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Abstract 
In this paper we present numerical simulations of soil plasticity using isogeo-
metric analysis comparing the results to the solutions from conventional finite 
element method. Isogeometric analysis is a numerical method that uses non- 
uniform rational B-splines (NURBS) as basis functions instead of the Lagran-
gian polynomials often used in the finite element method. These functions 
have a higher-order of continuity, making it possible to represent complex 
geometries exactly. After a brief outline of the theory behind the isogeometric 
concept, we give a presentation of the constitutive equations, used to simulate 
the soil behavior in this work. The paper concludes with numerical examples 
in two- and three-dimensions, which assess the accuracy of isogeometric 
analysis for simulations of soil behavior. The numerical examples presented 
show, that for drained soils, the results from isogeometric analysis are overall 
in good agreement with the conventional finite element method in two- and 
three-dimensions. Thus isogeometric analysis is a good alternative to conven-
tional finite element analysis for simulations of soil behavior. 
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1. Introduction 

In the design of foundations and geotechnical structures it is essential to predict 
soil behavior under different loading conditions. In the last decade finite element 
analysis (FEA) has become a widely spread tool for predicting soil behavior. 
Much research has been carried out to improve the ability of simulating the be-
havior of different soils and a number of new constitutive models have been de-
veloped. Another important aspect when modeling geotechnical problems is the 
interaction between soil and structure, which can have a large influence on the 
structural design [1]. 
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Since first introduced by Hughes et al. in [2], isogeometric analysis (IGA) has 
been used for a broad number of engineering problems, ranging from analysis of 
fluid-structure interaction [3] to analysis of shells [4]. Some of the areas where 
isogeometric analysis has shown to be advantageous compared to the standard 
finite element analysis are also of interest in geotechnics. One example is the si-
mulation of fluid flow through porous media, where the higher-order basis func-
tions of IGA lead to continuous pressure gradients over element boundaries en-
suring local mass conservation, [5] and [6]. The basic idea behind isogeometric 
analysis is to use splines as basis functions for computational analysis [2]. Origi-
nally the purpose was to use the geometry from the Computer Aided Geometric 
Design (CAGD) software’s also for analysis and consequently reduce the time 
required to recreate models for analysis. However, the use of spline basis func-
tions proved to have numerical benefits compared to the standard Lagrangian 
basis-functions used in FEA [7] [8]. Initially the IGA framework suffered from 
the lack of a method for local refinement, frequently sought during analysis. To 
overcome this initial drawback, a number of methods have been developed to 
introduce local refinements within the IGA framework, where T-splines [9] or 
Hierarchical NURBS [7] [10] are the most widely used methods. The higher- 
order smoothness of the basis functions in IGA also opens up the possibilities of 
using quadrature rules evaluated on element boundaries reducing the total num-
ber of quadrature points [2] [7]. Another interesting possibility within the IGA 
framework is the use of isogeometric collocation methods, a one-point quadra-
ture rule that reduces the computational cost of analysis [11]. Since collocation 
methods are based on the discretization of the strong form of the partial diffe-
rential equations, it would be suitable for the isogeometric concept. The use of 
isogeometric collocation has shown potential to increase the computational effi-
ciency of the isogeometric framework, outperforming both the standard Galer-
kin form of isogeometric analysis and standard C0 finite element analysis with 
regard to computational costs [7]. As pointed out by Nguyen et al. [12] for non- 
linear analysis the numerical error strongly depends on the integration scheme 
and the order of the Non-Uniform Rational B-splines (NURBS) basis functions. 
To evaluate the isogeometric framework for geotechnical applications, it is in-
teresting to assess how the isogeometric framework performs for soil plasticity. 
For simplicity and for setting up the numerical framework we restrict our self to 
quadratic NURBS basis functions in this work. As soil typically show strong 
plastic flow under hydrostatic pressure, special B-bar methods are not necessary 
in our work, see [13] for a discussion of these methods in the case of nearly in-
compressible material behavior. 

In this work we have evaluated how isogeometric analysis performs compared 
to the conventional finite element method for soil plasticity in two and three 
dimensions. The focus of the work is to evaluate the convergence behavior and 
mesh size dependencies for isogeometric analysis and to compare them with re-
sults from conventional FEA. To provide a background, we start with outlining 
the basic concepts of isogeometric analysis, introducing the definitions of B- 
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splines and NURBS that are used as basis or shape functions in this work. We 
later continue with the basic governing equations for elasto-plasticity followed 
by a brief recapitulation of the Drucker-Prager constitutive equations. The paper 
is concluded with two- and three-dimensional numerical examples, comparing 
the results to conventional finite element analysis. 

