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Abstract 
In many papers, new classes of sets had been studied in topological space, 
then the notion of continuity between any two topological spaces (a function 
from X to Y is continuous if the inverse image of each open set of Y is open in 
X) is studied via this new classes of sets. Here the authors also introduce new 
classes of sets called pj-b-preopen, pj-b-B set, pj-b-t set, pj-b-semi-open and 
pj-sb-generalized closed set in bitopological space [1] which is a set with two 
topologies defined on it, then they study the notion of continuity via this set 
and introduce some of the theories which are studying the decomposition of 
continuity via this set in bitopological space. 
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1. Introduction and Preliminaries 

In topological space, there are many classes of generalized open sets given by [2] 
[3] [4] [5]. Tong [6] introduced the concept of t-set and B-set in topological 
space. [7] [8] gave some decomposition of continuity. Decomposition of pair- 
wise continuity was given by Jelice [9] and [10] [11] [12]. In this paper, we 
introduce decomposition of continuity in bitopological space via new classes of 
sets called pj-b-preopen, pj-b-B set, pj-b-t set, pj-b-semi-open and pj-sb-genera- 
lized closed set with some theories, examples and results.  

Definition 1.1. Let A  be a subset of a space X , then A  is said to be:  
1) b-t-set [7] if ( ) ( )( )Int A Int bcl A= .  
2) b-B-set [7] if A U V= ∩ , where U τ∈  and V  is a b-t-set.  
3) Locally b-closed [7] if A U V= ∩ , where U τ∈  and V  is a b-closed set.  
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4) b-preopen [7] if ( )( )A In bcl A⊆ .  
5) b-semiopen [7] if ( )( )A cl bIn A⊆ .  
Definition 1.2. Let A  be a subset of a bitopological space ( )1 2, ,X τ τ  then 

A  called pairwise p-open (or p-open) [11] if 1 2A τ τ∈ ∩ . p-closed is the com- 
plement of p-open set. p-interior of A  (or ( )p int A− ) is the union of all 
p-open sets of a bitopological space X  which contained in a subset A  of X . 
Also, the p-closure of A  (or ( )p cl A− ) is the intersection of all p-closed sets 
which containing A .  

Definition 1.3. A subset A  of a bitopological space X  is said to be:  
1) pj-b-open [10] if ( )( ) ( )( )A j cl p int A p int j cl A⊂ − − ∪ − − .  
2) pj-b-closed [10] if ( ) ( )( )( )j int p cl A p cl j int A A− − ∩ − − ⊂ .  
3) pj-semiopen [11] if ( )( )A j cl p int A⊂ − − .  
4) pj-preopen [11] if ( )( )A p int j cl A⊂ − − .  
5) pj-t-set [12] if ( )( ) ( )p int j cl A p int A− − = − .  
6) pj-B-set [12] if A U V= ∩ , where U  is p-open and V  is a pj-t-set.  
7) jp-regular open [12] if ( )( )A p int j cl A= − − .  

2. pj-b-t-Set, pj-b-B-Set pj-b-Semiopen, pj-b-Preopen  
and pj-sb-Generalized Closed  

In this section, we investigated our new classes of sets pj-b-preopen, pj-b- 
semiopen, pj-b-t set, pj-b-B set and pj-sb-generalized closed set and study some 
of its fundamental properties and examples also we introduce some of important 
theories which is useful to study the decomposition of continuity via our new 
classes of sets.  

Definition 2.1. A subset A  of a bitopological space X  is said to be:  
1) pj-b-t-set if ( ) ( )( )p Int A p Int j bcl A− = − − .  
2) pj-b-B-set if A U V= ∩ , where U  is p-open and V  is a pj-b-t-set.  
3) pj-b-semiopen if ( )( )A j cl p bint A⊂ − − .  
4) pj-b-preopen if ( )( )A p int j bcl A⊂ − − .  
Example 2.2. Let { }, , ,X a b c d= , { } { }{ }1 , , , ,X c c dτ φ=  and  

{ } { } { } { } { } { } { }{ }2 , , , , , , , , , , , , ,X c b d b c c d b d b c dτ φ=  then { },c d  is a  
p2-b-t-set. 

