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Abstract 
To protect the systems exposed to the Internet against attacks, a security sys-
tem with the capability to engage with the attacker is needed. There have been 
attempts to model the engagement/interactions between users, both benign 
and malicious, and network administrators as games. Building on such works, 
we present a game model which is generic enough to capture various modes 
of such interactions. The model facilitates stochastic games with imperfect 
information. The information is imperfect due to erroneous sensors leading to 
incorrect perception of the current state by the players. To model this error in 
perception distributed over other multiple states, we use Euclidean distances 
between the outputs of the sensors. We build a 5-state game to represent the 
interaction of the administrator with the user. The states correspond to 1) the 
user being out of the system in the Internet, and after logging in to the system; 
2) having low privileges; 3) having high privileges; 4) when he successfully at-
tacks and 5) gets trapped in a honeypot by the administrator. Each state has 
its own action set. We present the game with a distinct perceived action set 
corresponding to each distinct information set of these states. The model faci-
litates stochastic games with imperfect information. The imperfect informa-
tion is due to erroneous sensors leading to incorrect perception of the current 
state by the players. To model this error in perception distributed over the 
states, we use Euclidean distances between outputs of the sensors. A numeri-
cal simulation of an example game is presented to show the evaluation of re-
wards to the players and the preferred strategies. We also present the condi-
tions for formulating the strategies when dealing with more than one attacker 
and making collaborations. 
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1. Introduction 

Ensuring security of a system delivering important services, with exposure to the 
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Internet, has many challenges. When such a system is distributed with many 
stakeholders , the task of securing such system becomes more complex. A typical 
system, delivering one or more services would be operating with the co- 
ordination of processes and data on many different systems exposed to the 
Internet with different degrees of security. Each stakeholder has his own 
computational space. Thus each stakeholder providing a service to other 
stakeholders has to ensure the security of the legitimate users’ processes and data 
while also dealing with malicious users appropriately [1]. In the recent time, 
many successful attacks have been new, persistent and evolved over time.There 
have been attempts to employ game theory to model and address such attacks 
[2]. These attacks are accomplished with multiple steps. When an attacker 
begins to attack, at each step he is breaching the security of the computational 
space of his service provider and other related stakeholders. The administrators 
and security systems must defend the system from such attackers. To do so 
effectively, it is important to detect each anomalous behavior at the earliest and 
respond appropriately to minimize the damage. But the information received 
from the detection of an anomalous behavior may not be sufficient to classify the 
user as an attacker or a legitimate user who made an innocent fumble or an 
unusual workload. In such cases the security system must engage with the user 
to get sufficient information at the earliest to deal with him appropriately. Since 
such engagement by the administrator or the security system is an expensive 
overhead, only a detection of an anomalous behavior must trigger such 
engagement. Thus, we need an event (detection of anomalous behavior) driven 
engagement and a security system facilitating it. 

The engagement of the suspected user and the administrator/security system 
is essentially an interaction between two decision making entities. We observe 
that game theory provides the relevant framework for such a mechanism design. 
Hence, we present here an architecture for such a security system based on game 
theory. 

Applying game theory to computer/cyber/network security has been an active 
research area since 2005 [3]. The crucial part of these attempts is to build 
appropriate game models to address the security situations. Most of the efforts 
have been to address a very specific attack by devising a suitable game model 
and executing a game. Roy, et al. [4] provides a survey of the works to model the 
interaction between a user and a network administrator and a classification of 
these works based on the game models used. Since our architecture is aimed at 
addressing different attacks it must have game models appropriate to each attack. 
But we observe that a generic game model which is abstracted enough to address 
the typical scenarios would facilitate well in deriving the specific game models. 
We present a generic game model, a game and numerical simulation to validate 
our analyses of its utility. 

As one of the early attempts, [3] modeled the interaction between an attacker 
and the administrator as a stochastic game with 14 states considering 3 types of 
attacks. Their game assumed perfect information. [5] presented a two state, 
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imperfect information, zero sum, stochastic game with numerical simulation 
showing the advantage of considering the imperfect information. The main 
motivation for considering the imperfection in the information was the errors in 
the player’s sensors. The error in the sensor makes the player believe that he may 
be in the states other than the state he really is. We make two extensions to this 
work. The simulation method used to study and explore the value of the game 
and the rewards for the strategies are an extension of [6] which has only 5 
strategic options. 

Our model has the same structure as [5] with one extension. When there are 
more than two states in the game, this error in sensor could make him 
mistakenly believe he is in any of the other states than the one he really is in. The 
error in perceiving the current state gets distributed over the other states 
depending on the sensor reading’s error needed to misread the state as the 
current state. Based on this extension in the game model, a game with five states 
is designed. The error in the perception of current state gets distributed over the 
four states other than the real state. Thus, the probability of the player1 being 
deluded to be in any of the other states is proportional to the distance between 
the sensor readings of state defining variables of the other states from that of the 
current real state. 

The second extension is in the game. Since the set of actions available at each 
state are distinct in the game considered here the extended action sets will be 
different from the original action sets. For the administrator the sensor error is 
the cause of perceiving the current state as an information set instead of a single 
state. The user, who is assumed in this work to have an error free sensor, also 
faces deception while game enters the Trap state. Then administrator’s ploy in 
the honey pot makes the user unsure of his current state and causes extension of 
his perceived action set. This increase in the size of the perceived action set at 
honey pot for the user, making his/her choosing the action less obvious due to 
increased apparent choices. Following these interactions, administrator will be 
able to determine the motive of the user under suspicion. This whole interaction 
based on the administrator ploy is abstracted into one single state. 

We analyze the game for its solution discussing the preferred strategies. A 
numerical simulation implemented in the programming language C of the game 
validating the analysis is presented. In evaluating the simulation, we discern that 
the strategy has to precipitate into game theoretic actions, which in turn into 
computer/network administrator actions. We present a gradation of aggression 
the players can assert and study the game’s dynamics. 

The main motivation for this work is to devise a game model and a game 
generic enough to incorporate real security games, needed to build a security 
system. [7] presents the architecture to construct a security system based on the 
game theory approach. The generic game model and the game here are useful to 
derive different game models and instantiate games, appropriate for different 

 

 

1Administrator, as the sensor of the user is considered to be error free we are considering here the 
worst case scenario for the administrator. Our work can be extended to the case with user too having 
erroneous sensors.  
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security situations. The major contributions of this work are summarized as 
below.  

1) We present a security system architecture, its components and the detailed 
operational flow.  

2) We extend the previously proposed game model by devising a method for 
modeling the distribution of sensor error over multiple states.  

3) We devise a game which is representative of the security related interac- 
tions. The game has 5 states, each having a distinct action set, resulting in dis- 
tinct perceived/extended action set corresponding to each distinct information 
set of states.  

4) We present the expression for the generalized Imperfect Information 
Factor in Appendix B.  

5) We present the numerical simulations studying the dynamics of such a 
game when played with malicious users of different natures, and picking the 
preferred strategy profile.  

6) We present the framework to actively interact with suspicious players in 
honeypot.  

7) We present the conditions for interacting with a group of attackers and for 
collaboration.  

2. Related Works 

A survey of application of game theory for network security based on the targets 
in a network is at [8]. A survey of different network related attribution to the 
game theoretic actions with equilibrium calculation is at [9]. A simulation of 
security game with 5 strategic options of administrator and the adversary is at 
[6]. A dynamic altering of the properties of a computing platform based on the 
game-theory to counter the attacks is studied with simulations at [10]. A zero- 
sum game model is presented at [11]. A game theoretic framework with classifi- 
cation of the attackers based on the skill and motivation, with solution based on 
solving the Markov chain is at [12]. A game theoretic attempt to secure the 
infrastructure resources is at [13]. Computation of 2-Player Nash Equili- brium 
is shown at [14] to be complete in the class PPAD introduced at [15]. An algori- 
thm for general-sum stochastic game in two scenarios is at [16]. Considering 
behavioral probability weighting of players on their equilibrium strategies in 
three types of security games is presented in [17]. In this work, the weighting of 
players results in capturing the situations where different objectives are needed 
for attacks to succeed, as noted by the Total Effort, Weakest link and Best Shot 
games. We here use the different behaviors (as explained in Section 7.1) of 
players as a parameter which they vary to achieve optimal result against the 
adversary.  

