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Abstract 
The aim of this paper is to provide an advanced analysis of the shear stresses 
exerted on vessel walls by the flowing blood, when a limb or the whole body, 
or a vessel prosthesis, a scaffold… is placed in an external static magnetic field 
B0. This type of situation could occur in several biomedical applications, such 
as magnetic resonance imaging (MRI), magnetic drug transport and targeting, 
tissue engineering, mechanotransduction studies… Since blood is a conduct-
ing fluid, its charged particles are deviated by the Hall effect, and the equa-
tions of motion include the Lorentz force. Consequently, the velocity profile is 
no longer axisymmetric, and the velocity gradients at the wall vary all around 
the vessel. To illustrate this idea, we expand the exact solution given by Gold 
(1962) for the stationary flow of blood in a rigid vessel with an insulating wall 
in the presence of an external static magnetic field: the analytical expressions 
for the velocity gradients are provided and evaluated near the wall. We dem-
onstrate that the derivative of the longitudinal velocity with respect to the 
radial coordinate is preponderant when compared to the θ-derivative, and 
that elevated values of B0 would be required to induce some noteworthy in-
fluence on the shear stresses at the vessel wall. 
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1. Introduction 

The aim of this paper is to provide an advanced analysis of the shear stresses ex-
erted on vessel walls by the flowing blood, when a limb or the whole body, or a 
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vessel prosthesis, a scaffold… is placed in an external static magnetic field B0.  
As explained in [1] [2], such a situation may occur in several biomedical ap-

plications:  
• magnetic resonance imaging (MRI) [3] [4] [5] [6] [7].  
• magnetic drug transport and targeting [8]-[13]: magnetic particles containing 

or coated with therapeutics are injected into the bloodstream and concen-
trated to sites of disease under the influence of the magnetic field.  

• tissue engineering [14] [15] [16] [17] [18]: magneto-responsive particles are 
guided by the magnetic force in order to enhance cellular invasion in the 
scaffolds.  

• mechanotransduction studies and applications for regenerative medicine 
strategies (for example, with stem cells) [19] [20]. 

This analysis would also provide a risk assessment for the vessel wall (plaque 
rupture in case of atherosclerotic lesion [21], severity of some aneurysms [22], ...) 
or for other cells attachment and/or transmigration (white blood cells, tumor 
cells, cells seeded in vascular substitutes [23], ...).  

Since blood is a conducting fluid, its charged particles are deviated by the Hall 
effect thus inducing electrical currents and voltages along the vessel walls and in 
the neighboring tissues. The equations of motion include the Lorentz force j^B, 
where j is the electric current density. Consequently, the velocity profile is no 
longer axisymmetric, even in a cylindrical vessel; and the velocity gradients at 
the wall vary all around the vessel.  

To illustrate this idea, we chose to expand the exact solution given by Gold [24] 
for the stationary flow of blood in a rigid vessel with an insulating wall in the 
presence of an external static magnetic field. This analysis completes previous 
ones [25] [26]. In the present paper, we provide the analytical expressions for the 
velocity gradients and evaluate them near the vessel wall.  

2. Unidirectional Steady Blood Flow in a Rigid Cylindrical  
Vessel with Insulating Walls 

As explained by Gold [24] and by Abi-Abdallah et al. [25], the Navier-Stokes 
equations including the Lorentz force (Equation (1)), coupled with the induction 
equation (Equation (2)) govern the flow of a conducting, incompressible, New-
tonian fluid in an externally applied static magnetic field B0. 

 ( ) ( )1gradP curl
t

ρ η
µ

∂ + ⋅∇ = − + ∆ + ∧ ∂ 



  

  u u u u B B           (1) 

( ) 1curl
t σµ

∂
= ∧ + ∆

∂



 

B u B B                     (2) 

where u and P are the fluid velocity and pressure; μ is the magnetic permeability; 
ρ, η and σ are the fluid density, viscosity and conductivity and the electric cur-
rent density is expressed as ( )curl µ=j B . 

Gold [24] then considered the case of a unidirectional steady blood flow in a 
rigid circular vessel with insulating walls and radius R (Figure 1, [25] [26]). The  
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Figure 1. Schematic drawing of the studied problem (from [25]). The induced currents 
(blue dashed lines) are oriented along (Oy) in the tube center. Since they cannot escape 
the vessel (insulating walls), they return adjacent to the wall. Closed loops are thus gener-
ated, and these loops induce some magnetic field BI (Biot and Savart law). This induced 
field is parallel to the Oz axis with opposite directions on each side of Oy. 

 
velocity and magnetic field are defined in the cylindrical frame (er, eθ, ez) as:  

( ) ( )

0

0

0 cos
0 and sin

, ,z I

B
B

u r B r

θ
θ

θ θ
−



u B                   (3) 

The induced magnetic field, BI, is parallel to the flow and guarantees div 0=B . 
The continuity equation div 0=u  is also satisfied.  

