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Abstract 
In the work, the problems of proper and forced oscillations of dissipative me-
chanical systems, consisting of rigid and deformable bodies are solved. To 
quantify the dissipative properties of the system, two values are proposed: the 
minimum resonance frequency of natural oscillations and the maximum re-
sonant amplitude. In the study of the problem of dissipative inhomogeneous 
mechanical systems, a nonmonotonic dependence of the damping coefficients 
on the parameters of the system was observed. The concepts are derived 
Global damping factor, which characterizes the Damping properties of the 
dissipative mechanical system as a whole. 
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1. Introduction 

The use of damping vibrations of dynamic viscoelastic mechanical systems with 
different rheological properties, for all the studies of the problem [1] [2], is rare-
ly considered in the scientific literature. At the same time, modern machine 
building is characterized by a wide use of polymeric and metallic materials with 
various viscoelastic properties [3] [4] [5] [6]. A mechanical system, consisting of 
rigid and deformable bodies, connected to each other and to a base by deforma-
ble (elastic or viscoelastic) elements, is studied. 

2. Statement of the Problem and Methods of Solution 

Let us consider a composite structure occupying a volume 
1

N

n
n

V V
=

= ∑ , bounded  

by a surface u p∑ = ∑ +∑ . Each of N volumes nV  is filled with a viscoelastic 
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medium, the parameters of which depend on the number n. On a part of the 
surface u∑ —zero motions, on p∑ —zero stresses; mass forces are absent. The 
frequencies and damping indices of the natural vibrations of the structures are to 
be determined. The physical properties of the material of the nth volume of the 
structure, are described by the relations:  

( )2 , , 1, 2,3; 1, 2, ,ij n kk ij n ij i j k n Nσ λ ε δ µ ε= + = =


 , 

where ,ij ijσ ε —components of stress and strain tensors , ,n nλ µ  —Volterra op-
erators 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

d ;

d

t

n n n

t

n n n

t t R t

t t R t

λ

µ

λ ϕ λ ϕ τ ϕ τ τ

µ ϕ µ ϕ τ ϕ τ τ

 
= − − 

 
 

= − − 
 

∫

∫





            (1) 

here , , ,n n n nR Rλ µλ µ —Lame parameters and the relaxation core of the medium 
occupying the volume nV ; ( )tϕ —an arbitrary function of time. 

We assume, that the integral terms in (1) are small. Let the functions ( )tϕ  
has the form ( ) ( )e Ri tt t ωϕ ψ −= , where ( )tψ —slowly varying function of time, 

Rω —real constants. Further, applying the freezing procedure, which has been 
widely studied [7], to the place (1), we can obtain approximate relations: 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

1 ;

1 ;

cos d ; cos d ;

sin d ; sin d .

С S
n n n n R n R

С S
n n n n R n R

c c
n R n R n R n R

s s
n R n R n R n R

i

i

R R

R R

λ λ

µ µ

λ λ µ µ

λ λ µ µ

λ ϕ λ ϕ λ ω ω ϕ

µ ϕ µ ϕ µ ω ω ϕ

ω τ ω τ τ ω τ ω τ τ

ω τ ω τ τ ω τ ω τ τ

∞ ∞

∞ ∞

 ≈ = −Γ − Γ 
 ≈ = −Γ − Γ 

Γ = Γ =

Γ = Γ =

∫ ∫

∫ ∫





 

Physical relationships for deformable elements of zero volume 

( ) ( )1 ,С S
e e e e R e RF C l C i lω ω = − ∆ = − −Γ − Γ ∆   

where l∆ —lengthening this element; eC —instant stiffness of the massless 
element. When posing the problem of proper and forced oscillations of a dissip-
ative mechanical system, consisting of rigid and deformable bodies, the principle 
of possible displacements is used, according to which the sum of all active forces, 
acting on the system, including inertia forces, is zero: 