Example 2.3. Let { }, ,X a b c=  and { } { } { }{ }1 , , , , ,X b c b cτ φ=  and  
{ } { }{ }2 , , , ,X b b cτ φ=  then { },a b  is a p1-b-B-set.  

Example 2.4. Let { }, ,X a b c=  and { } { } { }{ }1 , , , , ,X b c b cτ φ=  and  
{ } { } { } { }{ }2 , , , , , , ,X a b a b b cτ φ=  then { },a b  it is p1-b-preopen.  

Proposition 2.5. If A  and B  are a subsets of a bitopological space X , 
then  

1) A  is a pj-b-t set if and only if A  is pj-b-semiclosed.  
2) If A  is pj-b-closed, then it is a pj-b-t-set.  
3) If A  and B  are pj-b-t-sets, then A B∩  is a pj-b-t-set. 
proof. 1) Let A  be pj-b-t set, then ( ) ( )( )p Int A p Int j bcl A − = − −   that 

implies ( )( ) ( ) ( )( )p Int j bcl A p Int A A p Int j bcl A A A− − ⊂ − ⊂ ⇒ − − ⊂ ⇒  is 
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pj-b-semiclosed. conversely, Let A  be pj-b-semiclosed set, then  
( )( )p Int j bcl A A− − ⊂  ( )( ) ( )p Int j bcl A p Int A⇒ − − ⊂ − . Also,  

( )A j bcl A⊂ −  and ( ) ( )( )p Int A p Int j bcl A− ⊂ − − . Hence, A  is a pj-b-t 
set.  

2) Let A  be pj-b-closed, then  
( ) ( ) ( )( )A j bcl A p Int A p Int j bcl A= − ⇒ − = − − . 

3) Let A  and B  be pj-b-t-sets, then we have:  

( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

( ) ( )
( )

p Int A B p Int j bcl A B

p Int j bcl A j bcl B

p Int j bcl A p Int j bcl B

p Int A p Int B

p Int A B

− ∩ = − − ∩

 ⊂ − − ∩ − 
= − − ∩ − −

= − ∩ −

= − ∩

 

( ) ( )( )p Int A B p Int j bcl A B⇒ − ∩ = − − ∩ , Hence A B∩  is a pj-b-t-set. 
The following example shows that the converse of (2) is not true in general. 
Example 2.6. From example 2.2 it is clear that { },c d  is a p2-b-t-set but it is 

not p2-b-closed. 
Lemma 2.7. Let A  be p-open subset of a bitopological space X , then 

( ) ( )( )j bcl A p Int j cl A− = − −  and  
( )( ) ( )( )p Int j bcl A p Int j cl A− − = − − . 

proof. Let A  be p-open subset of X , then  

( ) ( )( ) ( )( )
( )( )( ) ( )( )( )
( )( )( )

( )( )

j bcl A j scl A j pcl A

A p Int j cl A j cl p int A

A p Int j cl A

p Int j cl A

− = − ∩ −

 = ∪ − − ∩ − − 

= ∪ − −

= − −

 

Proposition 2.8. Let A  be a subsets of a bitopological space X , then  
1) If A  is pj-t-set then it is pj-b-t-set.  
2) If A  is pj-b-t-set then it is pj-b-B-set.  
3) If A  is pj-B-set then it is pj-b-B-set. 
proof. 1) Let A  be pj-t-set,then ( ) ( )( )p Int A p Int j cl A− = − −  from lem- 

ma 2.1 ( ) ( )( )j bcl A p Int j cl A − = − −   ( ) ( )j bcl A p Int A⇒ − = −   
( )( ) ( )p Int j bcl A p Int A⇒ − − = − . Hence A  is pj-b-t-set. 

2) Let A  be pj-b-t-set. A A X= ∩  and X  is p-open set, then A  is pj-b- 
B-set. 