3. Game Inspired Security Architecture 

Here we present the architecture. We refer to the security architecture as Game 
Inspired Defense Architecture (GIDA) (Figure 1). 
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Figure 1. GIDA. 

 
• Target System: It is the computational space in CBS which is being protected 

by the GIDA security system. As is prevalent, such a system would be a 
network of many systems. All the interaction with other blocks happen 
through the Sensors & Actuators (S-A) blocks. It is having a two-way data 
link and a two-way control-signal link with the (S-A) block. The target system 
is the CBS of the organization which would be using GIDA-based as a real 
time security system to protect itself from attacks and failure. It would 
typically contain the usual subsystems that make up any of the present day 
industrial business system, like database server, web server, confidential files, 
etc. 

• Internet: This block is the external world with which the target system 
communicates during its operation. The system has no control over the form 
and content of what happens there and should only deal with what comes 
from it, into itself. The interaction of data coming in and going out into the 
Internet from the system happens through the (S-A). 
Thus there is a data link with the (S-A) block.2 
The Internet is functionally connected in layers. Typically, the immediate 

external surface would be that of the Internet Service Provider for the company. 

 

 

2Though there is a possibility of getting some control-signal information, like requesting the ISP to 
provide some traffic related information, it is not represented here with a control-link signal link, as 
its not a regular event and not quantitatively salient. 
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Then those provided by the clients and those interacting with in that surface, 
and so on.  
• Sensors: This block is the channel through which all the interactions happen 

between the Internet and the target system. The sensors and actuators are a bit 
indistinguishable functionally in terms of distinct systems as interactivity of 
the system components is maturing with technology. For example, even 
though Firewall keeps a gate to disallow some traffic as per the prescribed 
policies, it also gives a count of what is the attempted traffic and the one that 
does go through, to the defense system. In the first function it is acting as an 
actuator while in the second as a sensor. But the predominantly sensing com- 
ponents are put into sensors. An example for sensors operating at application 
layer is at [18].  

• Actuators: This block has the actuators. 
The anomalies can happen high up at the application layer or the lower layers 

like Network layers, Transmission layer, Data link layer and so on. With the 
convergence in the datacom technologies the distinction of these layers is also 
not clear in the present times. So, what ever the sensors and actuators the 
operate with a given functionality space is contained in this block. 

Similarly, with the maturing of technology of interfaces the same devices/ 
systems some times do both sensing and actuating functions. So, that classifica- 
tion is also not a hard one. But the systems which are able to sense the anomalies, 
at what ever the layer are termed as sensors and the systems which are able to act 
upon to affect the Target System’s behavior are considered as actuators. 

There is typically some inbuilt set of actions based on the standard prescribed 
policies, which allow the actuators to take actions. Responses for some obvious 
anomalies are also covered by them. But when some anomaly is observed which 
is not obvious then those readings/values/data/related to that event is sent to the 
GIDA Control Unit (GCU). Then the GCU transfers these observations to the 
Knowledge Management System (KMS) and receiving an action plan based on 
an appropriate game model it will direct/send control signals to the actuators to 
take actions to deal with the scenario. Subsequently the sensor functionality of 
the systems in this block keep sending any required information back to the 
GCU. 

In case of an observed anomaly which has a corresponding prescribed action 
for the sensor/actuator system to counter, then it shall be acted upon as prescrib- 
ed. But never the less the event is reported to the GIDA Control Unit, at the 
earliest, for it to be logged in and documented in the KMS for further analysis 
and forensic activities to learn about the system and scenarios. 

It is having both a two-way data link and two-way control-signal link with the 
block Target System and a data link with the block Internet. 
• KMS: This is the knowledge center where the information related to the 

observed anomalies is sent in and a defense action plan is got as the output to 
the GCU block. To do the attack identification effectively, an up-to-date 
knowledge is needed about the attacks, risks, vulnerabilities etc. There are 
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many online government databases maintaining such knowledge bases. This 
block keeps itself updated from those knowledge bases and reports to them its 
own findings. 
There is a two-way data link and a two-way control link to the GCU block. 

There is also a two-way data link with the External Defense knowledge 
Systems block.3 The KMS is the block which takes the input of observations 
anomalies submitted through the GCU. These inputs are analyzed to identify the 
attack/attacks as per AVOIDIT, and to pick a suitable model as per ADAPT. 
Then this game model is given as output to the GCU. This can be as simple as a 
onetime action of shutting down a web server or restarting a database or a 
sequence of actions in time based on the game model. 

While identifying attack, to take the advantage of the up to date online 
resources, the block with information related to attack, vulnerabilities, risk etc. 
will be communicating with the online resources to get the information about 
the latest attacks. 
• Honeypot: This block is the trap to which a suspected user is sent, to 

understand his intentions when his activity raises alarm through the sensors 
enough to consider it unsafe to let him interact with the main system. 
It has a two-way data link and a two-way control link to the (S-A) block. This 

block mimics the main target system in its constitution virtually. Even though 
does not contain any real confidential information or high value assets, it only 
poses to have them. 

When the anomalous behavior of a user is ambiguous enough to resist the 
classification as either an attacker or a normal user, further inquiry is needed to 
learn more about the intention of the user. If it seems unsafe to wait and watch 
the user to operate on the real system, it is a convenient strategy to lead him to 
Honeypot where he is under the illusion of being in the real system, and opera- 
tes as his plans. This facilitates GIDA to observe the user’s behavior through the 
same (S-A) block, which also is connected to the Honeypot. Here its not only 
observing the actions, an instigating interaction is possible leading to a classifi- 
cation of the user possibly with optimum time and effort. Such a classification 
would help in the appropriate treatment of the user. 
• External Defense knowledge Systems: This block is the online knowledge 

bases related to attacks, vulnerabilities, risks etc. There is a two-way data link 
with KMS block. 

• GCU: This block as shown in the Figure 2 is the central control unit, for the 
whole defense operation of GIDA. It is connected to the (S-A) which 
intimates when there is any anomaly observed. This starts the involvement of 
this unit. The control agent translates and facilitates the communication be- 
tween the Sensors and the KMS in one way, while from KMS to the Actua- 
tors in the other, as shown in the Figure 3. As and when required it sends 
control signals to (S-A) to abort a traffic or operation, divert it to Honeypot 
or communicate with the KMS to decide what to do. 

 

 

3Since this is done periodically and not necessarily during the engagement with an attacker the links 
are show in red. 
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Figure 2. GIDA control unit. 

 

 
Figure 3. GIDA control agent. 

 
This block controls and co-ordinates the defense/security activity of GIDA. It 

gets its inputs about the observed anomalies from the sensors in the (S-A) block 
and submits it to KMS and gets the plan of action as per a game model as the 
counter measure. It then uses the look-up table to send directions for such 
actions to be performed by the actuators in the (S-A) block. 

This block consists of mainly three sub blocks. A GIDA-Control-Agent and 
the two other blocks with look-up tables for translating the two inputs into two 
outputs. The first one is a look-up table mapping inputs of observation4 of 
anomaly/anomalies from the sensors to the inputs to be submitted to KMS5. The 
second one is a look-up table mapping the output of the KMS which is an ac- 

 

 

4These observations collected by the sensors must be useful for the Attack Identification System for 
analysis. So, GIDA Control Unit will have to feed it in appropriate way. 
5With the maturing of the model, the KMS can be designed to take the inputs which are as closer to 
the sensor inputs. 
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tion-plan based on a game model, to the the action commands to be given to the 
actuators in the Actuators block. The control agent box has four constituents as 
shown below. 

3.1. Operational Flow 

The typical operational flows are as follows:  
1) when there is no attack or any problems in the operation of the target 

system, the target system is simply interacting with its clients over Internet. Both 
the interactions and operations are being observed by the systems in the (S-A). 
The most probable event in GIDA system on such a day would be, a lucky 
update of the knowledge base in KMS related to some attack from an online 
resource. 

2) When there is an anomaly observed by the sensor, which is obvious in 
nature, and already has a prescribed action to be taken by a co-operating 
actuator, then such an action would be taken immediately and the event is 
reported at the earliest to the GIDA Control Unit. The information received like 
this will be submitted to KMS for documentation and forensic purposes. 

