

( ) ( )( ) ( )* * * * *
3 , , 3 , ,l m x l m l m y l mF u P u u P u uδ δ= +  

1 2 32 2, ,
22

k k kP P P
hRe h Reh

= = =  

where *
,l mu  defines similarly to 1

,
n
l mu + . This method is unconditionally stable. 

The method has accuracy ( )2 2O k h+ , newton’s iterative method is used to 
solve tridiagonal system. 

The family of linear system in x-direction as:  

( )*
1 , 1 ,

u n
x m m x ma u b F ku= +                      

(9) 

where 1, , 1m M= −

 
The family of linear system in y-direction as:  

( )1 *
1 , 1 ,

n
y m m y mc u d F ku+ = +                     

(10) 

where 1, , 1l L= −  
where 1 1,a c  develops tridiagonal matrix and the array 1 1,b d  depends on l and 
m  

The reaction term is x-direction 

( ) ( ) ( ), 1, 1, 1, ,n n n
x m m LF ku kF u kF u −

 =    

similarly for the reaction term in y-direction: 
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( ) ( ) ( )* * *
, 1, 1 1,1, ,y l MF ku kF u kF u−

 =    

finally the scheme makes tridiagonal family of linear system.Iterative methods 
was carried out to solved this system. The trick used in constructing the ADI 
scheme is to split time step into two, and apply two different stencils in each half 
time step, therefore to increment time by one time step in grid point, we first 
compute both of these stencils are chosen such that the resulting linear system is 
tridiagonal [5] [7] [8] [9] [11] [17] [22]. To obtain the numerical solution, we 
need to solve a non-linear tridiagonal system at each time step. We have done 
this by using Newton’s iterative method  

Algorithm 1 
To construct Newton iterative method for the two dimensional Convection- 

diffusion equation. The non-linear system in equations [23] and [24], can be 
written in the form:  

( ) 0G S =                           (11) 

where  

( )
T1

1, 2, 2 2 ,, , ,n
m m L mS u S S S+

−
  ≈ =     

T1 1 1 1 1
1, 2, 3, 1,: , , , ,n n n n n

m m m L mmu u u u u+ + + + +
− =    

( )
T

1, 2, 2 2 ,, , ,m m L mG G G G −
 =   , where ( )1, 2, 2 2 ,, , ,m m L mG G G −  were system of 

nonlinear equations obtained from the system in [23] and [24]. The system of 
equations, is solved by Newton’s iterative method using the following steps  

1) Specify ( )0u  as an initial approximation.  
2) For 0,1,2,k =   until convergence achieve.  

• Solve the linear system ( )( ) ( ) ( )( )k k kA u u R u∆ = −  

• Specify ( ) ( ) ( )1k k ku u u+ = + ∆ , 
where ( )( )kA u  is ( )m m×  Jacobian matrix, which is computed analytically and 

( )ku∆  is the correction vector. In the iteration method solution at the previous 
time step is taken as the initial guess. Iteration at each time step is stopped when 

( )( )kR u Tol
∞
≤  with Tol is a very small prescribed value. The linear system 

obtained from Newton’s iterative method, is solved by Court’s method. 
Convergence done with iterations along less CPU time [5] [14].  

Algorithm 2 
Clearly, the system is tridiagonal and can be solved with Thomas algorithm. 

The dimension of J is l m× . In general a tridiagonal system can be written as,  

1 1 1, with 0l l l l l l l la x b x c x S a c− ++ + = = =  

above system can be written as in a matrix-vector form,  

Ju S=  

where J  is a coefficient matrix (Jacobean Matrix), which is known, comes 
from Newton’s iterative method. Right hand side is column vector which is 
known.Our main goal is to find the resultant vector u . Now we have  
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1 1

2 2 2

1 1 1

0 0 0 0
0 0 0

n n n

n n

b c
a b c

J

a b c
a b

− − −

 
 
 
 
 

=  
 
 
 
 
 





     

     

     

  

   

 

[ ]1 2 3, , , , t
nu u u u u= 

 

[ ]1 2 3, , , , t
nS s s s s= 

 

technique is explained in the following steps,  

J LU=  

where  

1

2 2

3 3 3

1 1 1

0 0 0 0 0
0 0 0 0

0 0 0
0

0n n n

n n n

L

µ
β µ
α β µ

α β µ
α β µ

− − −

 
 