3) Let A  be pj-B-set i.e. A U V= ∩ , where U  is p-open and V  is a pj-t- 
set i.e. ( )( ) ( )p Int j cl V p Int V − − = −   from lemma 2.1  

( ) ( )( )j bcl V p Int j cl V − = − −   ( )( ) ( )( )p Int j bcl V p Int j cl V⇒ − − = − −  
( )( ) ( )p Int j bcl V p Int V⇒ − − = − . Hence A  is pj-b-B-set.  

Theorem 2.9. Let A  be a subset of a bitopological space X , then the 
following are equivalent: 

1) A  is p-open set.  
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2) A  is pj-b-preopen and pj-b-B-set. 
proof. (1) ⇒ (2) Let A  be p-open ( )A p int A⇒ = −  but ( )A j bcl A⊂ −  

then ( ) ( )( )A p int A p int j bcl A= − ⊂ − −  A⇒  is pj-b-preopen. Also,  
A A X= ∩  and X  is p-open and ( )( ) ( )p int j bcl A p int A A− − = − ⇒  is pj- 

b-B-set.  
(2) ⇒ (1) A  be pj-b-preopen and pj-b-B-set. i.e. A U V= ∩ , where U  is 

p-open and ( )( ) ( )p int j bcl V p int V− − = − , then we have  

( )( )
( )( )
( )( ) ( )( )( )
( )( ) ( )( )
( )( ) ( )

A p int j bcl A

p int j bcl U V

p int j bcl U j bcl V

p int j bcl U p int j bcl V

p int j bcl U p int V

⊂ − −

= − − ∩

= − − ∩ −

= − − ∩ − −

= − − ∩ −

 

Hence,  

( )
( )( ) ( )( )
( )( )( ) ( )

( )

A U V U

p int j bcl U p int V U

p int j bcl U U p int V

U p int V

= ∩ ∩

⊂ − − ∩ − ∩

= − − ∩ ∩ −

= ∩ −

 

Therefore ( ) ( )A U V U p int V= ∩ = ∩ −  and A  is p-open. 
The following examples show that pj-b-preopen sets and pj-b-B-sets are 

independent.  
Example 2.10. From example 2.3 it is clear that { },a b  is a p1-b-B -set but it 

is not p1-b-preopen.  
Example 2.11. From example 2.4 it is clear that { },a b  it is p1-b-preopen but 

it is not a p1-b-B-set.  
Corollary 2.12. A subset A  of a bitopological space X  is p-open if and 

only if it is pj-α-open and pj-b-B-set.  
Proposition 2.13. Let A  be a subsets of a bitopological space X , then the 

following are equivalent:  
1) A  is jp-regular set.  
2) ( )( )A p int j bcl A= − −   
3) A  is pj-b-preopen and pj-b-t-set.  
proof. (1) ⇒ (2) Let A  be jp-regular set.since ( ) ( )j bcl A j cl A− ⊂ −  then  

( )( ) ( )( )p int j bcl A p int j cl A A− − ⊂ − − = . Since A  is pj-b-open  
( )( )A p int j bcl A⇒ ⊂ − − . Hence, ( )( )A p int j bcl A= − −  

(2) ⇒ (3) This is obvious. 
(3) ⇒ (1) Let A  be pj-b-preopen and pj-b-t-set.Then  

( )( ) ( )( )A p int j bcl A p int cl A A⊂ − − = − ⊂  and A  is p-open by lemma 2.1 
( )( ) ( )( )A p Int j bcl A p Int j cl A= − − = − −  Hence, A  is jp-regular set.  

Definition 2.14. A subset A  of a bitopological space X  is called pj-sb- 
generalized closed if pj- ( )( )s bCl A U⊂ , whenever A U⊂  and U  is pj-b- 
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preopen.  
Definition 2.15. pj- ( )( )s bCl A  is the intersection of all pj-semiclosed sets 

which containing A .  
Theorem 2.16. Let A  be a subset of a bitopological space X , the following 

properties are equivalent:  
1) A  is jp-regular open set.  
2) A  is pj-b-preopen and pj-sb-generalized closed set. 
proof. (1) ⇒ (2) Let A  be jp-regular open.Then A  is pj-b-open.  