3) When anomaly is observed by some sensors, and the observed pattern does 
not have any obvious (reflex) action plan for the sensors/actuators, they report 
those observations to the GCU. Then these inputs and submitted6 to the KMS 
appropriately by the GCU7. The information is analyzed and attack/attacks 
is/are identified using attack identification system. That identification will be 
used to pick the appropriate game model as per ADAPT. That game model will 
be given as the output of KMS to the GCU. Then GCU takes prescribed 
sequence of action as per that game model8. 

Once an observed anomalous behavior is not obvious enough for the 
actuator/sensor systems to act upon itself, the anomaly is referred to the GCU. 
Then through KMS, every response is formulated as a game. As everywhere in 
game theory literature, from the trivial interaction to the most sophisticated one 
is modeled as a game, we model all the responses unequivocally as a game. 

4) When the information from the observed anomaly is sufficient to classify 
the user to be not safe to operate in the main system, while it is insufficient to 
classify if he is really malicious and identify his intentions, he would be directed 
to honeypot and the step two or three is followed as if he is on the main system. 

3.2. Game Model Repository 

The success of a security system based on game theoretic ideas lies on appro- 
priateness of the game model to represent the current security situation and the 
effectiveness of the prescribed strategies. Not only different attacks warrant for 
different games to be played with different appropriate game models, different 
scenarios with same kind of attack may need different game models with 

 

 

6The GIDA Action Agent uses the first lookup table for this. 
7A typical example for this would be when two different sensors detect slight anomalies, but indi-
vidual neither large enough to warrant a standard reflex action, as per sensor/actuator policies. 
8The GIDA Action Agent uses the second lookup table for this. 
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different considerations of rewards and transition functions. But to have a 
generic game model which can be used to derive such game models is crucial, as 
that gives the general structure with proven boundary conditions. The Figure 4 
shows this connection. 

Functionally GIDA is designed as an event-driven system as show in Figure 5. 
Computationally, it is an implementation of a Buchi Automaton.9 An overview 
of the event flow can be summarized as in this figure. A set of anomalies is 
detected in the operation of system to be protected (during operations by a user/ 
some users). This triggers the operation of GIDA. Then this information is used 
to identify the possible attack/attacks going on using the taxonomy AVOIDIT. 
This gives the attack components, the relevant game models. Using both of these 
in ADAPT, the relevant game model is obtained. 

This Figure 6 gives a succinct event flow diagram of the events in terms of 
interactions between a user and an administrator. By this figure and the previous 
one, we can see that though we need different game models with different cha- 
racteristics, there seems a commonality in the security games and the modeling 
requirements. Until now most of the effort is focused on using game theory to 
address some particular attacks. But to systematize this as a paradigm for 
security solution, a generic game model becomes a necessity. 
 

 
Figure 4. Generic game model’s utility. 

 

 
Figure 5. Internal flow diagram. 

 

 

9The system will have accepting conditions and not an accept state like the general NFA, and is faci-
litated to run continuously. 
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Figure 6. Security event flow. 

4. Game Model 

The model considers that a player10 k observes the game’s true state using an im- 
perfect sensor/a set of imperfect sensors. That means, player k can view the 
present state jξ  to be any state in the information set { }1 2

, , ,
j p

k
j j jIξ ξ ξ ξ=   

with jξ  being an element of 
j

kIξ . The perceived action set at this state may be 
expanded, i.e., player may decide to take an action which is allowed at 

ij jξ ξ≠  
where 

ij
ξ  belongs to 

j

kIξ . When the true state is jξ , let the player k’s extended 
action set kj jj j

k k
I

B A
ξ

ξ ξξ ∈
=


 where 
j

kAξ  denotes the allowed action set of player 
k at state is jξ .If the player k takes an action 

j

k Bξα ∈ , when the true state is 

jξ  but kα  is not in k
jA , then in terms of the influence on state transition 

probabilities, kα  is considered equivalent to player k taking no action at state 

jξ . However, its influence on player k’s payoff kα  may not be equivalent to 
player k taking no action at state jξ  depending upon the cost of the attempted 
execution of kα . Formally, the model is represented by a tuple,  

( )1 2 1 2 1 2, , , , , , , ,S E E A A Q R R β  whose elements are defined below.  
1) { }1 2, , , NS ξ ξ ξ=   is the set of states.  

2) { }1 2
, , ,k k k k

N
E E E Eξ ξ ξ=  , 0,1k =  where the thj , 0 j N< < , set 

j
Eξ  with 

{ }11 , 1, 0j

j i i i

mk k k k
j j j jiE p i m p pξ =

= ≤ ≤ = >∑ , represents the error probabilities of kth 

player’s sensor at the true state jξ  over the corresponding information set, 
j

kIξ . 

{ }1 2
, , ,

N

k k k kI I I Iξ ξ ξ=  , 0,1k =  where the k
jI  represents the information set of 

player k when the true state is jξ , i.e., 

{ }1 2
, , , , ,

j i m j

k
j j j jIξ ξ ξ ξ ξ=    

where ,
j i

k
j jm I Sξ ξ= ∈ , with jm N≤  being an integer indicating the number 

of states that have a possibility of being considered the current state at state jξ  
with the condition that 

jj Iξξ ∈ .  
3) { }1 2

, , , , 0,1
N

k k k kA A A A kξ ξ ξ= =  is the action set of player k, where  

{ }1 1
, , ,

j kM

k k k k
j j jAξ α α α=   is the action set of player k at state jξ . Let  

 

 

10 0,1, ,k K=   for one administrator and users respectively. 
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{ }1 2
, , , , 0,1

n

k k k kB B B B kξ ξ ξ= =  

where 
j

kBξ  represents the action set of player k at 
j

kIξ . That means  

kj jj j

k k
I

B A
ξ

ξ ξξ ∈
=


. By introducing different action sets at each state we may get 
distinct 

j

kBξ  at for each distinct 
j

kIξ . Let 
j j

k kT Bξ ξ= .  
4) The state transition probabilities are represented by function  

[ ]1 2: 0 1Q S B B S× × × →  which maps a pair of states and a pair of actions to a 
real number between 0 and 1. The model assumes that for any state k

jξ  if the 
player k takes an action 

j

k k
j Bξα ∈ , which is does not belong to 

j

kAξ , then  

( ) ( )1 1 2 2 1 2 2
, , , , Normal_operation, ,k l l

j i i j j i jQ Qξ α α ξ ξ α ξ=  

where l represents the other player.  
5) The reward11 of the player k is determined by the function 1 2:kR S B B R× × →  

which maps a state and a pair of actions to a real number.  
6) ,0 1β β< <  is the discount factor for discounting the future rewards in 

this infinite horizon game.  

4.1. The Error Distribution 

As kE  represents the set of error probabilities of the player k, let us consider 
the set of error probabilities 

j

kEξ  with the current state being jξ . Let the error 
of the sensor for player k at the state jξ  is k

jγ , 0 1k
jγ≤ < . The error k

jγ  is 
always less than 1 because the real state jξ  is always taken as an element of the 
information set 

j
Iξ  at jξ . Then at the current state jξ , let the probabilities 

with which administrator perceives the current state to be 1ξ , 2ξ , 3ξ  and 4ξ   
be 

1

k
jp , 

2

k
jp , 

3

k
jp , and 

4

k
jp  respectively. Then the error at state jξ  is  

( )1 1
i j j

Nk k k k
j j j ji p p pγ

=
= − = −∑ . For 1 ,i j N≤ ≤ , let 

i

k
jω  be the set of sensor in- 

puts to the player k indicating the current state to be iξ , while the real current 
state is jξ . In practice the sensor can be a device or a collection of devices 
which collects values of some parameters of the system. All such parameters can 
be considered to form an orthogonal basis of the vector space, where some 
closed volume is taken to be associated with each state. All of those points in that 
closed region get mapped to one state. All of them have the values of the 
parameters which lead the player to perceive the current state to be the parti- 
cular state.12 

Let the current real state be jξ , where 1 j N≤ ≤ . At this state the sensor 
inputs at two different instances be, say 

i

k
jω  and 

h

k
jω , where 1 ,i h N≤ ≤  due 

to erroneous sensors. This leads to the perception of the current state to be iξ  
and hξ  respectively. Depending on the nature of the system, consider some 
representative statistical measure of central tendencies like Mean, Mode, Median 
and so on, of 

i

k
jω  and 

h

k
jω . Let 

ih

k
jEd  to be the Euclidean distance between 

 