 
 

=  
 
 
 
  







     

 

  

 

and  

1 1

2 2

3 3

2 2

1

1 0 0 0
0 1 0 0
0 0 1 0

0
... 0 1

0 0 1
0 0 1

n

n

U

δ λ
δ λ

δ λ

δ λ
δ

−

−

 
 
 
 
 =  
 
 
 
  







     



 

  

 

By equating both sides of the Ju S= , we get the elements of the matrices L  
and U . The computational tricks for the implementation of Thomas algorithm 
are shown in results, taken from a specific examples. 

3. Error Norms 

The accuracy and consistency of the schemes is measured in terms of error 
norms specially 2L  and L∞  which are defined as:  

( )2
, ,

, 1

L

i j i j
i j

U u
RMSError

L L
=

−
=

×

∑
                 (12) 

( ). ,1 1
max

L

i j i ji L j
L U u∞ ≤ ≤ =

= −∑                     (13) 

( ) ( )2 , , , ,
t

i j i j i j i jL U u U uρ= − −
                 

(14) 
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where ( ), ,u x y t  and ( ), ,U x y t  denote the numerical and exact solutions at 
the grid point ( ), ,l m nx y t . In this method ( ) ( ), , maxi j i jU uρ λ− =  and λ  is 
an eigen value of ( ), ,i j i jU u−  respectively. 

4. Results and Discussion 

Numerical computations were performed using the uniform grid. In Table 1 & 
Table 2 Crank-Nicholson and ADI results was performed, compared with the 
analytical results at grids size 20 ×  20 in problem 1. Moreover by fixing some 
parameter such as time step k = 0.0001 time level t = 0.5 and Reynolds number 
Re = 100,500 with different mesh points. The obtained results was compared 
with the existing results in literature. By describing results same parameters, 
notations was used as other researchers were used in their studies. For 
convergence 2 ,L L∞  norm were used for the unknown ( ), ,u x y t  Khater et al. 
(2008), Mittal and Jiwari (2012), Kutluay and Yagmurlu (2012) and R.C. Mittal 
and Amit Tripathi were considered this problem in (2016) [21] [23] [24]. 
Approximate results in problem 1 Table 3, comparison of analytical and 
numerical results of CN and ADI at fixed Reynolds no Re = 500, time level = 
0.0005, time = 1, grid size 30 × 30 with different typical mesh points at (-0.3,-0.3), 
(−0.45, −0.45), (−0.35, −0.35), (0.25, −0.25). The obtained results makes a very 
good agreement with the exact solution. To attain more refine and better results 
by changing time level = 0.001, grid size = 25 × 25 with the same mesh points in 
Table 4 more refine results was obtained with Reynolds no Re = 50. In Figure 1 
analytical and numerical results were compared at grid size 20 × 20 k = 0.0001 
time = 0.5 and time level = 0.0001 corresponding results in Table 1. Figure 2 
and Figure 3 changing time = 0.1 and grid size 30 × 30 with same time level and 
Reynolds no as in Figure 1. In both Figure 1 and Figure 2 almost same behavior 
corresponds to results in Tables 1-4. Similar patterns were depicted by Kutluay 
and Yagmurlu (2012), Mittal (2016) [21] [24]. The obtained solutions were 
better than those obtained in earlier studies (Khater et al., 2008; Kutluay and 
Yagmurlu, 2012, Mittal (2016). 

In problem 2, considering Equation (1) over the domain [0.5, 0.5] × [0.5, 0.5], 
boundary and initial conditions were taken from the exact solution showed 
stable results time step and increasing grid size (refine mesh size). In Table 5 
analytical and numerical results of Crank-Nicholson and ADI were compared at 
gird size 30 × 30, Re = 200, time = 1, time step = 0.001. In problem 2, Table 6 by 
reducing grid size 20 × 20, increasing time step k = 0.0001 and time = 3 with 
fixed Reynolds number attained stable results. 