2. Isogeometric Analysis 

The fundamental idea behind IGA is to employ the same basis functions for both 
geometrical discretization and analysis. Herein lays also the most profound dif-
ference between IGA and standard FEA, where isogeometric analysis utilizes the 
basis functions from CAGD, capable of representing the exact geometry also for 
analysis. Whereas, in conventional finite element analysis, the piecewise poly-
nomials chosen to approximate the solution fields are also used to approximate 
the geometry [2]. The original reason to use the isogeometric analysis was to de-
crease the overall computational cost by removing the need to recreate the geo-
metry and constructing a mesh for analysis. In this work we have analyzed the 
performance of IGA for soil plasticity using a NURBS-based isogeometric for-
mulation. To give a brief introduction to the concept of IGA and to elucidate 
some of the differences between conventional FEA and IGA this section will re-
view the basic concepts of isogeometric analysis. For a more extensive descrip-
tion the reader is referred to [2]. 

2.1. Basic Concept of B-Splines 

To get an overview of the concept of NURBS-based isogeometric framework 
used in this work we start by defining a B-spline curve. A B-spline curve is a li-
near combination of B-spline basis functions, , , 1, 2, ,i pN i n=   and a set of 
corresponding control points , 1, 2, ,d

i i n∈ = P . 

( ) ( ),
1

.
n

i p i
i

Nξ ξ
=

= ∑C P                        (1) 

The B-spline basis functions Ni,p are constructed from a non-decreasing set of 
coordinates in the parameter space, written as { }1 2 1, , , n pξ ξ ξ + +Ξ =  , where 

iξ ∈  denotes the ith knot of the knot vector Ξ , p indicates the order of the 
polynomial function and n represents the number of basis functions needed to 
construct a specific B-spline curve. With a given knot vector, iξ , and a known 
polynomial order, p, it is possible to construct a B-spline basis function. For the 
case of (p = 0), the basis function take a piecewise constant shape given from 

( ) 1
,0

1 if ,
0 otherwise.

i i
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For 1,2,3,p = 
 the B-spline basis function can be constructed by using the 

expression, 
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which is referred to as the Cox-de Boor formula, first presented in [14] and [15]. 
One example of a second order B-spline with three control points is illustrated in 
Figure 1. For polynomial degrees p < 2 the basis functions of IGA and conven-
tional FEA take the same shape, however for p ≥ 2 they deviate in shape and 
support. By plotting the B-spline basis functions and Lagrangian basis functions 
over the parameter space some of the differences between IGA and conventional 
FEA are made visible, see Figure 2 and Figure 3. Figure 3 shows that for p ≥ 2, 
Lagrangian basis functions, the continuity varies between internal and corner- or 
end-nodes, whereas B-spline basis functions show a continuous and homogene-
ous pattern only shifted relative to each other and with Ni,p(ξ) ≥ 0. Another im-
portant aspect of spline basis functions, that distinguishes them from conven-
tional FEA basis functions, is that each pth order function has p − 1 continuous 
derivatives across element boundaries. 
 

 
Figure 1. A second order B-spline curve, C(ξ). 
 

 
Figure 2. Representation of quadratic B-spline basis function with knot vector Ξ = {0, 0, 0, 
1, 2, 3, 4, 5, 5, 5}. 
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Figure 3. Representation of quadratic Lagrangian basis function. 