 

11The expected quantified value of the outcome is called reward. 
12It is true that some of the parameters may yield discontinuous intervals of values associated with a 
single state. This makes a set of disconnected regions correspond to a single state. In such cases we 
have to device more involved mechanisms, which is apt for future enquiries. 
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those measures.In this work, larger errors are assumed to be less probable than 
the smaller errors in sensor operations,that is, .

ji jh i h

k k k k
j j j jEd Ed p p> ⇒ >  In the 

following game with 5-states, the sensor error is distributed over the three states 
other than the real current state. This means for example, if the sensor error at 

1ξ  is 0.3, then the probability with which the administrator perceives the 
current state to be not 1ξ  is 0.3. This could result in perceiving the current state 
to be 2ξ , 3ξ  and 4ξ  states respectively with probabilities of 0.15, 0.1 and 0.05. 
From the sensor relation, we have the sensor error at state 1,

i

Nk k
j j jii j pξ γ

=
≠ =∑  

related to the probabilities of virtual states. 
The sensor outputs values of parameters which define states. Particular range 

of values of particular set of parameters will correspond to a state. In fact the 
general way to define it, is a set of values, covering the range, for each of the 
parameters to correspond to a state. And if there are some parameters whose 
values do not affect in deciding a particular state then then range can accom- 
modate any value. 

The states of the system is formulated using the following. 
• values13 corresponding to a set of parameters14  
• a vector space with these parameters constituting the basis15  

Thus we can formulate probabilities of observed instant being in the defined 
states as follows.  
• S S O→ −  
where  

{ }0 1 2, , , , NS O S O S O S O S O− = − − − − ,  

{ }0 1 2
, , , ,

Fii i i i iS O s o s o s o s o− = − − − −   

( ) ( ) ( ) ( )( )0 , 1 , 2 , ,
j j j j ji i i i is o s o s o s o s o g− = − − − −  is the thj g -di- 

mensional sequence corresponding to thi  state, iξ .  
( )

jis o l−  = a MCT, representative value of the expected range of values for 
the thl  parameter in the thj  behavior iξ∈ . l∈N , 0 l g≤ ≤   

g  = number of parameters observed by sensors 0 j Fi≤ ≤ , where 1Fi +  
disjoint ranges correspond to state iξ   

When there is an anomaly detected, in terms of sensor values, which do not 
exactly fit into any particular state and there is uncertainty about to which state 
the current values belong to, imperfect information must be considered. 
• Current observed Values of parameters as anomaly  

( )0 1 2, , , , gCV cv cv cv cv=   implies the current values of g parameters  
• consider the minimum of Euclidean distances with elements in each state 

( )0 1 20 1 2, , , ,
f f f fNN∆ ∆ ∆ ∆ . where fi  is the thfi  element, 0 fi Fi≤ ≤  has 

the minimum of distances between CV  and 
fiis o−  element in the thi  

state. 

( )0

min

j

fi

j g
j ij

i

cv s o

g

=

=
− −

∆ =
∑

                    (1) 

 

 

13Range of values, represented by a MCT. 
14(e.g. download bandwidth used, upload bandwidth used, number of ftp requests by a user, …). 
15(orthogonal/orthonormal) depending on the parameters’ co-relation. 



V. Shandilya, S. Shiva 
 

155 

The error in perception of states is given by  

0

0

fj fi

i

fj

j N
j ij

j j N
jj

p
=

=
=

=

∆ − ∆
=

∆

∑
∑

                      (2) 

And the error distribution is given by  
• Then the error at state jξ  is  

1
1

i j j

N
k k k k
j j j j

i
p p pγ

=

 = − = − 
 
∑                    (3) 

• Larger errors are assumed to be less probable than smaller errors.  
An simple illustration to show its application can be as below. 
Example:  
Let some office has a worker’s network traffic as below.16 
Low_Privilege State  
8AM - 6PM ={Download ≤ 1 Mbps, Upload ≤ 150 kbps} 
This behavior is low-privilege, when worker works at his computer in the office. 
High_Privilege State  
8AM - 6PM ={Download ≤ 1 Mbps, Upload ≤ 150 kbps} 
This behavior is high-privilege, when manager works at his computer. 
Sensor Readings On some day, at 3:30 PM there is 1.7 Mbps download and 150 

kbps upload.  

1) 
( )
( )

0.7 0.3 0.7
0.3

0.7 0.3
+ −

=
+

 Probability in Low_Privilege State. Mean Down- 

load: 1 Mbps  

2) 
( )
( )

0.7 0.3 0.3
0.7

0.7 0.3
+ −

=
+

 Probability in High_Privilege State. Mean Down- 

load: 2 Mbps  

4.2. Reward and Transition Functions 

In a given state of the game, the action selected by the players decide their 
rewards and not the resulting state transition that happens depending on such a 
selection. The rewards are affected by the  
• The cost of attempting/executing an action. Let the unit vector representing 

this be 1a .  
• The desirability of the possible state change brought by the selection of an 

action. Let the unit vector representing this be 2a .  
• The amount of information being divulged to the other players regarding the 

intention made explicit by the selection of an action. Let the unit vector 
representing this be 3a .  
Depending upon the system these aspects may be mutually affecting each 

other or independent of each other. The reward is located in the vector space 
thus constructed with these unit vectors as basis. With system having, each of 
these aspects 1a , 2a  and 3a  with { }, 1, 2,3i j∈  & i j≠ , fully affecting the 

 

 

16For other kinds of parameters, with crucial readings transmitted across channel, edit distance can 
also be a useful measure to find errors. 
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other, (colinear), 1i ja a⋅ = , being mutually independent (orthogonal), 0i ja a⋅ =  
and when partially affect each other will have 0 1i ja a< ⋅ < . This is illustrated at 
Appendix A. 

The transition depends on the actions selected by the players in the current 
state and the stochasticity involved. Stochasticity is not arbitrary nor have to do 
with the instability of the system per se, but provides for the possibility of the 
state transition propelled by the actions of the players with conflicting interests. 

4.3. Equilibrium 

Given the information set associated with each state ,0 4j j≤ ≤  the corres- 
ponding mixed strategy is given as  

( ) ( ) ( ) ( )1 2
, , , , , , ,

l

k k k k k k k
j i i i i i iπ ξ π ξ α π ξ α π ξ α =    

where 
j

k
i Iξξ ∈ , 

i

kl Aξ=  & 
j

k k
i Bξα ∈ . Thus, ( ) j

k k
j Tξπ ξ = . We are considering 

general-sum games. When the game starts, say at jξ , with the input of state jξ  
and each player’s selected action ( )0 1 2, , , , K

j j j jα α α α , we calculate the reward at 
state jξ  of each player, ,0k

jr k K≤ <  as per the reward function kR . The net  

reward incurred by player k is ( ) ( ) ( )0 1 2 0 1 20, , , , , , , ,
ln ,K K

yk j k
j jj qβ

π π π π π π π π
ν β ν ξ−

=
= ∑

 

 

where jq  is the probability of reaching the state j j Sξ ξ ∈  during the game’s  

execution at thj  step. 00 , 1i j
j iiq q q=

=
= =∏  as game does start at jξ  state with 

0j = , jq  is the probability of game reaching jξ  from 1jξ − . y is the effective 
discounting factor deciding the threshold at horizon, due to insignificance of the 
effective value addition of further rewards. Since the game is an imperfect 
information game, 

1

0Bξ  gives the perceived action set. Here if the states 1 2 3, ,ξ ξ ξ  
are perceived to be the current state with a probability say, 0.1, 0.3 and 0.6 
respectively, we get the probabilities associated with actions of each state multi- 
plied by these corresponding probabilities. With this extended action set, the 
selection is done, by each players, their rewards are calculated for this step. 

We know that the actions belonging to 2ξ  & 3ξ  cannot be executed and its 
selection is equated to selecting the normal operation of 1ξ , for the effect on 
state transition.Now based on these probabilities the effective action selection is 
evaluated for the player. Thus the Nash equilibrium would be the strategy profile  

( )0 1 2 0 1
* * *, , , , & & & & &K k Kc c c cπ π π π     

where ( ) ( )0 1 2 0 1 2
* * * * * * * * *, , , , , , , , , , ,

,k K k K
i

k k kc
π π π π π π π π π π

ν ν⇔ ≤
   

 , 0ki c k K∀ ∀ ≤ ≤ . 