The longitudinal projections (along ez) of Equations ((1) and (2)) in the cy-
lindrical frame are thus: 

2 2
0

02 2 2

sin1 1 1 cos 0z z z I IBu u u B BP B
z r r r rr r

θ
η θ

µ θθ
 ∂ ∂ ∂ ∂ ∂∂  − + + + + − =   ∂ ∂ ∂ ∂∂ ∂   

  (4) 

2 2

0 2 2 2

sin 1 1 10 cos z z I I Iu u B B BB
r r r r r r

θ
θ

θ σµ θ
 ∂ ∂ ∂ ∂ ∂ = − + + +  ∂ ∂ ∂ ∂ ∂   

      (5) 

The boundary conditions associated with this problem are: 

( ), 0IB R θ =  because the wall is non-conducting                    (6a) 

and ( ), 0zu R θ = , because of the no-slip condition at the rigid wall   (6b) 

The equation system (4) to (6) is expressed in a non-dimensional form, using 
the following definitions:  

0

zuU
u

= , rr
R

= , 
0

IBB
B

= , and 
2

0

R PG
u zη

∂
= −

∂
 (where u0 is some characteristic 

mean velocity).  
The numerical values of the different quantities are taken from Abi-Abdallah 

et al. [25]:  
34 10 Pa sη −= × ⋅ , 0 0.4 m su = , 128 Pa mP z∂ ∂ = − , and 0.01 mR = ; then 

G equals +8.  
The non-dimensional solution given by Gold [24] for Equation (4) and (5), 

associated with the boundary conditions (6) is:  

1495 



A. Drochon et al. 
 

( ) ( ) ( ) ( ) ( )1 1 2 22, , , , , 2 cos
2
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θ θ θ θ θ θ
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= − −  

           (7) 

and  

 ( ) ( ) ( ) ( ) ( )1 1 2 2, , ) , , ,
2 a

GU r E r A r E r A r
H

θ θ θ θ θ= +  

              (8) 

with:  

( )
cos

2
1 , e

aH
r

E r
θ

θ
−

=


 , 

( ) ( )1 0 0
1

, 2 cos
2 2

a a
n n

n

H H
A r I r I r nθ α α θ

∞

=

   = +   
   

∑   , 

( )
cos

2
2 , e

aH
r

E r
θ

θ =


 , 

( ) ( ) ( )2 0 0
1

, 2 1 cos
2 2

na a
n n

n

H HA r I r I r nθ α α θ
∞

=

   = + −   
   

∑   , 

and 

0

0

0

2 2;

2 2

a a
n

n
a a

n

H HI I

H HI I
α α

   ′ ′   
   = =
   
   
   

                  (9) 

The Hartmann number, Ha, is defined as: 0aH B R σ
η

= , the magnetic Rey-

nolds number, Rem, as: 0emR Ru σµ= , and the functions In are the nth order mod-
ified Bessel functions of the first kind.  

In order to evaluate the derivatives of the In functions, the following identities 
are used: 

( ) ( ) ( ) ( ) ( )0 1 1and n n n
nI X I X I X I X I X
X−′ ′= = −          (10). 

In such flow configuration, the classical definition of the dimensional shear 
stresses would yield:  

 ;z z
rz z

u u
r rθ

ητ η τ
θ

∂ ∂
= =

∂ ∂
                   (11) 

The corresponding non-dimensional expressions would be: 
1;rz z

U U
r rθτ τ
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0 0

; zrz
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ττ
τ τ

τ τ
= =  , and 0

0
u
R
η

τ =  ( 0 0.16 Paτ = , 

with the numerical data of this study).  
It is thus necessary to calculate the velocity gradients (from Equation (8)). 

This can be done as follows: 
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 (13) 
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Gathering all, one obtains:  

1 1 2 2
1 1 2 22 a

E A E AU G A E A E
r H r r r r

∂ ∂ ∂ ∂∂  = + + + ∂ ∂ ∂ ∂ ∂ 
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and: 

 1 1 2 2
1 1 2 22 a

E A E AU G A E A E
Hθ θ θ θ θ

∂ ∂ ∂ ∂∂  = + + + ∂ ∂ ∂ ∂ ∂ 
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          (18) 

3. Results 

The term ( )1,U
r

θ
∂
∂





, 0 2πθ< < , represents the change of velocity in the radial 

direction, all around the vessel wall.  

The term ( ),U r θ
θ

∂
∂



  represents the change of velocity in the azimuthal direc-

tion, at a given value of r . The velocity is zero everywhere at the wall (r = R); 

consequently the velocity gradient ( )1,U
θ

θ
∂
∂



 is also zero. The interesting quan-

tities are thus ( ),U r θ
θ

∂
∂



 , for r  close to 1, but lower than 1.  