0.F u IА А А Аδ δ δ δ= + + =                    (2а) 

where, 
2 1

2

2 1

1 1

2 2 2

2 2 2
1 1 1

1 1 1 1

d ;

d dd ;
d d

d d ;

n

n

n n

s s

F ij ij e
n eV

s n n

u u k k k k
n k kV

s s N n

I n m n k k
n n n kV V

A V F l

A V m I
t t t

A V V F m

δ σ δε

δ ρ δ δ δ

ρ δ δ δ δ

= =

= = =

= = = =

= − − ∆

∂
= − − −

∂

= − + + +

∑ ∑∫

∑ ∑ ∑∫

∑ ∑ ∑ ∑∫ ∫

u u uu u
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ϕ
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here, ijδε , lδ∆ —the variation of the deformations of distributed and elongated 
lumped elements; nρ —material density n-th concentrated element; km — 
weight кth rigid body; 1 1, , ,k kδ δu u u u —vectors of displacements of points of 
distributed elements and centers of mass of rigid bodies and their variations; 

,δϕ ϕ —vectors of angular displacements of rigid bodies and their variations; 
,n nV ∑ —volume and surface n-th distributed item; nI —central inertia tensor 

n-th rigid body; ,m kF M —the principal vector and principal moment of the 
forces, applied to к-hard body; 1s —otherwise deformability elements; 2s — 
otherwise the wire deformability. 

If the dissipative mechanical system consists of deformable bodies, then in-
stead of (2a) the uniform equations of the movetion are used: 

( )
22 2

2 0,ji i
n n n n n

j j i j

uu u x V
x x x x t

µ λ µ ρ
∂∂ ∂

+ + − = ∈
∂ ∂ ∂ ∂ ∂



          (2b) 

and boundary conditions 

0 at ,i uu x= ∈∑  

, at ,jk i
n ij n j p

k j i

uu u x
x x x

λ δ µ
  ∂∂ ∂

+ + ∈∑   ∂ ∂ ∂   



 ν         (3) 

were i, j, k = 1, 2, 3; 1,2,3, ,n N=  ; nρ —material density nth volume; jν — 
components of the normal to the surface p∑ ; ( )1 2 3, ,x x x x= —radius vector of 
the point of the body; iu —components of the displacement vector. At the vo-
lume boundaries nV  we assume continuity of the displacement vector compo-
nents, normal and tangent to the stress interface. We seek the solution of prob-
lem (2) and (3) in the form  

( ) ( )1 2 3 1 2 3, , , , , e ,i t
i iu x x x t U x x x ω−=                (4) 

were R Iiω ω ω= + —complex natural frequency; iU —complex eigenmode of os- 
cillations. Values ω  and iU  we define solving the problem on eigenvalues:  

( ) ( ) ( )( )

( ) ( )

22
2: 0;

: 0;

: 0

ji
n n R n R n R n i

j j i j

u i

jk i
p n R ij n R

k j i

UUx V U
x x x x

x U

UU Ux
x x x

µ ω λ ω µ ω ρ ω

λ ω δ µ ω

∂∂
∈ + + + =

∂ ∂ ∂ ∂

∈∑ =

  ∂∂ ∂
∈∑ + + =   ∂ ∂ ∂   

ν

    (5)
 

We consider a construction with a finite number of degrees of freedom, con-
sisting of a finite number of material points and absolutely rigid bodies, con-
nected by massless viscoelastic elements. If the rheological characteristics of the 
elements are the same, then this system is a finite-dimensional model of a dis-
sipative homogeneous system, under various rheological characteristics of the 
elements, the system under consideration simulates a dissipative inhomogeneous 
system with a finite number of degrees of freedom. If some elements of the me-
chanical system are deformed, then the designs represent a system with distri-
buted parameters. For natural oscillations, it is necessary to determine the natu-
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ral frequencies and damping coefficients of the natural oscillations. The La-
grange equations for the system under consideration have the form:

  
( ) ( )

1
0, 1, 2,3, ,

n

jk k jk k
k

a q c q j n
=

+ = =∑  
                (6) 

were jkа —symmetric positive definite matrix of generalized masses; kq —ge- 
neralized coordinates; n—number of degrees of freedom; jkс —a symmetric 
matrix whose elements are the operator: 