5. The Game 

In this section we present the game with five states based on the model in 
Section 4, to address the security situations. In general the user presence in a 
network system can be classified as one with low and high privileges. The exact 
privileges could be different depending on the networks and situations, but this 
distinction provides distinct premises for the access, possible actions and res- 
ponsibilities of the user. Thus the activities, both malicious and benign, security 
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related or not, could be respectively categorized and represented by formulating 
two different states. When a malicious user successfully attacks and a suspicious 
user gets trapped in a honeypot by the administrator for investigation, the 
resulting two situations are formulated as two other states. When the user logs 
out of the system he is considered to be out there in the Internet in another state. 
Since the security oriented activity happens only after the user is at least in the 
low privilege state, to start with, the game as in 7 explicitly begins at the Low_ 
Privilege_State in the Figure 7. Thus these 5 states provide a relevant representa- 
tion of general conditions of user activity and hence the user-administrator 
interaction. 

( ) ( ) ( ){
( ) ( )}

0 1 2

3 4

S Internet_State ,Low_Privilege_State ,High_Privilege_State ,

Attack_State ,Trap_State

ξ ξ ξ

ξ ξ

=
  

0ξ  = Internet_State: In this state, the user is out there in the world connect- 
ed to Internet. He has to go through authentication as in Sign_In successfully to 
get in to the system. For this, the user must take the Sign-In-Request action and 
the administrator must grant/take-the-action Sign_In to the user. The normal 
operation in this state by the user means that he is not sending a legitimate 
request for Sign_In, and just like millions on the net, is just out there at some 
IP-address. The normal operation in this state by the administrator means that 
he is not signing-in this user by granting the permission to be in the system. The 
cracking efforts to break in to the system by a user is also captured by the normal 
operation of the user. The blocking, refusal to letting in or system just being 
unavailable is also captured by the administrator’s normal operation. This is to 
emphasize the main focus to be the interaction of a user while he is already in 
the system.The game reaches this state:  
• when the administrator successfully signs out a user from any of the other 4 

states, in response to user’s any choice of action including a Sign_Out_ 
Request at that state.  
-when the user having completed his legitimate jobs in the system goes away.  
-when the malicious user having completed his malicious tasks escapes out of 

the system out in to the Internet.  
 

 
Figure 7. The game: States & transition. 
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• when a person connected to the Internet tries to sign in to the system with a 
Sign_In_Request but the administrator refuses to let in.  

• when a person connected to the Internet tries to sign in to the system with a 
Sign_In_Request and the administrator allows to let in but the operation fails 
(due to bad connection, system problem, etc. captured by the stochasticity) 
and the user remains outside the system on Internet.  
Thus the action set of both the administrator & the user is as below.  

( ) ( ){ }
( ) ( ){ }

0 0 1

0 0 1

0 0 0
0 0

1 1 1
0 0

Normal_Operation_IS_U ,Sign-In_IS

Normal_Operation_IS_A ,Sign-In_Request_IS

A

A

ξ

ξ

α α

α α

=

=
  

1ξ  = Low_Privilege_State: In this state the user is in the system passing 
through the initial authentication. This is the state when the administrator can 
take notice of the user’s activity. Any anomaly in the user behavior will start 
attracting administrator’s attention/concern. The game can reach this state,  
• when the user is already in the system after logging in going through the 

initial authentication successfully. The administrator can observe the user 
behavior, though he is not particularly concerned, to begin with.  

• when the transition from 1ξ  to 2ξ  does not succeed, either due to the given 
the transition probability (system’s stochasticity), or the administrator may 
decide not to promote the user to 2ξ .  

• when the user in 2ξ  acts to return to low privilege, the administrator 
demotes and the transition succeeds.  

• when the administrator decides that a user does not have any malicious 
intention at 4ξ  & lets him back into the system.  

• when the user who successfully attacked the system at 3ξ , returns to 
legitimate & low key behavior with in the system either to continue to be so or 
to elope later. This happens when the user takes the action Return_LPS and 
the administrator takes the action ( )1

2
1Normal_Operation_AS_A α  the transi- 

tion succeeds as per the occurrence ratio.  

( ) ( ){
( ) ( ) ( )}

1 0 1

2 3 4

0 0 0
1 1

0 0 0
1 1 1

Normal_Operation_LPS_A ,Sign-Out_LPS ,

Promote ,Defend_LPS ,Trap_LPS

Aξ α α

α α α

=
 

( ) ( ){
( ) ( ) ( )}

1 0 1

2 3 4

1 1 1
1 1

1 1 1
1 1 1

Normal_Operation_LPS_U ,Sign-out_Request_LPS ,

Privilege_Request ,Attack_LPS ,Resist_LPS

Aξ α α

α α α

=
17 

2ξ  = High_Privilege_State: In this state the user has gained more privileges 
than in the 1ξ . For example, when a user who entered to check his bank account 
balance has gone into (the higher privileges) editing mode of account 
information, like the passcode, usually has to go through more authentication. 
The game reaches this state  

 

 

17Here we note that the Normal_Operation is an abstraction of the actions that are typical to that 
state with no security consequences. Since they are going to be different at different states for both 
the players, we denote each with different notation to distinguish them. 
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• when the user successfully receives the privileges by the administrator to move 
from the Low_Privilege_State.The user should chose the action Privilege_ 
Request and administrator should choose the action Promote, and depending 
on the game’s stochasticity, if the transition succeeds, 2ξ  is reached.  

• when the user continues to operate with the privileges granted by the 
administrator with neither attacking nor being trapped by administrator. That 
is, when both the players are choosing Normal_Operation, depending on the 
occurrence ratio the game could remain here.18 

• when the user after successfully attacking the system in 3ξ  and completing 
the intended damage returns to operating as a High_Privilege user. The user 
should choose Return_HPS, the administrator Normal_Operation_AS_A and 
the transition should succeed.  

( ) ( ){
( ) ( ) ( )}

2 0 1

2 3 4

0 0 0
2 2

0 0 0
2 2 2

Normal_Operation_AS_U ,Sign-Out_HPS ,

Demote ,Defend_HPS ,Trap_HPS

Aξ α α

α α α

=
 

( ) ( ){
( ) ( ) ( )}

2 0 1

2 3 4

1 1 1
2 2

1 1 1
2 2 2

Normal_Operation_AS_A ,Sign-Out_Request_HPS ,

Privilege_Relinquish ,Attack_HPS ,Resist_HPS

Aξ α α

α α α

=
  

3ξ  = Attack_State: In this state the user has already attacked the system 
successfully. He is either accessing other’s confidential data or damaging the 
system or doing some other harm. Here either he is doing some normal 
operations which is actually some attacking activity or eloping along with the 
confidential data, or returning to legitimate behavior with either high or low 
privileges into 1ξ  & 2ξ . He would be concerned to wipe out as much as 
possible any trace of his attack before he goes away. In this state administrator 
can revive the system, which is like restarting a file server for example, if the file 
server is found compromised. This can accompany with sending the suspected 
user either out of the system or to honeypot taking the game to 4ξ  with the 
action Trap_AS. The game reaches this state  
• when the user successfully attacks from the 1ξ .  
• when the user successfully attacks from the 2ξ .  
• when the user succeeds to behave inconspicuously with Normal_Operation 

continuing to damage the system.19  
• when the transitions to 1 2,ξ ξ  & 3ξ  fails as per the stochasticity of the 

system.  