In Figure 4 showed ADI results by reducing Reynolds no Re = 10 with gird 
size 20 × 20 k = 0.0001 and time = 0.5 and in Figure 5 increasing grid size 101 × 
101 at Reynolds 50, time level = 0.0001, time = 0.5, obtained good accuracy 
corresponds to the exact results.Matrices 2xδ  and 2yδ  are more complex in 
Crank-Nicholson case depend on the order where the grid points are arranged in 
to the array u. In Table 7 & Table 8 error norm reduced when changing step  
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Table 1. Comparison of Analytical and Exact solution at different time level with fixed 
Reynolds number Re = 100 at t = 0.5, k = 0.0001 and grid size = 20 × 20 for unknown 
( ), ,u x y t  Problem 1. 

Solution Comparison 

(Typical mesh points) CN ADI Exact 

(−0.3, −0.3) −0.5000 −0.5000 −0.5000 

(−0.45, −0.45) −0.49999 −0.5000 −0.5000 

(−0.3, −0.45) −0.49999 −0.49999 −0.5000 

(−0.35, −0.35) −0.49998 −0.49997 −0.5000 

(−0.25, 0.25) 0.0000 −0.0000 0.0000 

(−0.2, −0.2) −0.49997 −0.49888 −0.5000 

(−0.2, −0.3) 0.49997 0.49888 0.5000 

(0.2, 0.2) 0.49998 0.49998 0.5000 

(0.2, 0.35) −0.49999 −0.49999 −0.5000 

(0.3, 0.2) 0.49999 0.49777 0.5000 

(0.25, −0.25) 0.0000 0.0000 0.0000 

(0.4, 0.4) 0.5000 0.5000 0.5000 

 
Table 2. Comparison of Analytical and Exact solution at different time level with fixed 
Reynolds number Re = 500 at t = 0.5, k = 0.0001 and grid size = 20 × 20 for unknown 
( ), ,u x y t  Problem 1. 

Solution Comparison 

(Typical mesh points) CN ADI Exact 

(−0.3, −0.3) −0.50000 −0.50000 −0.5000 

(−0.45, −0.45) −0.48999 −0.50000 −0.5000 

(−0.3, −0.45) −0.48999 −0.489999 −0.5000 

(−0.35, −0.35) −0.48998 −0.489997 −0.5000 

(−0.25, 0.25) 0.00000 −0.00000 0.0000 

(−0.2, −0.2) −0.489997 −0.489888 −0.5000 

(−0.2, −0.3) 0.489997 0.489888 0.5000 

(0.2, 0.2) 0.489998 0.489998 0.5000 

(0.2, 0.35) −0.489999 −0.489999 −0.5000 

(0.3, 0.2) 0.489999 0.489777 0.5000 

(0.25, −0.25) 0.00000 0.00000 0.0000 

(0.4, 0.4) 0.50000 0.50000 0.5000 
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Table 3. Comparison of Analytical and Exact solution at different time level with fixed 
Reynolds number Re = 500 at t = 1, k = 0.0005 and grid size = 30 × 30 for unknown 
( ), ,u x y t . 

Solution Comparison 

(Typical mesh points) CN ADI Exact 

(−0.3, −0.3) −0.50000 −0.50000 −0.5000 

(−0.45, −0.45) −0.49999 −0.50000 −0.5000 

(−0.3, −0.45) −0.49999 −0.489999 −0.5000 

(−0.35, −0.35) −0.49998 −0.489997 −0.5000 

(−0.25, 0.25) −0.49997 −0.49997 −0.5000 

(−0.2, −0.2) −0.499997 −0.489888 −0.5000 

(−0.2, −0.3) −0.499997 −0.489888 −0.5000 

(0.2, 0.2) −0.499998 −0.489998 −0.5000 

(0.2, 0.35) −0.499999 −0.489999 −0.5000 

(0.3, 0.2) −0.499999 −0.489777 −0.5000 

(0.25, −0.25) −0.49999 −0.49999 −0.5000 

(0.4, 0.4) −0.50000 −0.50000 −0.5000 

 
Table 4. Comparison of Analytical and Exact solution at different time level with fixed 
Reynolds number Re = 50 at t = 1, k = 0.001 and grid size = 25 × 25 for unknown 
( ), ,u x y t  Problem 1. 