2.2. NURBS Representation 

One issue that arises when using B-spline, is that not all types of geometries can 
be represented exactly using polynomial functions. To overcome this problem ra-
tional B-splines were introduced by Versprille in [16]. This generalization of B- 
splines is constructed by introducing a non-negative weight, wi, to each control 
point and making use of the definition of rational functions as the ratio of two 
polynomials [17]. A NURBS body in Rd can be obtained by projective transfor-
mation of a B-spline body in Rd + 1, where the weights, wi, are the d + 1 compo-
nents of projective control points. Non-Uniform Rational B-splines (NURBS) are 
today standard in many CAGD software’s and the fast and stable algorithms 
make them a good choice also for analysis. To construct NURBS basis functions 
one can make use of the basis functions for B-splines, 

( ) ( )
( )

,i p ip
i

N w
R

W
ξ

ξ
ξ

=                         (4) 

where W(ξ) is called a weighting function, defined as 

( ) ( )ˆ ˆ,
ˆ 1

.
n

i p i
i

W N wξ ξ
=

= ∑                        (5) 

If wi = 1 for all i, then ( ) ( )p p
i iR Nξ ξ=  for all i. In fact, if the value of wi = a 

for all i then ( ) ( )p p
i iR Nξ ξ=  i.e., the ( )p

iN ξ  are special cases of ( )p
iR ξ  

where all the weights take the same value. Using the NURBS basis functions 
( ) , 1, 2, ,p

iR i nξ =   and their corresponding control points Pi, a piecewise NURBS 
curve, is constructed from 

( ) ( )
1

.
n

p
i i

i
Rξ ξ

=

= ∑C P                      (6) 

To be able to perform two- and three-dimensional analysis, NURBS surfaces 
and bodies needs to be defined. This is done in a similar manner. A NURBS body 
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is given by 

( ) ( ), ,
, , , ,

1 1 1
, , , ,

n m l
p q r

i j k i j k
i j k

Rξ η ζ ξ η ζ
= = =

= ∑∑∑S P              (7) 

where the NURBS basis function, ( ), ,
, , , ,p q r

i j kR ξ η ζ , is constructed from three sets 
of knot vectors, and their respective weighting functions ( ), ,W ξ η ζ . 
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where 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆ, , , , ,ˆ ˆ ˆ1 1 1
., ,

n m l

i p j q k r i j k
i j k

W N M L wξ η ζ ξ η ζ
= = =

= ∑∑∑          (9) 

In the isogeometric framework the concept of elements is represented by the 
non-zero valued knot spans. This is illustrated in Figure 4, where a two dimen-
sional plate is constructed from two knot vectors, a set of control points Pi,j and 
their corresponding weights wi,j. The geometry is constructed of one knot vector, 
Ξ = {0, 0, 0, 0.5, 1, 1, 1} in the direction of the arc of the hole and one knot vector, 
  = {0, 0, 0, 1, 1, 1}, in the radial direction, thus creating a plate consisting of 
two elements. The element specific basis functions are constructed from the non- 
zero valued basis functions in the active knot span. 

The number of active functions in a knot span is determined as 
( ) ( ) ( )1 1 1pn p q r= + × + × + . For analysis the basis functions are evaluated at the 

chosen integration points of the parent element, see Figure 4(d). These element 
specific NURBS basis functions will be denoted ( ), ,e

aN ξ η ζ  in the reminder of 
this work. 
 

 
Figure 4. A NURBS surface of the symmetric part of a plate with a circular hole con-
structed from two knot vectors, Ξ and  , a set of control points, Pi,j and their corres-
ponding weights, wi,j. (a) shows the element mesh (b) the control net (c) the parameter 
space and basis functions (d) the parent element. 
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3. Equilibrium Conditions (Heading 3) 
3.1. Strong and Weak Form 

In this section we give a brief recapitulation of the strong and weak form of the 
equilibrium equations of the quasi-static balance of linear momentum. Let ui de-
note the displacement vector, then the infinitesimal strain tensor, εij, is defined as 
the symmetric part of the displacement gradient 

1 in
2

ji
ij

j i

uu
x x

ε
 ∂∂

= + Ω  ∂ ∂ 
                   (10) 

The governing strong form of the equilibrium equation is given as 

0 inij
i

j

f
x
σ∂

+ = Ω
∂

                      (11) 

where fi is the body force. The strong form of the equilibrium equation is com-
plemented by the essential and natural boundary conditions. 

oni i gu g= ∂Ω                        (12) 

 onij j i hn hσ = ∂Ω                      (13) 

where gi and hi are known quantities on ∂Ωg and ∂Ωh. The variational or weak 
form of Equation (11) is formed by multiplying the governing equation with a 
test function vi and performing an integration by parts over the domain Ω 

d d d .
h

i
ij i i i i

j

v v f v h A
x
σ

Ω Ω ∂Ω

∂
Ω = Ω +

∂∫ ∫ ∫               (14) 

The weak form of the problem is complemented by a constitutive relation 

{ }( ),ij ij klσ σ ε κ=                       (15) 

with { }κ  being a set of internal variables to describe the plastic behavior of the 
material. For a more detailed derivation of the weak form, the reader is tenta-
tively referred to any of [18] or [19]. 