( ) ( ){
( ) ( ) ( )}

3 0 1

2 3 4

0 0 0
3 3

0 0 0
3 3 3

Normal_Operation_AS_A ,Sign-Out_AS ,

Revive_LPS ,Revive_HPS ,Trap_AS

Aξ α α

α α α

=
 

 

 

18Alternatively, when the transitions from 2ξ  fail to reach the three other states, the game could 

remain in this state as shown in the Figure 1. 
19The game reaches this state when the user’s attempt to transit to the normal state is unsuccessful. 
This is typical of a situation when the traces are not getting wiped out even though the user is trying 
to get back to the guise of a normal user. 
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( ) ( ){
( ) ( ) ( )}

3 0 1

2 3 4

1 1 1
3 3

1 1 1
3 3 3

Normal_Operation_AS_U ,Sign-Out_Request_AS ,

Increase_Attack ,Return_LPS ,Return_HPS

Aξ α α

α α α

=
  

4ξ  = Trap_State: In this state, the administrator, after suspecting the user 
while in 1 2,ξ ξ  & 3ξ  to be an attacker, and has successfully sent him to the 
honey pot. In this state user could either enact Normal_Operation actions, or 
with a suspicion of being trapped can do Sign-Out-Request action, which is 
either trying to close all his operations and logging out at the earliest or engage 
with the administrator in his ploy behaving like a benign user. User can also 
confirm his malicious intention by enacting it during the inquiry. The game 
reaches this state  
• when the administrator successfully traps in to Honeypot a user suspecting 

him of some malicious intention.  
• when the user with no malicious intention continues to do Normal_Operation 

oblivious of being trapped and the administrator continuous to observe him at 
Honeypot. Alternatively 4ξ  is reached when a user with malicious intention 
becomes suspicious of being trapped starts behaving.  

• when the user who originally had malicious intention may try to attack at the 
false targets provided by the administrator and try to escape by choosing the 
Sign-Out-Request action, but does not succeed.  

• when the administrator identifies the user who has successfully attacked the 
system and decides to trap him into honeypot while the user is either trying to 
return to 1ξ  & 2ξ .  
In each of these actions the user engages with the administrator’s ploy. In the 

end administrator may declare either the user innocent and let him back in to 
the system through the 1ξ  or catch him and take further punitive actions. The 
fact that the user already created suspicion, makes the administrator to let him 
back to the 1ξ , and let him earn his higher privileges, than to directly enter 2ξ .  

( ) ( ){
( ) ( ) ( )}

4 0 1

2 3 4

0 0 0
4 4

0 0 0
4 4 4

Normal_Operation_TS_A ,Sign-Out_TS ,

Test_TS , Judge _ TS ,Allow_TS

Aξ α α

α α α

=
 

( ) ( ){
( ) ( )}

4 0 1

3 3

1 1 1
4 4

1 1
4 4

Normal_Operation_TS_U ,Sign-Out_Request_TS ,

Commit ,Behave

Aξ α α

α α

=
 

Consequently, the action sets of the players are summarized as below. 

{ }1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4

User_Action_Space

, , , , , , , , , , , , , , , , .

A

α α α α α α α α α α α α α α α α α

=

=
 

{ }1 2 3 4 5 1 2 3 4 5 1 2 3 4 1 2 3

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4

Administrator_Action_Space

, , , , , , , , , , , , , , , , .

A

α α α α α α α α α α α α α α α α α

=

=
  

With the above information about the states and actions, the other 6 compo- 
nents of the 9-tuple, 1 2 1 2, , , , ,E E Q R R β  are suitably designed reflecting the 
system in question. We present a numerical simulation with one such typical set 
of values in Section 7.  
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6. Game Analysis 

As the general case, each of the five states being perceived with a non-zero 
probability at each state would make the whole action space of the player as the 
extended action set at each state. But for the game to go into fifth state adminis- 
trator has to explicitly take the user out of the main system and put into the 
honeypot. Since neither the stochasticity of the game nor the user can acciden- 
tally take the game to this state, administrator wont mistake to be in it while 
being in the other states. Thus, 0 0

ij
p =  for j i≠  & 4j = , while 00

ij
p≤  & 

0
1 1,1 , ,

i

N
ji p j i N

=
= ≤ ≤∑ . Thus, { }0

1 2 3, , ,1 3
j

I jξ ξ ξ ξ= ≤ ≤ . Hence, the extended 
action set corresponding to the information set would be for 4j ≠ ,  

{ }0 1 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4, , , , , , , , , , , , , , , , , , , , ,

j
Bξ α α α α α α α α α α α α α α α α α α α α α α=  

In the Trap state the administrator’s response tries to delude the user about 
his current state to be his preferred state. We consider the user’s sensor to be 
perfect in general, which is the worst case scenario. Thus user’s view of the states 
can be defined as 1 0

ij
p =  if , 4j i j≠ ≠ . 1 1

ij
p =  if j i=  & 4j ≠ . Since the 

user can also have a honey pot detection system 
4

1
4 0p > . The administrator’s 

ploy at 4ξ  need not be only passive reactive one, a motivation for a proactive 
one is suggested with the carrot and stick approach in [5]. [19] & [20] discuss 
such scenarios where the inquiry into the nature and motivation of the attacker 
are discussed. 

Based on the above strictures, the game was simulated and evaluated for 
rewards to find the preferred strategy profiles. 

7. Simulation 

The game starts only after a sensor reporting an anomalous action by a user. 
Thus there is a suspicion in the admin and a plausibility of malice in the user. At 
this stage it is both an incomplete and imperfect information game, with the 
admin not being sure of both the user’s nature and the current state of the game. 
The rewards for each affecting feature of the game are symbolically distributed 
over the discrete space defined by 1000, 100, 10,0,10,100,1000− − − . The logari- 
thmically varied values are chosen to represent how the expense of actions and 
potential outcomes of actions differ. Though it has to be fine tuned for the 
different attacks based on the specifics this setup gives us a general idea. Taking 
a Normal_Operation action and for the administrator and the user is a low 
expense action to attempt and execute in the context of the game. Thus it leads 
to 0 pay off for both of them in 1ξ  & 2ξ . Similarly the sign-out request from 
the user and the sign-out from the admin also leads to a high probability exit of 
the user from the system. This does not progress the interaction further, but 
leads to a logical non-antagonizing move. That way the payoff to both is 10, 
which is not nothing, but not much. 

When the user chooses to attack and the admin chooses the action defend, the 
attack is least likely to succeed. This also reveals the user’s intention to attack to 
the admin. Thus this leads to −100 for the user and 100 for the admin. Similarly, 
when admin chooses the action “trap” and the user chooses “resist”, the admin’s 
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action is least likely to succeed. This also makes the user aware that the admin is 
trying to trap him, and thus he may start behaving leading to no chance of 
discovery by the administrator of his real motive with malice, if there was one. 
This would hence result in −100 to the admin and 100 to the user. These figures 
are also considered due to the expense of resources to take these actions and the 
actions impact on the game. 

The aggressive actions are the most expensive actions for the players. The 
exact defensive actions will result in least likelihood of succeeding of the aggre- 
ssive actions by the opponents. These defensive actions are the second most 
expensive actions to attempt/execute. The aggression will also yield higher 
payoff to the player than the defending one, if succeeds. When one player takes 
an aggressive action, the other player taking Normal_Operation or general state 
transiting actions will lead to greater loss to him and higher gain to the aggressor. 
This game dynamics at state 1ξ  is explained in Appendix A. 

For computational reasons we restricted the simulation with some constraints. 
The game was programmed in C and run on a Debian7.6 of GNU/Linux on an 
Intel CoreTM i5 Processor with 4 GB RAM machine.  

1) We ran the simulation with 100 strategies each varying in a gradation of 
aggression.  

2) We find an approximate Equilibrium as explained at Appendix C.  
3) We ran it for three types of users/attackers and delineate the findings.We 

simulated the games with each player 100 strategies, playing each 100 times. For 
better visualization purpose we plot rewards for 10 strategies (whose results are 
representative of the results with larger range) to cover the aggression, with steps 
of 0.1 from 0 to 0.9 in Figures 8-10.20  

The simulation was conducted with three user profiles in terms of skill, 
sophistication and effectiveness as Below_Average, Average and Above_Average 
users. When in Low_Privilege_State, the Average user would attack and the 
Administrator defends, playing the perfect antagonizing, there is 0.5 probability 
that attack succeeds. This way he is on par with the administrator in terms of 
imposing his will on the system operation. Numerically the Below_Average user 
would have <0.5 probability to be succeed while the Above_Average user >0.5 in 
such a situation. As this example illustrates the essential characteristics, all other 
transitions are similarly poised.  

7.1. Results 

Since the game is stochastic, for the same strategy profile there could be different 
rewards for the players. So, we ran the game for each strategy profile for 100 
times, and picked the average reward. We evaluate a preferred strategy in terms 
of the discretized gradation of aggression as discussed in Appendix C. Figures 
8-10 show the rewards of administrator and the users and the spread of rewards 
during multiple executions for a typical strategy profile. 