( )( )A p Int j bCl A⊂ − − . Moreover, by Lemma 2.1 pj- 

( )( ) ( )( )( ) ( )( ) ( )( )s bCl A A p Int j bCl A p Int j bCl A p Int j Cl A= ∪ − − = − − = − −
= A . Hence, A  is pj-sb-generalized closed. 

(2) ⇒ (1) Let A  be pj-b-preopen and pj-sb-generalized closed.  
( )( )pj s bCl A A A⇒ − ⊂ ⇒  is pj-b-semiclosed. Then  

( )( )( )p Int j b Cl A A− − = . Therefore by Proposition 2.3 A is jp-regular open. 
Corollary 2.17. A subset A  of a bitopological space X  is jp-regular open if 

and only if it is pj-α-open and pj-b-t-set.  

3. Decompositions of New Kinds of Continuity 

After we had been defined and studied the propriety of our new classes of sets 
we are ready to study the concept of continuity between any two bitopological 
spaces via our new classes of sets.  

Definition 3.1. A function ( ) ( )1 2 1 2: , , , ,f X Yτ τ σ σ→  is called pj-b-conti- 
nuous [10] (resp. pj-Locally b-closed continuous [10], pj-D(c,b)-continuous [10], 
pj-α-continuous [11] pj-semi continuous [11], jp-semi continuous [11], pj-B- 
continuous [12], pj-Locally closed continuous [12], jp-regular continuous [13]) 
if ( )1f V−  is pj-b-set (resp. pj-Locally b-closed set, pj-D(c,b)-set, pj-α-open, 
pj-semiopen, jp-semiopen, pj-B-set, pj-Locally closed,, jp-rgular) in X  for each 
p-open set V of Y.  

Theorem 3.2. A function ( ) ( )1 2 1 2: , , , ,f X Yτ τ σ σ→  is called pj-B-conti- 
nuous if and only if it is locally pj-b-closed-continuous and pj-semi-continuous.  

proof. It is following from lemma 3.4 in [10]  
Definition 3.3. Afunction ( ) ( )1 2 1 2: , , , ,f X Yτ τ σ σ→  is called pj-b-pre-con- 

tinuous (resp. pj-b-B-continuous, pj-b-t-continuous, pj-b-semi-continuous) if 
( )1f V−  is pj-b-preopen (resp. pj-b-B-set, pj-b-t-set, pj-b-semiopen) in X  for 

each p-open set V  of Y .  
Theorem 3.4. A function ( ) ( )1 2 1 2: , , , ,f X Yτ τ σ σ→  is called p-continuous 

if and only if it is pj-α-continuous and pj-b-B-continuous.  
proof. It is follows from theorem 2.1. 
Theorem 3.5. A function ( ) ( )1 2 1 2: , , , ,f X Yτ τ σ σ→  is called p-continuous 

if and only if it is pj-b-pre-continuous and pj-b-B-continuous. 
proof. It is follows from corollary 2.1. 
Definition 3.6. Afunction ( ) ( )1 2 1 2: , , , ,f X Yτ τ σ σ→  is called contra pj-sb- 

continuous if ( )1f V−  is pj-sb-generalized closed in X  for each p-open set 
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V  of Y .  
Theorem 3.7. A function ( ) ( )1 2 1 2: , , , ,f X Yτ τ σ σ→  is called completely p- 

continuous if and only if it is pj-b-pre-continuous and pj-b-t-continuous. 
proof. It is follows from proposition 2.3. 
Theorem 3.8 A function ( ) ( )1 2 1 2: , , , ,f X Yτ τ σ σ→  is called completely 

p-continuous if and only if it is pj-b-pre-continuous and contra pj-sb-con- 
tinuous. 

proof. It is follows from theorem 2.2. 
Theorem 3.9 A function ( ) ( )1 2 1 2: , , , ,f X Yτ τ σ σ→  is called completely p- 

continuous if and only if it is pj-α-continuous and pj-b-t-continuous.  
proof. It is follows from corollary 2.2. 
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