3.2. Discretization with Isogeometric Analysis 

The main difference between conventional FEA and IGA are the basis func-
tions used for discretization. In isogeometric analysis the same basis functions 
that are used to discretize the geometry are also used to solve for the ap-
proximate displacement field u. The only difference to conventional FEA is 
that the basis functions in IGA are element-specific. After solving the ele-
ment-specific basis functions and their derivatives the procedure of estab-
lishing the stiffness matrix and internal force vector is identical to conven-
tional FEA. The element specific basis function for each element is deter-
mined as the non-zero functions in the knot span. The displacement field for 
any given element can be solved using the element specific basis function 

( ), ,e
aN ξ η ζ , 

( )
1

, ,
pn

e e
a a

a
N ξ η ζ

=

= ∑u a                     (16) 
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with e
aa  the element displacements. The spatial derivatives of the displace-

ment field can be approximated by taking the derivative of the element-spe- 
cific basis functions with respect to the physical coordinates x 

1
.

pn e
ea
a

a

N
=

∂
∇ =

∂∑u a
x

                     (17) 

To obtain the derivatives of the basis functions with respect to the physical 
coordinates one must use the chain rule, 

e e
a aN N∂ ∂ ∂
=

∂ ∂ ∂x x
ξ

ξ
                      (18) 

with { }T, ,ξ η ζ=ξ . For a more straightforward implementation we rewrite 
the displacement field using a vector-matrix notation, i.e., e e=u N a . Where 
the matrix Ne contains the basis functions ( ), ,e

aN ξ η ζ  for each control point 
in support of an element 

1

1
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0 0 0 0

0 0 0 0

0 0 0
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N          (19) 

In a similar manner we rewrite Equation (17) in matrix form, 
e e= B aε                          (20) 

where the matrix Be is an operator mapping the element discrete displace-
ments to the local strains. 
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

B
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

      (21) 

The test function vi can be discretized in the same manner as the displace-
ment field. Introducing the relations above it is possible to rewrite Equation 
(14) in a residual format as 

( ) T T Td d d
V S V

V S V= − − =∫ ∫ ∫r a B N t N f 0σ         (22) 

with a the global unknown displacement vector. In this work we use a New-
ton-Raphson method to solve this system of nonlinear equations. The Jaco-
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bian matrix for the Newton-Raphson method reads 

T datsV
V∂

= =
∂ ∫
rJ B D B
a

                 (23) 

with Dats the Voigt representation of the algorithmic tangent stiffness. In each 
Newton iteration we compute a displacement increment ∆a by solving the li-
near equation ( )=J a r a∆ . Afterwards, we update the displacement vector by 
a ← a + ∆a and stop the iteration if the residual r(a) < TOL with TOL a user 
given tolerance, e.g. TOL = 10−6. 

4. Constitutive Model (Heading 4) 

In this section we will give a brief recapitulation of the Drucker-Prager criterion 
and the theory of plasticity used to evaluate the influence of the NURBS-basis 
functions on the plastic strains for granular materials in this work. 

4.1. Drucker-Prager Criterion 

The Drucker-Prager criterion can be seen as a smooth approximation to the 
Mohr-Coulomb law and states that plastic yielding begins when the J2 and I1 in-
variants reach a critical combination. Although the Drucker-Prager formulation 
is a rather crude approximation of real soil behavior it has the benefit of being 
straightforward to implement and also lacks the singularities that exist in the 
yield function of the Mohr-Coulomb criterion. The yield function of the Druck-
er-Prager can be expressed using the first invariant of the stress tensor, I1, and 
the second invariant of the deviatoric stress, J2, 

( ) 1
1 2 2,

3
II J J kα= + −                   (24) 

which forms a circular cone in the principal stress space. The material parame-
ters k and 𝛼𝛼, can be expressed in terms of the materials cohesion, c′  and in-
ternal friction, φ′ , by matching the Drucker-Prager criterion to the Mohr- 
Coulomb criterion, 

sin and
sin sin tancos

3

ckφ α
α

φ θ φθ

′ ′
= =

′ ′ ± 
 

           (25) 

where θ in represents the Lode angle. A positive sign in Equation (25) matches 
the Drucker-Prager cone to the inner edges of the Mohr-Coulomb surface. The 
matching to the Mohr-Coulomb criterion is illustrated in Figure 5. 