 

 

20TL ⇒ Top Left, TR ⇒ Top Right, BL ⇒ Bottom Left, BR ⇒ Bottom Right, AR ⇒ Admin Reward, 
UR ⇒ User Reward, ARS ⇒ Admin Reward Values Over 100 Executions with (0.5) mid level ag-
gression for both in the Strategy Profile, URS ⇒ User Reward Values Over 100 Executions with (0.5) 
mid level aggression for both in the Strategy Profile. 
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Figure 8. Below-average-user: TL-AR, TR-UR, BL-ARS, BR-URS. 

 

 
 

 
Figure 9. Average-user: TL-AR, TR-UR, BL-ARS, BR-URS. 
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Figure 10. Above-Average-User: TL-AR, TR-UR, BL-ARS, BR-URS. 

 
We found many  -NOSPs with 0.01=  and a different prescribed one in 

each case. The prescription is based on the least motivation for the attacker to 
deviate, hence the chance of game going as expected his higher. 

7.1.1. Below_Average User (BAU) 
( )7,2  is the prescribed  -NOSP. It recommends for the user and adminis- 
trator to be least aggressive. The game starts with some anomaly by user and 
thus if the user is perceived as a BAU, then both players are better off to curtail 
their aggression.  

7.1.2. Average User (AU) 
( )8,6  is the prescribed  -NOSP. It recommends for the user to be less 
aggressive as he is more affective while the administrator to be quite aggressive.  

7.1.3. Above_Average User (AAU) 
( )4,1  is the prescribed  -NOSP. It recommends for the user and administrator 
to be least aggressive. 

Among the possible strategies of players, graded on aggression, this gives a 
preference for achieving optimal reward. Based on these results, we can infer 
that during the interaction, due the combination of factors like capacity for 
domination and secrecy of intent, the players are better off to do most action 
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when its most advantageous to them. 
Conjecture 1: The aggression needed by the administrator for achieving 

equilibrium follows normal distribution over the power of the user, with the 
mean at the power of both being equal, while interacting with same reward 
functions and discount factor. 

Conjecture 2: The aggression needed by the administrator for achieving the 
equilibrium would vary from linear to Normal distribution as the depth of the 
game tree increases, for the same reward functions and the user. The depth of 
the game tree is a function of discount factor and threshold discount.  

8. n-Player Game 

The game model presented in Section 4, considers ,n n∈Z , 0 n< < ∞  players 
where the interactions between many users and administrators can be modeled. 
As practicality alludes, considering a single administrator would be convenient 
and useful for most cases. Thus the interaction between many users and an 
administrator is interesting to investigate. In such a situation, the users can be 
disparate and working on their disjoint motivations. They could also be working 
as a group. On the other hand, the administrator can be interacting separately 
with many users or interact with a group of users with actions collectively 
affecting all of them. In the light of the game model and game we presented in 
Sections 4 and 5 respectively, we derive the conditions of the group behavior and 
reaction of administrator to a group to be optimal. 

For each state j , let 
max

k
jr  be the reward associated with the preferred action 

choice of the user k. During the course of the game, if 
max

f f

coi i

j jk k
j jj jr rξ ξ

ξ ξ
= =

= =
<∑ ∑ , 

kk S∈  with { }1 2, , ,k aS k k k=   where 
co

k
jr  is the reward of thk  player at thj  

state when taking co-operative actions, a is the number of users who have 
motivations that can be pursued in co-operation. There are two trees of game 
progress that are considered here. In the first case, when each player takes action 
to fully maximize his total reward during the sequence of game play, he is trying 
to maximize the probability of those state which maximizes his reward. While 
doing so two such players may make the game progression such that the final 
resulting sequence of game play gives both a total reward which is far below 
their maximum possible value. But this value can be lower than a compromised 
game transition sequence in which both have higher probability to make higher 
reward. Recognizing this point, would be the threshold to co-operate. 

Secondly, when there are two or more similarly engaged users, responding 
individually can be expensive for the administrator. Also a response to one user 
may require an action whose effects on the system conflict with the interaction 
with other user. The motivating example is when a user who is accessing a parti- 
cular web server is behaving suspiciously, the admin may want to restart the web 
server and disconnect the suspicious user. Simultaneously if another user is 
acting suspiciously with a database server, which is also running on the same 
machine which has no other processes active at this time, depending on the 
extent of threat by both the users, it may be optimal for the administrator to re- 
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boot the operating system itself to address both users. The condition is  

max common1 1
g n g n

j jg gr r= =

= =
<∑ ∑  

where 
maxjr  and 

commonjr  are the rewards associated with the actions taken for 
each individual game towards optimal reward, played with different users and 
the actions taken to collectively/commonly affect all the users concerned. At this 
condition the administrator is better off playing a single game considering all the 
users as a collective adversary. 

In particular, when many players are involved, the decision process becomes 
decentralized. If this is true of the defending side, then taking optimal actions 
such that overall security is served best becomes a challenge. This problem was 
addressed in [21] and was shown that the individual optima for each defender in 
his own game to safe guard his own asset may not serve the global good when 
the assets defended by different defenders are interconnected and interde- 
pendent. 

9. On Engaging Suspicious Users 

The only way the game enters the Trapped State 4ξ  is from the other states. In 
the other states , the administrator could become suspicious about a particular 
user. After sufficient observation of such a behavior of the user, the adminis- 
trator could become sure that it is not safe to have that user operating freely in 
the network. For that particular reason administrator sends him to honey pot. 
Then the game enters the Trapped State 4ξ . Then the administrator will have a 
belief about the user’s motive based on these actions of user at one or more of 
the other states ( 1 2 3, ,ξ ξ ξ ), when the game enters 4ξ . For example, in a site 
offering the service of audio streaming but no download, trying to download 
(successfully or not) could be a reason to put him in Trapped State. The admi- 
nistrator holds the belief that the user wants to steal the audio files. The admi- 
nistrator does not know conclusively yet, either the true nature or motivation of 
the user. By nature, the user may be not an attacker, a naive attacker or an 
advanced attacker. The motivation of the user is what exactly he/she intends to 
do in the network. A normal user might have accidentally performed an action 
which was not allowed. This uncertainty to the administrator entails to incom- 
plete information in the game play. All the further interactions of admi- 
nistrator’s ploy with the user is abstracted to take place in a single state 4ξ  of 
the main game in Figure 1. Here, the prime motivation of the administrator is to 
learn the “original” motivation of the user with the minimum number of 
interactions to identify the nature and motivation of the user and thus determine 
the suitable response. The administrator, based on his current belief about the 
user’s nature and motivation, creates the situation in the state 4ξ . Administra- 
tor provides some actions as choices for the user during each interaction step, 
such that user’s actions give the maximum information about his identity. The 
administrator has a finite set of such actions to offer the user to study his 
response. Offering them all at once is not advisable as it confuses the user 
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making him change the original plan or become suspicious to altogether start 
behaving like a good user and may even try to log out inconspicuously. So, the 
actions should be provided as options at each step of this engagement to 
facilitate optimal user identification. Such a ploy can be characterized by the 
following structure to achieve this. 

Ploy: Formal description: The administrator has a finite set of actions to offer 
to the user. Let this set be  

{ }
0 1 2
, , , ,

j j j jxploy ploy ploy ploy ployA α α α α=                (4) 

where x is the total number of action-options that the administrator can offer at 
any general step j in the interaction. Based on the belief about the motivation of 
user at the time entering the 4ξ , the administrator associates a probability 
distribution over the set ployA , to represent the expected user’s preference. 

ploy j
pα  is the probability with which the user is expected to prefer to take the 

action 
i jployα  in the step j while facing the ploy. This implies  

1
1

ploy ji

x

a
i

p
=

=∑                           (5) 

Now the actions in the set ployA  are sorted in descending order by their 
associated probabilities.  