( ) ( ) ( ) ( )
0

d .
t

jk jk jkс t c t R tϕ ϕ τ ϕ τ τ
 

= − − 
 

∫                (7) 

here сjk—elements of a symmetric positive definite matrix of instantaneous ge-
neralized rigidities; Rjk—elements of a nonnegatively definite matrix of genera-
lized relaxation kernels. For a homogeneous system (all elements are made of a 
single viscoelastic material and described by the same relaxation nuclei, but dif-
ferent instantaneous stiffnesses due to different sizes), all the relaxation nuclei (7) 
are the same. Consequently, the matrix of generalized operator stiffnesses is a 
positive definite real number matrix, multiplied by the operator scalar. 

Thus, in normal coordinates кθ  the elastic system (6) takes the form 

( ) ( )2

0

d 0,
t

к к к kR tθ θ τ θ τ τ
 

′′ + Ω − − = 
 

∫                (8) 

were, кΩ —natural oscillation frequency of the elastic system. The system (8) 
splits into separate equations, that from the mechanical point vision, means the 
independence of the variation of various normal coordinates with free oscilla-
tions. For an inhomogeneous system (its deformable elements have different 
rheological characteristics, in particular, some of them may be elastic), the oper-
ator coefficients jkс  in (6) is the sum of two matrices-the numerical and the 
operator matrix: 

( ) ( )
0

; d
t

jk jk jk jk jk jkс с В В с R tϕ τ ϕ τ τ= + = + −∫ 

 . 

Three symmetric matrices , ,jk jk jkа R с  can not, in the general case, be re-
duced to a diagonal form by a single no degenerate transformation; therefore, 
for a dissipative inhomogeneous system of Lagrange’s equation in normal coor-
dinates кθ  does not decay, but takes the form: 

( ) ( )2

1 0

d 0,
tn

к к к kj k
j

tθ θ τ θ τ τ
=

 
′′ + Ω − Θ − = 

 
∑∫                (9) 

were kjΘ —symmetric positive definite matrix of generalized relaxation kernels 
in the normal coordinates of the elastic problem. The difference between systems 
(8) and (9) can be interpreted as a fact of the mutual influence of the normal 
coordinates of a dissipative inhomogeneous system with free oscillations. This 
mutual influence, which, as a rule, is neglected, can be of fundamental impor-
tance. The problems of the natural oscillations of the system, described by Equa-
tions (6), can be solved in the following way. We replace the operators jkс  in  
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(6), by complex generalized rigidities: ( ) ( )1 .С S
jk jk jk R jk Rс c iω ω = −Γ − Γ   

A particular solution of system (6) is sought in the form: 

e ,i t
k kq U ω−=                        (10) 

were R Iiω ω ω= + —desired complex natural frequency; kU —components of 
the desired complex eigenforms. For the quantities ω  and kU  one can write 
a homogeneous linear algebraic system with a nonlinearly entering complex pa-
rameter. The characteristic equation of the eigenvalue problem has the form  

( ) ( ) 21 0С S
jk jk R jk R jkc i aω ω ω − Γ − Γ − =               (11) 

The roots of Equation (11) can be determined by the method of Mueller as-
suming the eigenfrequencies of the elastic problem as the initial approximation. 
The left-hand side of Equation (11) is calculated at each iteration by the method 
of Gauss with the separation of the principal element. Thus, to solve equation 
(11) we do not need to disclose the determinant on the left-hand side of. 

As an example, consider a system with two degrees of freedom, consisting of 
two bodies of masses 1 1m = , 1 1m = , and three deformable elements with oper-
ator stiffnesses 1 2 3,с с с=    (Figure 1). 