4.2. Elasto-Plastic Constitutive Model 

We assume a small strain setting and thus additively split the strain tensor ε  
into an elastic part eε  and a plastic part pε  as 

.e p= +ε ε ε                         (26) 

For geo-materials in general, associative flow rules for the plastic strain pε  
displays an excessive dilatant behavior. This can be avoided by using a non-  
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Figure 5. Projection of the Drucker-Prager criterion matched to the Mohr-Coulomb cri-
terion on the deviator plane. 
 
associative flow rule, that is, the potential function  is not equal to the yield 
function  . In this work the potential function  is defined by replacing the 
angle of internal friction, φ′ , with the angle of dilation, ψ, in Equation (25) 
forming 

sin and .
sin sin tancos

3

ckψ α
α

ψ θ ψθ

′
= =
 ± 
 

           (27) 

The potential function is then written as 

( ) 1
1 2 2, .

3
II J J kα= + −                  (28) 

At the surface of the Drucker-Prager yield function the evolution of the plastic 
strain is determined as, 

p
ij

ij

ε λ
σ
∂

=
∂




                        (29) 

with λ  the plastic multiplier and the derivative of the potential function is 
given from 

2

1 1
32 ij ij

ij

s
J

δ α
σ
∂

= +
∂
                   (30) 

with Sij the deviatoric part of the stress tensor. Furthermore we assume a bi-li- 
near hardening model for the material cohesion c′  and the angle of internal 
friction φ′ , as depicted in Figure 6. Both hardening parameters are driven by 
the accumulated deviatoric plastic strain p

dE  given by 

with1 1
2 3

p p p p p p
d ij ij ij ij kk ijE e e e ε ε δ= = −             (31) 

The presented model is complemented by the loading/unloading conditions
0, 0λ≤ ≥  and 0λ = . With the evolution equation for the plastic strain and 

the just described hardening model at hand we get the set of internal variables 
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Figure 6. Bi-linear strain dependent hardening. 

 
for our plasticity model as { } { }, ,p cκ ε φ′ ′= , see also Equation (15). For the nu-
merical integration of the constitutive evolution equations we use a standard 
Euler backward scheme. The reader is referred to ([20], Sec. 7.2) which gives a 
detailed description of the numerical implementation procedure and also the 
format of the algorithmic tangent stiffness Dats. We like to mention that at the 
apex of the yield surface cone, the return vector is contained by a complementa-
ry cone, illustrated in Figure 7, see [20] for further details. The IGA and FEA as 
well as the elasto-plastic Drucker-Prager model discussed above have been im-
plemented in our in-house Fortran code. 

5. Numerical Studies 

To validate the performance of isogeometric analysis for soil-plasticity, three 
numerical benchmark models have been established. The models have all been 
simulated for soils in saturated conditions using the Drucker-Prager criterion. 
The models evaluated consist of one two-dimensional model of a strip footing 
and two three-dimensional cylindrical soil profiles subjected to a prescribed force 
and prescribed displacement respectively. 
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5.1. Two-Dimensional Study 

A two-dimensional model of a strip footing on sandy silt has been analyzed. Due 
to the symmetric properties of the problem the analysis contains only half of the 
footing. The geometry and boundary conditions are shown in Figure 8. To 
model the load from a flexible footing a vertical pressure of 180 kPa is applied in 
50 equal steps. 

The problem is solved for plane strain conditions using quadratic NURBS- 
based IGA and conventional FEA with 5 different meshes. In order to compare 
the two methods the element meshes have been constructed using quadratic 
isoparametric elements for both IGA and conventional FEA. The element size 
ranges from a coarse mesh with elements of 2 × 2 meters down to a mesh with 
elements of 0.25 × 0.25 meters. The mesh data and degrees of freedom for each 
mesh are shown in Table 1. The material parameters of the soil in the two di-
mensional model are shown in Table 2. 