{ }
0 1
, , ,

sorted i i ixploy ploy ploy ployA α α α=                  (6) 

where  

( ) ( ) , .
ploy ployi i

p p k jα α≤ ∀ ≤                    (7) 

Let the action set of the user at step 1 at 4ξ  be  

{ }1 1 1 10 1

1 , , , .
yploy ploy ploy ployA α α α=                  (8) 

And in general at any given step j  the user action set would be  

{ }0 1

1 , , , .
j j j jyploy ploy ploy ployA α α α=                 (9) 

But this is essentially the similar looking action set as was in 1ξ  or 2ξ  or 3ξ  
to start with from where the user landed in 4ξ . But the effect of the actions is 
different. As is true for any mixed strategy game, there exists a Nash strategy 
profile for the user and the administrator here too. This implies that there is an 
action guided by the user’s Nash strategy, as identified/expected by the adminis- 
trator, that the user is better off taking at this step. Let 

1nashployα  be that action in 
the step 1 in 4ξ . Administrator has to add/remove an action/actions at each 
step of interaction, to make the probability of the user taking actions as per Nash 
strategy, equiprobable with respect to user’s current action set. This leads us to 
the following theorem. 

Theorem 1: In an incomplete information game, when the action prescribed 
by the Nash-strategy for a user is equiprobable with respect to other possible 
actions at a given state, the action selection is solely influenced by the original 
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motivation of the player21. The player’s selecting the prescribed action is a 
sufficient condition for the confirmation of the expected motivation (belief of 
payoff of user). 

Proof:  

11

1

1

1
ploy ploy jj nashi

ploy jnash

y
i

y

p p
p

j

α α

α

=
−

≅
−

∑
                  (10) 

where yj  is the number of actions in the current action set at step j. The main 
rationale is that the situation artificially created at the trapped state neither 
dissuade not encourage the user to take the action 1

jnashployα . Administrator 
cannot infer well if he makes the user do the action administrator choose for 
user. From the point of information to the user, he has as much information as 
he could with choice in background. The average information/Shannon-entropy 
given to him is at its maximum. As established in 3.5 we have  

( ) 1 1
1

max 1
log 1

j ploy ployj ji i

y

ploy
i

I p p
α α

=

 
=  

 
∑                (11) 

□ 

where 1
jployI  is the Average information over action set. 

1

1 , ,1
ploy ji

i i
i

p j j y
jα

= ∀ ≤ ≤  

Even though all the individual actions may not be equiprobable for user’s 
selection, the main concern is regarding the action prescribed by the Nash 
strategy and its probability of being selected. From Equations (3.3) and (3.4), 
administrator has ensured that, if user takes the Nash action, then he is doing it 
at a maximum average information situation. This allows the sufficient confir- 
mation to justify the previous belief. How ever if the user takes a different action 
then it also provides the direction for updating the belief. In either case, the 
administrator is not influencing the user’s decisions and thus getting the most 
effective learning about user’s original intention. The Equation (3.7) gives the 
ideal situation. But the minima of absolute value of the difference between LHS 
and RHS is to be considered for practical purpose. When the difference is 
positive then the administrator is dissuading the user and when it is negative he 
is encouraging the user from perusing the expected behavior. Both disturb the 
objective observation. Hence the absolute minimum difference as shown above 
is the best administrator can do. 

10. Conclusion 

An implementation of countering a real life attack is to be done to evaluate the 
dynamics and scopes for improvements.The Trap state provides a learning 
opportunity for the administrator while gaming with the user. The apposite 
game model would allow a Bayesian game with updating the belief about user, as 
the game progresses. The Bayesian Nash Equilibrium gives the useful solution 

 

 

21And not by any reactionary behavior towards other players. 
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concept to optimize the interaction. Exploring that with in this model would be 
the next step. The present model has static reward functions, which are generat- 
ing the rewards in the three dimensional vector space. The next step would be to 
make it dynamic and learn during the game plays. This would make the model 
and resulting games truly generic to capture many more scenarios. A suitable 
method to compute the equilibria for the general cases and in particular security 
games is our planned future work. 
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Appendix 

A. Example 
This can be illustrated with an example. In the game in Section 5, an attacker 

trying to attack in 1ξ  may be affecting the eventual success of his attacking 
plans by revealing his attacking intention such that if he does not succeed with 
the present attempt, may later affect the reaction of the system administrator to 
promote to 2ξ  if he chooses 

2

1
1α . Thus information revealed to the other 

player about one’s intention can affect the potential of the all next actions to 
propel the state transitions. Even if by chance, while the player is attacking, the 
game lands in the 2ξ  instead of 3ξ , he will now be under serious gaze of 
administrator. With this premise, logging out of the system may be better off 
with sign-out action, than to be stuck in Honeypot by the administrator. Thus 
the desirability of landing in 2ξ  after an attack action 

3

1
1α  may not be same as 

just landing with 
2

1
1α . 

B. Generalized Imperfect Information Factor 
The model for 2-state game in [5] with the following extension can be used to 

calculate Nash equilibrium for an N-state game with N < ∞ . From [22] we 
follow that the stochasticity of the game provides us with a probability ( ),mP i j  
with which the state jξ  can occur from iξ  in thm  iteration. The occurrence 
ratios 1 2 3, ,r r r  & 4r  corresponding to the states 1 2 3, ,ξ ξ ξ  & 4ξ  are given by  

( ) ( ) ( )21, 1, 1,
lim

m

i m
P i P i P i

r
m→∞

+ + +
=



, 1 i N≤ ≤  with 1 1N
ii r

=
=∑ , and  

4N =  for the game in Section 5. But the perceived occurrence ratios are 
different and is given by 1 i

N k
i j jjr p r

=
′= ∗∑ . We note that the apparent strategy is 

different than the truly executing strategy. We have k kIIFπ π′ = ∗ , where IIF  
is called the Imperfect Information Factor. IIF  is defined as a matrix with  

entries ijz  with i rows and j columns, with 
k
j ji

ij
i

p r
z

r

∗
=

′
. This gives the genera-  

lized IIF  for N states. For the game in Section 5 with 5 states IIF is evaluated 
as shown below.  

00 0 01 1 02 2 03 3 04 4

0 0 0 0 0

10 0 13 311 1 12 2 14 4

1 1 1 1 1

20 0 23 321 1 22 2 24 4
5 5

2 2 2 2 2

30 0 31 1 32 2 33 3 34 4

3 3 3 3 3

40

k k k k k

k kk k k

k kk k k

ij

k k k k k

k

p r p r p r p r p r
r r r r r

p r p rp r p r p r
r r r r r

p r p rp r p r p rIIF z
r r r r r

p r p r p r p r p r
r r r r r

p r

×

′ ′ ′ ′ ′

′ ′ ′ ′ ′

 = =  ′ ′ ′ ′ ′

′ ′ ′ ′ ′

0 43 341 1 42 2 44 4

4 4 4 4 4

kk k kp rp r p r p r
r r r r r

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

′ ′ ′ ′ ′  

 

C.  -Neighborhood Optimal Strategy Profile 
The problem of finding the optimal exact Nash Equilibrium efficiently in the 

general case is challenging. Many progressive efforts are reported as discussed in 
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Section 2. We plan to progress on those results in our future work. We here 
calculate an  -Approximate Equilibrium(AE) for an example of the stochastic 
game presented in 5. Traditionally,  -AE in a stochastic game is defined as the 
strategy profile, where no player can improve his expected average reward more 
than   by unilateral strategy deviation.We introduce another variation  - 
Neighborhood Optimal Strategy Profile (  -NOSP) such that 0 1≤ < . The 
traditional definition of the  -ANE is dependent on the motivation being not 
greater than   to deviate from the prescribed strategy profile for each of the 
players. When the game is stochastic, reward is valued at the average of rewards 
got by the execution of the game with the same strategy profile some number of 
times. We propose here a variation here due to two reasons.  

1) Since the distribution of the rewards some times was bi-modal, the average 
may not be a comprehensive measure of the distribution.  

2) There is a non-trivial probability of getting a higher reward for a player 
with a strategy with lower average reward than one with higher average reward, 
depending on their standard deviations.  

Without assuming any distribution for the rewards over multiple game runs 
for a strategy profile, we calculate the -NOSP ( )0 1 2

* * * *, , , , , ,k K
i

k
π π π π π

ν
 

 with 

( ) ( )

( ) ( )

0 1 2 0 1 2
* * * * * * * * *max

0 1 2 0 1 2
* * * * * * * *max

, , , , , , , , , , , ,

, , , , , , , , , , , ,

k K k K
i

k K k K
i i

k k

k k

π π π π π π π π π π

π π π π π π π π π π

ν ν

σ ν σ ν

−
≥

   +      

   

   

  

where σ  is the standard deviation.This indicates the overlap of reward 
spectrum given by compared strategy profiles for the player k. 
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