Solution Comparison 

(Typical mesh points) CN ADI Exact 

(−0.3, −0.3) −0.50000 −0.50000 −0.5000 

(−0.45, −0.45) −0.4998 −0.50000 −0.5000 

(−0.3, −0.45) −0.4997 −0.4899 −0.5000 

(−0.35, −0.35) −0.4887 −0.4897 −0.5000 

(−0.25, 0.25) −0.4886 −0.4987 −0.5000 

(−0.2, −0.2) −0.4886 −0.4787 −0.5000 

(−0.2, −0.3) −0.4998 −0.4997 −0.4998 

(0.2, 0.2) −0.5000 −0.4999 −0.5000 

(0.2, 0.35) −0.4546 −0.4447 −0.4847 

(0.3, 0.2) −0.4999 −0.4999 −0.5000 

(0.25, −0.25) −0.4889 −0.4776 −0.4998 

(0.4, 0.4) −0.4998 −0.5998 −0.4998 
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Figure 1. Analytical and numerical results of CN at t = 0.5, grid size = 20 × 20, k = 0.0001, Re = 500 problem 1. 

 

 
Figure 2. Numerial results of CN at t = 0.1, grid size = 30 × 30, k = 0.0001, Re = 500 problem 1. 

 

 
Figure 3. Exact solution of CN at t = 0.1, grid size = 30 × 30, k = 0.0001, Re = 500 problem 1. 
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Table 5. Comparison of Analytical and Exact solution at different time level with fixed 
Reynolds number Re = 200 at t = 1, k = 0.001 and grid size = 30 × 30 for unknown 
( ), ,u x y t  Problem 2. 

Solution Comparison 

(Typical mesh points) CN ADI Exact 

(0.2, 0.2) 1.0000 1.0000 1.0000 

(0.05, 0.05) 0.9996 0.9887 1.0000 

(0.2, 0.05) 0.9765 0.9665 1.0000 

(0.15, 0.15) 0.8514 0.8661 1.0000 

(0.3, 0.3) 0.8515 0.8415 1.0000 

(0.3, 0.2) 0.9000 0.9112 1.0000 

(0.7, 0.7) 0.7515 0.7414 1.0000 

(0.7, 15) 0.8775 0.8675 0.9987 

(0.8, 0.3) 0.9876 0.9866 1.0000 

(0.9, 0.9) 0.9996 0.9954 1.0000 

(0.25, 0.75) 0.0000 0.0000 0.0000 

(0.75, −0.25) 1.0000 1.0000 1.0000 

 
Table 6. Comparison of Analytical and Exact solution at different time level with fixed 
Reynolds number Re = 200 at t = 3, k = 0.0001 and grid size = 20 × 20 for unknown 
( ), ,u x y t  Problem 2. 

Solution Comparison 

(Typical mesh points) CN ADI Exact 

(0.2, 0.2) 1.0000 1.0000 1.0000 

(0.05, 0.05) 1.0000 1.0000 1.0000 

(0.2, 0.05) 1.0000 1.0000 1.0000 

(0.15, 0.15) 0.9999 0.9998 1.0000 

(0.3, 0.3) 0.9999 0.9998 1.0000 

(0.3, 0.2) 0.9997 0.99996 1.0000 

(0.7, 0.7) 1.0000 1.0000 1.0000 

(0.7, 15) 0.9999 0.9998 1.0000 

(0.8, 0.3) 0.9889 0.9888 1.0000 

(0.9, 0.9) 1.0000 1.0000 1.0000 

(0.25, 0.75) 0.9888 0.9887 1.0000 

(0.75, −0.25) 0.9888 0.9887 1.0000 
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Figure 4. Numerical results of ADI at t = 0.5, grid size = 20 × 20, k = 0.0001, Re = 10 problem 1. 

 

 
Figure 5. Analytical and numerical results of ADI at t = 0.5, grid size = 101 × 101, k = 0.0001, Re = 50 problem 1. 

 
Table 7. Calculating errors using different parameters for unknown values u(x, t) at different grid size and time step k at t = 0.05, 
Re = 1 Problem 2. 

k grid size 2L  L∞  Mittal [21] 2L  Mittal [21] L∞  Khater [23] 2L  Khater [23] L∞  

0.005 5 5×  4.9586e−007 5.9234e−007 4.9688e−008 4.6512e−008 1.19e−007 8.94e−008 

0.0005 10 10×  6.1723e−007 6.6123e−007 6.2171e−009 5.9068e−009 8.05e−007 7.45e−007 

0.0001 15 15×  2.1132e−008 3.1324e−008 2.5318e−009 2.188e−009 .... .... 