The dependence of the natural frequencies and damping factors on the in-
stantaneous stiffness 2с  at fixed values 1 1 1, ,m m c  and relaxation nucleus 1R , 

2R . We consider two variants of the problem. For the first variant we have a 
homogeneous system 1

1 2 e ,tR R A tβ α− −= =  were 0.01А = ; 

11; 0.1; 1;сβ α= = =  instant stiffness 3
2 10с −=  which considered by Koltunov 

M.A., Mayboroda V.P., Zubcheninov V.G. [4]. The results of the calculations are 
shown in Figure 1. Dependence of natural frequencies and damping factors on 
rigidity 2с  monotonic, and the character of the dependence is the same for 
frequencies and damping coefficients. In the second variant, a dissipative inho- 
 

 
Figure 1. The change in complex frequencies as a function of 

2с , for dissipative homogeneous mechanical systems. 



I. I. Safarov et al. 
 

1006 

mogeneous system is considered: the first deformable element is elastic, ( )1 0R =  
the other parameters are the same as for the first option. The results of the cal-
culations are shown in Figure 2. Dependence of natural frequencies Rkω  from 

2c  the same as in the case of a homogeneous system, the corresponding curves 
coincide with an accuracy of up to 5%. As for the coefficients of damping, their 
behavior varies radically: the dependence Ikω  from 2c  becomes no monotonic. 
Of particular interest is the minimum value of the damping coefficient for a 
fixed value 2c  damping factor: 

( )min Ikkωδ ω= −  

Value δ  determines the damping properties of the system as a whole. In the 
case of a homogeneous system, the quantity ωδ  (we call it the global damping 
factor) is entirely determined by the imaginary part of the smallest modulo 
complex eigenfrequency. In the case of an inhomogeneous system, as the global 
damping factor as a function of the magnitude 2c  the imaginary parts of both 
the first and second eigenfrequencies appear. “Change of roles” occurs with a 
characteristic value of the value 2c , when the real parts of the first and second 
eigenfrequencies are closest. The global damping factor at the specified characte-
ristic value 2c  has a pronounced maximum. This circumstance represents, in 
our opinion, a new mechanical effect, which can be formulated as follows: oscil-
lations of the eigenmodes of a dissipative inhomogeneous viscoelastic system with 
close frequencies mutually cancel each other. Instant stiffness 2c  is a geometric 
parameter, determined by the dimensions of the element, and not by the physical 
properties of the material. The main feature of the observed effect is the qualitative 
dependence of the dissipative properties of the system on its geometric parameters. 

Thus, the results obtained for the dissipative inhomogeneous viscoelastic de-
sign under consideration are completely consistent with the solutions of the 
problem of free damping oscillations and confirm the fact of a sharp increase in 
the intensity of dissipative processes when the fundamental frequencies approach 
 

 
Figure 2. The dependence of complex frequencies on 2с . 
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in inhomogeneous viscoelastic systems. In this case, the role of rheology reduces 
both to the damping of oscillations and to the mutually increasing interaction of 
oscillations and different modes, which substantially increases the dissipative 
properties of the system as a whole. This effect is called “the effect of Troya-
novsky-Safarov”.

 
The effect of interaction of various forms of motion of solid bodies has a prin-

cipal perspective for the synthesis of dissipative heterogeneous engineering 
structures, construction products, damping compounds, materials and compo-
sites of various vibration protection systems and devices that are optimal for dis-
sipative properties and material consumption. 

Let us consider the natural oscillations of a system with two degrees of free-
dom (Figure 3). The following parameter values [2] are accepted: 

10.048; 0.05; 0.1; 1; 1A с Mβ α= = = = = , instant stiffness 2С  varies within  
0.001 1.5•

•
, which was later contradicted by Bozorov M.B., Safarov I.I., Shokin 

Yu.I. [8]. 
Each motion of an inhomogeneous system is a superposition of interacting 

oscillations of several normal coordinates and this interaction of different nor-
mal coordinates, the most intense at close natural frequencies, leads to an inten-
sification of the dissipative processes in the system. Let the dissipative mechani-
cal system consist of layered bodies. As an example, consider a hollow cylinder 
of length l, consisting of coaxial viscoelastic layers. We introduce a cylindrical 
coordinate system: , ,r zϕ , which was later contradicted by Safarov I.I, Akhme-
dov M. Sh., Boltaev Z.I. [9]. Internal 0r R=  and the outer surface is free of stress 