The dependence of the non-dimensional velocity U  upon θ (for –π πθ< < + ) 
is presented in Figure 2. It has been computed for 0.5r = . In the absence of 
magnetic field (Ha = 0), the situation is axisymmetric and the velocity does not 
depend upon θ. The flow is the classical Poiseuille flow and, as expected, 
( )0.5 3 2U r = =

 . When the Hartmann number increases, the flow is further-
more reduced (this is the decelerating effect due to the Lorentz force), and the 
dependence upon θ (asymmetry of the flow) is more and more pronounced. The 
velocity is maximal in the direction θ = 0 and θ = π (or −π), according to the fact 
that the profile is flattened and stretched parallel to the direction of B0 (along Ox) 
[25]. For the same reason, the velocity is minimal in the direction θ = π/2 or 
−π/2.  

The same type of results is shown in Figure 3, where the dependence of the 
velocity upon θ has been illustrated at 0.99r =  (near the vessel wall). Of course, 
the velocities are very small, since at the wall, they are exactly zero. As in Figure 
2, we can observe that the curve obtained for the case Ha = 0.16 is superimposed 
with the curve Ha = 0, meaning that the influence of a magnetic field B0 =1.5 T 
(corresponding to Ha = 0.16) remains negligible. Moreover, when Ha = 0, the  
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Figure 2. Dependence of the non-dimensional velocity U  upon θ (for –π πθ< < + ), at 
0.5r = . 

 

 

Figure 3. Dependence of the non-dimensional velocity U  upon θ (for –π πθ< < + ), at 
0.99r = . 

 

 
Figure 4. Dependence of the non-dimensional velocity gradient U r∂ ∂   upon θ (for 
–π πθ< < + ), at 0.99r = . 

 
value obtained for the non-dimensional velocity at r = 0.99 * R is 0.0398, which 
is the Poiseuille value.  

The dependence of the non-dimensional velocity gradient U r∂ ∂   upon θ 
(for –π πθ< < + ), at 0.99r =  is illustrated in Figure 4 and at 1r =  in Fig-
ure 5. These gradients are negative, since the value of the velocity U  decreases 
when going towards the vessel wall ( 0U = , when 1r = ). As previously noted, 
the influence of a 1.5 T magnetic field (Ha = 0.16) is not discernible, and the ab-
solute values of the gradients U r∂ ∂   are maximum for θ = 0, and θ = π, or −π 
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(due to the fact that the profile is stretched along Ox). 
In the absence of a magnetic field (Ha = 0), the Poiseuille value ( 4U r∂ ∂ = −

 , 
at the wall) is obtained, and no dependence upon θ is observed (axisymmetric 
situation). The maximum values of U r∂ ∂   are increased by about 25% in the 
case of a very strong magnetic field (Ha = 4.47, B0 = 40 T), when compared to the 
case Ha = 0.  

The dependence of the non-dimensional velocity gradient U θ∂ ∂  upon θ 
(for –π πθ< < + ), at 0.5r =  and at 0.99r =  is illustrated in Figure 6 and 
Figure 7 respectively. Since we have 0U = , everywhere at the vessel wall 
( 1r = ), we also have 0U θ∂ ∂ = , for 1r = . Consequently, the absolute values 
of the U θ∂ ∂  velocity gradients decrease when r  tends towards 1. 

In the absence of a magnetic field (Ha = 0), the situation is axisymmetric, and 
there is no dependence upon θ. 

The non-dimensional shear stress, zθτ , could be obtained dividing U θ∂ ∂  
by the value of the corresponding r  (Equation (11)). For example, if we look at 
the maximum value of zθτ~  for 0.99r = , we obtain 0.02zθτ < , which is neg-
ligible when compared to rzτ  (Figure 4).  

 

 
Figure 5. Dependence of the non-dimensional velocity gradient U r∂ ∂   upon θ (for 
–π πθ< < + ), at 1r = . 

 

 
Figure 6. Dependence of the non-dimensional velocity gradient U θ∂ ∂  upon θ (for 
–π πθ< < + ), at 0.5r = . 
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Figure 7. Dependence of the non-dimensional velocity gradient U θ∂ ∂  upon θ (for 
–π πθ< < + ), at 0.99r = . 

4. Conclusion 

In this paper, we demonstrate that the quantities rz
U
r

τ
∂

=
∂







 and 
1

z
U

rθτ θ
∂

=
∂







  

both depend upon θ, but that this dependence may be considered negligible for 
low values of B0 (B0 < 3 T). We also demonstrate that, at the vessel wall, zθτ  is 
several orders of magnitude smaller than rzτ , and that, in the presence of a very 
strong magnetic field (Ha = 4.47, B0 = 40 T), the maximum value of rzτ  is only 
increased by 25%, when compared to its value in the absence of a magnetic field 
(Ha = 0). Consequently, in most of the situations encountered in biomedical ap-
plications, the classical calculation (η(∂u/ ∂r)) remains a good approximation to 
evaluate the shear stresses at the wall.  
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