Figure 9 shows the ground surface displacements under the flexible footing. 
To make the comparison clearer, we compare the results at two points along the 
ground surface. The first point, A, is placed at the center of the footing and the 
second point, B, is placed at the edge of the footing, see also Figure 8. It can be 
seen that the displacements are in good agreement at center of the footing but  
 

 
Figure 7. Illustration of return to the apex of the yield surface for the Drucker-Prager 
criterion. 
 

 
Figure 8. Geometry and boundary conditions for the flexible footing model. 
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Table 1. Mesh data for the two-dimensional simulations. 

min. el. size [m] nel ndofs (FEA) ndofs (IGA) 

2 × 2 75 682 238 

1 × 1 300 2562 768 

0.5 × 0.5 1200 9922 2728 

0.33 × 0.33 2700 22082 5888 

0.25 × 0.25 4800 39042 10248 

 
Table 2. Material parameters for the soil. 

Material Parameter Value [Unit] 

Young’s modulus, E 100 [Mpa] 

Poisson’s ratio, ν 0.3 - 

Cohesio, inc′  20 [kPa] 

Cohesio, pc′  23 [kPa] 

Angle of internal friction, inφ′  20 [deg] 

Angle of internal friction, pφ′  22 [deg] 

angle of dilatation, ψ 5 [deg] 

Accumulated plastic strai, ( ) p

p
dE  0.04 - 

 

 
Figure 9. Ground surface displacements underneath along the loading surface. 
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that there is a minor difference between the displacements from the isogeome-
tric- and conventional finite element analysis at the edge of the footing (x = 2). 

Figure 10 displays the load/displacement response in point A and B for the 
finest mesh. By studying the load/displacement response in Figure 10, the dif-
ferences between the IGA and FEA results in point B become more apparent. 
The results for point B showed in Figure 10 are of special interest. The NURBS 
basis functions used in the isogeometric analysis provides continuous stress 
fields at the edge of the footing, where discontinuous stresses can be expected. 
The continuous stress will in turn affect the development of plastic strains at the 
edge of the footing. 

The effects of the continuous stress fields that result from the NURBS basis 
functions can be seen in Figure 11, where the evolution of the plastic zone under 
the footing is displayed. From load steps 20 - 22 in Figure 11 it can be seen that 
the initial plastic strains are slightly different at the edge of the footing in the 
conventional finite element analysis compared to the isogeometric analysis. The 
difference in plastic strains at the edge of the footing corresponds to the diverg-
ing displacements seen in Figure 9 and Figure 10. For the isogeometric analysis 
the plastic strains originate under the center of the footing and reaches the edge 
of the footing during increased loading. In the finite element analysis, however, 
the plastic strain originates both under the center of the footing and at the edge 
of the footing simultaneously. Studying the displacements in point A and B for 
each element mesh, we compare the mesh size dependencies in Figure 12. The 
figure show the deviation of the displacement for each mesh compared to the  

 

 
Figure 10. Load/displacement response at point A and B for the finest mesh (4800 ele-
ments). 
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Figure 11. Evolution of the effective plastic strains. The effective plastic strains from the 
inite element analysis and isogeometric analysis at six different load steps. 

 

 
Figure 12. Comparison of the convergence of the displacement between FEA and IGA, 
for point A (a) and for point B (b). 
 
results from the finest mesh used. The graphs show that the convergence for the 
isogeometric analysis and the conventional finite element analysis are compara-
ble. 

5.2. Three-Dimensional Studies 

The two three-dimensional studies in this work are composed of a cylindrical 
soil profile with a 2:1 height/diameter proportion. In the first example, the cy-
lindrical soil profile is subjected to a prescribed displacement at the top of the 
cylinder, in the second study the soil profile is subjected to a confining pressure 
and an increased vertical load at the top of the cylinder. The geometry and boun-
dary conditions of the three-dimensional examples are presented in Figure 13. 
In both examples, a perfect elasto-plastic Drucker-Prager criterion, matched to 
the compressive meridian of the Mohr-Coulomb criterion has been used to model 
soil plasticity. The material properties for the soil in both studies are given in Ta-
ble 3. For both IGA and conventional FEA 27 node isoparametric elements have 
been used to model the cylinder. The mesh data used are presented in Figure 14. 
Using NURBS parameterization an exact cylinder can be modeled. Whereas, for 
conventional FEA the geometry depends on the density of the mesh. 
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Table 3. Material parameters for the soil in three-dimensional studies. 