0rr r rzϕσ σ σ= = = ; at the ends 0,z z l= =  offsets 0zu =  and shearing stresses: 
0rz zϕσ σ= = ; on the boundaries of layers: 1 2 1Nr r r r −=   offsets: , ,r zu u uϕ  

and stresses , ,rr r rzϕσ σ σ  are continuous. As the required task variables, we take 
the , ,r zu u uϕ  and stresses , ,rr r rzϕσ σ σ . Equations for these variables are ob-
tained by eliminating from the Cauchy relations, Hooke’s law and the equations 
of motion of strains and stresses , ,zz zϕϕ ϕσ σ σ  ( 1 , 1, ,n nr r r n N− < < =  ), which 
was later contradicted by Safarov I.I, Akhmedov M. Sh., Boltaev Z.I. [10]: 

( )( )
( )

( )

( )

1 1 21 ;
1 1

2 11 ;

2 1
;

n nnr r z
rr

n n n

nr
r

n

nz r
rz

n

uu u u
r r r z E

u uu
r r r E

u u
r z E

ϕ

ϕ ϕ
ϕ

ν νν
σ

ν ϕ ν

ν
σ

ϕ

ν
σ

∂ + − ∂ ∂
= − + + + ∂ − ∂ ∂ − 

∂ +∂
= − + +

∂ ∂

+∂ ∂
= − +

∂ ∂

              (12) 

2

2

2

2

2

2

1 ;

1 2 ;

1 1 ,

r rrrr rz r
n

r z
r n

rrz zz z
rz n

u
r r z r t

u
r r z r t

u
r r z r t

ϕ ϕϕ

ϕ ϕϕ ϕ ϕ
ϕ

ϕ

σ σ σσ σ
ρ

ϕ

σ σ σ
σ ρ

ϕ
σσ σ

σ ρ
ϕ

∂ −∂ ∂ ∂
= − − − +

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= − − − +

∂ ∂ ∂ ∂
∂∂ ∂ ∂

= − − − +
∂ ∂ ∂ ∂

 

where 
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(a) 

 
(b) 

Figure 3. The dependence of complex frequencies on 2c ; (a) 
Dissipatively homogeneous mechanical system; (b) Dissipa-
tively homogeneous mechanical system. 

 

( )

( )

1 ;
2 1 1

1 ;
2 1

n nr z
n rr

n n

n z
z

n

uE u u
r r z

uE u
z r

ϕ
ϕϕ

ϕ
ϕ

ν
σ ν σ

ν ϕ ν

σ
ν ϕ

∂ ∂
= + + + + ∂ ∂ − 

∂ ∂
= + + ∂ ∂ 

 

( )
( )

2 ;
11

3 2
, .

2

n n nr z
zz n rr

nn

n n n n
n n

n n n n

uE u u
r r z

E

ϕν ν
σ ν σ

ϕ νν

µ λ µ λ
ν

µ λ µ λ

∂ ∂
= + + + ∂ ∂ −−  

+
= =

+ +


 

The boundary conditions of the problem have the form: 

0 , : 0;

0, : 0, 0
n rr r rz

rz z z

r R r r
z z l u

ϕ

ϕ

σ σ σ

σ σ

= = = = =

= = = = =
                   (13) 

The problem (12)-(13) does not degenerate when 0.5nν =  (incompressible 
medium). 

We seek the solution of the problem in the form: 
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π

e
kr r i z t m
l

z z

u U
u iU
u iU

ω ϕ

ϕ ϕ

 − + + 
 

   
   =   
   
   

,                    (14a) 

π

e
krr rr i z t m
l

r r

rz rz

i
i

ω ϕ

ϕ ϕ

σ τ
σ τ
σ τ

 − + + 
 

   
   =   
   
   

,                   (14b) 

where ,m k —positive integers; , , , , ,r z rr r rzU U Uϕ ϕτ τ τ —complex amplitudes de- 
pending on the radius r. The problem reduces to finding the eigenvalues for a 
system of six ordinary differential equations with respect to complex amplitudes 
( 1 , 1, ,n nr r r n N− < < =  ): 