0.0001 30 30×  1.2654e−008 2.2131e−008 1.8750e−009 1.0101e−009 ... ... 

 
Table 8. Calculating errors using different parameters for unknown values u(x, t) at different grid size and time step k at t = 0.25, 
Re = 1 Problem 2. 

k grid size 2L  L∞  Mittal [21] 2L  Mittal [21] L∞  Khater [23] 2L  Khater [23] L∞  

0.005 5 5×  9.9586e−008 9.734e−008 9.9899e−009 9.8076e−009 1.70e−007 1.50e−007 

0.0005 10 10×  7.4323e−008 7.0323e−008 8.1271e−009 7.0450e−009 9.82e−007 8.50e−007 

0.0001 15 15×  6.1132e−008 6.0724e−008 7.2310e−009 6.0548e−009 .... .... 

0.0001 30 30×  3.2554e−008 3.0231e−008 3.9366e−009 3.0601e−009 ... ... 
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Table 9. Calculating Errors using different parameters for unknown values ( ),u x t  at 

different grid size at k = 0.005, t = 0, Re = 100 Problem 1. 

grid size 2L  L∞  Mittal [21] 2L  Mittal [21] L∞  Rms 

5 5×  4.5112e−016 3.4661e−016 5.4017e−017 4.5997e−017 4.5112e−016 

11 11×  2.3451e−016 1.5712e−016 3.6338−017 2.6712e−017 2.3451e−016 

21 21×  1.0231e−017 1.0321e−017 1.2898e−017 1.1275e−017 1.0231e−017 

 
Table 10. Calculating Errors using different parameters for unknown values ( ),u x t  at 

different grid size at k = 0.005, t = 0.05, Re = 100 Problem 1. 

grid size 2L  L∞  Mittal [21] 2L  Mittal [21] L∞  Rms 

5 5×  4.41172e−005 3.8761e−005 5.0688e−006 4.9850e−006 4.41172e−005 

11 11×  2.3151e−005 2.9712e−005 3.4403e−006 3.2143e−006 2.3151e−005 

21 21×  1.0931e−006 1.0991e−006 2.3549e−006 2.0547e−006 1.0931e−006 

 
size and grid size with fixed Reynolds no Re = 1, t = 0.05 and 0.25. Good results 
obtained when compared the values of this exact solution with those of the 
approximation gained in Tables 1-3. Furthermore in Table 9 error reduced 
when changing grid size at fixed Reynolds no Re = 100,k = 0.005, time = 0 .In 
our next computations in Table 10 changing Reynolds no Re and grid size at 
time = 0.1 error increased. It means that error increase by choosing high 
Reynolds no Re value.Solution profiles at t = 0.5 and t = 1 have been presented 
in Figure 6 and Figure 7 for grids sizes 20 × 20 and 30 × 30 at k = 0.001, Re = 50 
and 100 respectively. Figure 8 Crank-Nicholson results obtained using same 
parameters as in Figure 7 with grid size 25 × 25. Solution presented in Figure 9 
at grid point 20 × 20, time = 0.5, step size = 0.0001 with large Reynolds no Re = 
200 error increased. Solution reported in Table 11 by changing Reynolds no Re 
and grid sizes at time = 0.1 and k = 0.001, 0.0001 2 ,L L∞  norm increased. Root 
mean square value also increased by changing Reynolds no Re. Among all the 
interior grid points found both 2 ,L L∞  norm of the numerical solution. Figure 
10 was presented at grid time = 1, k = 0.001, showed maximum results at time = 
0.5. Approximate solution compare with exact of ADI presented in Figure 11 
and Figure 12 with grid size 30 × 30 and 20 × 20, time = 2 and 1 respectively. In 
these figure choosing low Reynolds no Re = 10 at k = 0.0001 presents very refine 
results in time efficient manner. In Figure 13 by refining mesh sizes showing 
excellent results at k = 0.0001, Re = 10 and grid sizes 101 × 101. Solution 
presents in Figure 14 at time = 0 makes a good agreement with the exact 
solution at time step = 0.0001, Re = 50 respectively. 