Material Parameter Value [Unit] 

Young’s modulus, E 1000 [kpa] 

Poisson’s ratio, ν 0.3 - 

Cohesio, c’ 5.5 [kPa] 

Angle of internal friction, ϕ’ 10 [deg] 

angle of dilatation, ψ 5 [deg] 

 

 
Figure 13. Boundary conditions for the three-dimensional models. The displacement-con- 
trolled analysis is fixed in the bottom of the cylinder and has no horizontal constraints at 
the top (a). In the load controlled analysis the bottom of the cylinder is assumed to be 
fixed (b). 
 

 
Figure 14. The left hand side shows a horizontal view of the finite element mesh and on 
the right hand side shows the conventional FEA (top) and IGA (bottom) meshes viewed 
from the top. The figure also includes mesh data used in the simulations. 

5.2.1. Displacement Controlled Analysis 
In the displacement controlled analysis a total strain of 7% is applied over 100 
equal time by prescribing a displacement at the top surface. To compare the re-
sults from the isogeometric analysis with the finite element analysis, Figure 15 
shows the applied pressure normalized to the cohesion against the axial strains. 

To study the effects of the mesh density, Figure 16 shows the average vertical 
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Figure 15. Load/displacement response for the displacement controlled analysis of the 
cylindrical soil profile. 

 

 
Figure 16. Deviation of the average displacements on the top surface of the sample. 
 
stress components over the top surface of the soil profile for each mesh norma-
lized to the vertical stress from the finest mesh. From Figure 16 it is clear that 
the deviation of the vertical stresses is slightly less pronounced in the results 
from the isogeometric analysis compared to the conventional finite element me-



A. Spetz et al. 
 

113 

thod. Comparing the results from the two dimensional example, the authors 
judge that the difference arises from the beneficial geometrical parameterization 
using NURBS in the isogeometric analysis. 

5.2.2. Force Controlled Analysis 
In the force-controlled example the soil profile is subjected to a confining pres-
sure, σc, and an axial load, σv, acting on the top surface as illustrated in Figure 
13(b). The analysis is run over 100 load steps. The load is applied by first in-
creasing the confinement pressure to 3 kPa after which the vertical load is in-
creased to 14 kPa. To compare the results from the isogeometric analysis to the 
results from the conventional finite element analysis, the applied force, norma-
lized to the cohesion, is plotted against the axial strains in Figure 17. The results 
show that the solutions are in good agreement but that there is a difference be-
tween the displacements from the isogeometric analysis compared to the finite 
element results. Comparing the deviation of the displacement at the top surface 
for the load controlled example, the influence of using the exact geometry in the 
isogeometric analysis becomes more evident than for the displacement-controlled 
analysis, see Figure 18 and Figure 16. This would be expected as the confining 
pressure σc will be more accurate using a soil profile made out of a perfect cy-
linder, than one discretized with Lagrangian polynomials. This can be seen in 
Figure 18 where the results from the coarser meshes clearly are in error. 

6. Summary and Conclusion 

The aim of this work is to evaluate the isogeometric framework for numerical 
 

 
Figure 17. Deviation of the average displacements on the top surface of the sample. 
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Figure 18. Deviation of the average displacements of the top surface of the cylinder. 
 
analysis of soil behavior. To compare IGA to conventional FEA, the Drucker- 
Prager criterion has been implemented together with a NURBS-based isogeome-
tric framework. A numerical study has been conducted using NURBS-based 
isogeometric analysis comparing the results with results from analysis performed 
using the finite element method. The numerical examples presented show, that 
for drained soils; the results from isogeometric analysis are overall in good agree-
ment with the conventional finite element method in two- and three-dimensions. 
However, the results from the two-dimensional example presented illustrate that 
the higher continuity of the basis functions used in IGA can have an effect on 
the plastic strains where abrupt stress changes can be expected. For the three- 
dimensional examples presented in this paper the isogeometric analysis has 
performed as good as or better than the finite element method, comparing the 
load/displacement response. To compare the computational efficiency of IGA 
and conventional FEA is not within the scope of this study. Further, geotechnical 
applications like retaining walls in weak soil or installations of friction piles of-
ten involve complicated contact problems and fluid flow, hence could benefit 
from using the isogeometric framework. 
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