Results gained by using ADI scheme at very small step spacing to understand 
the importance of reducing steps. Sharp edges remove during increases time 
level. These results are very interesting for us to understand the efficiency of the 
ADI scheme. The corresponding graphical representation for the solution of 
unknown ( ), ,u x y t  was presented in Figure 11 and Figure 12. Similar patterns  
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Figure 6. Numerical results of ADI at t = 0.5, grid size = 20 × 20, k = 0.001, Re = 100 problem 1. 
 

 
Figure 7. Numerical results of ADI at t = 1, grid size = 30 × 30, k = 0.001, Re = 50 problem 1. 
 

 
Figure 8. Numerical results of CN at t = 1, grid size = 25 × 25, k = 0.001, Re = 50 problem 1. 
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Figure 9. Numerical results of CN at t = 0.5, grid size = 20 × 20, k = 0.0001, Re = 200 problem 2. 

 
Table 11. Calculating errors using different parameters for unknown values ( ),u x t  at different Reynold’s number, grid sizes at t 
= 0.1 Problem 1.  

Re grid size k 2L  L∞  Mittal [21] 2L  Mittal [21] L∞  Rms 

100 21 21×  0.001 6.1601e−005 5.9645e−005 7.1536e−006 6.9729e−006 6.1601e−005 

300 101 101×  0.0001 7.2134e−004 7.1206e−004 8.2579e−005 8.1304e−005 7.2134e−004 

500 201 201×  0.0001 2.6145e−004 1.4172e−004 3.6692e−004 2.4573e−004 2.6145e−004 

 

 
Figure 10. Numerical results of CN at t = 1, grid size = 30 × 30, k = 0.001, Re = 50 problem 2. 

 

 
Figure 11. Exact and numerical results of ADI at t = 2, grid size = 20 × 20, k = 0.0001, Re = 10 problem 2. 
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Figure 12. Exact and numerical results of ADI at t = 1, grid size = 30 × 30, k = 0.0001, Re = 10 problem 2. 

 

 

Figure 13. Analytical and numerical results of ADI at t = 2, grid size = 20 × 20, k = 0.0001, Re = 10 problem 2. 
 

 

Figure 14. Analytical and numerical results of ADI at t = 0, grid size = 20 × 20, k = 0.0001, Re = 50 problem 2. 
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have been obtained in earlier studies (Mittal and Jiwari, 2016). In literature point 
of view present schemes shows similar results as (Jain and Holla, 1978; Mittal 
and Jiwari, 2016, khater (2008)) [21] [23]. Moreover, got similar results with 
small grid size. From graphical illustrations, obtained numerical results give 
steady state solution and the scheme is stable. In Table 9 & Table 10 we 
observed that results becomes better by changing grid sizes from low to high and 
by reducing step size.  

The obtained results gives excellent agreement with the solutions available in 
the literature. When the number of grid points get larger than several hundred, 
the memory and storage of the Crank-Nicholson starts to become a serious issue 
and it is better to solve this method using different approaches that take 
advantage of the special form. This method is computationally inefficient. 
Thomas algorithm avoids having to store having the whole matrix J (Jacobean) 
in its memory and solve the system much more expediently. ADI methods 
reduces to the CN scheme and this method solve the system very efficiently.The 
order of truncation error: ( )2 2O k h+ . The implementation of ADI computa- 
tionally is in a time efficient manner. Alternating direction implicit method is 
fastest when it works and it works well for simple,ideal problems and give 
efficient results.  

5. Conclusion 

In this research work, finite difference methods has been discussed for solving 
two dimensional convection-diffusion equation. Two test problems were 
considered, explained the efficiency, accuracy and stability of the schemes. The 
numerical results showed that Alternating Direction Implicit method is easy to 
implement and excellent in time efficient manner. The accuracy and stability of 
these methods were compared to the other numerical methods, shows good 
agreement with the exact solution. Both ADI and Crank-Nicholson are un- 
conditionally stable and highly accurate. For convergence 2L  and L∞  norms 
were treated towards zero when grid size was increased. Numerical results 
showed that both methods are good but ADI method is consistent and time- 
efficient. The approach used in this paper may be useful to solve higher 
dimensional partial differential equations appearing in various applications of 
science and engineering. 
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