( )( )
( )

( )

( )

1 1 2d π ;
d 1 1

d 2 1
;

d
2 1d π ;

d

n nnr r
z rr

n n n

n
r r

n

nz
r rz

n

U U m ki U i U
r r r l E

U Umi U
r r r E

U ki U
r l E

ϕ

ϕ ϕ
ϕ

ν νν
τ

ν ν

ν
τ

ν
τ

+ − = − − − + − − 

+
= + +

+
= +

  (15a) 

2

2

2

d π ;
d

d 2π ;
d

d π .
d

rr rrr
r rz n r

r r
z n

rz rz
r rz n z

m ki i U
r r l r

m ki i U
r r l r

m ki i U
r r l r

ϕ
ϕ

ϕ ϕ
ϕϕ ϕ ϕ

ϕ

τ ττ
τ τ ρ ω

τ τ
τ τ ρ ω

τ τ
τ τ ρ ω

−
= + − −

= + − −

= + − −

             (15b) 

here 

( )

( )

2

π ;
2 1 1

π ;
2 1

π ;
11

n nr
n r rr

n n

n
z z

n

n n nr
zz n z rr

nn

E U m ki U i U
r r l

iE k mU U
l r

E mU ki U i U
r r l

ϕϕ ϕ

ϕ ϕ

ϕ

ν
τ ν τ

ν ν

τ
ν

ν ν
τ ν τ

νν

 = − − + + − 

 = − + +  

 = − − +  −−  

 

when  

0 , : 0; 0, : 0, 0.n rr r rz rz z zr R r r z z l Uϕ ϕτ τ τ τ τ= = = = = = = = = =  

The characteristic equation of the problem is constructed by the method of 
orthogonal sweep, the roots of the characteristic equation are determined by the 
Muller method. Figure 4 shows the results of calculations for the case of plane 
oscillations ( 2, 0m k= = ) cylinder, consisting of an outer thin elastic layer 
( 1 21.5; 1.7r r= =  and an internal incompressible viscoelastic layer). Inner radius 

0R , which varied from 0.6 to 1.3. The following parameter values are accepted: 
4

1 110 0 / 5E ν−= = , 1
1 e tR A tβ α

µ
− −= , 0.01A = ; 1β = ; 0.1α = ; 2 1E = ; 2 0.3ν = ; 

2 0R = . Figure 4 shows the dependences of the real and imaginary parts of the 
first two natural frequencies on the inner radius 0R . The above dependences 
confirm the effect found in the analysis of the natural oscillations of a system  
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Figure 4. The change in complex frequencies as a function of 

2c , for dissipative inhomogeneous mechanical systems. 
 
with a finite number of degrees of freedom. 

3. Forced Oscillations of Dissipative Mechanical Systems 

For a system with a finite number of degrees of freedom, the variational problem 
(2a) reduces to a system of linear Lagrange equations of the second kind with 
complex generalized rigidity: 

( ) ( )
1

e , 1, 2,3, ,
N

i t
jk k jk k j

k
a q с q f j Nλ−

=

+ = =∑  
              (16) 

where 

( ) ( ) ( ) ( )d
t

jk jk jkc t c t R tϕ ϕ τ ϕ τ τ
−∞

 
= − − 

 
∫ , 

ija —components of the real symmetric matrix of generalized masses; kq —com- 
plex generalized coordinates; jf —complex amplitudes of generalized forces; 
λ —actual frequency of external influences. The solution of the problem of 
forced oscillations of system (16) is sought in the form: 

e i t
j jq A λ−= ,                           (17) 

where jA  desired complex amplitudes. The problem of forced oscillations, re-
duces to solving an inhomogeneous algebraic system: 
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( )( )2

1

N

lk jk k j
j

c a A fλ λ
=

− =∑ ,                     (18) 

the solution, which is carried out in the Gauss method. In the presence of a me-
dium of deformable elements of a system of at least one with a distributed mass, 
the number of its degrees of freedom becomes infinite (countable). In this paper 
we propose two approaches to solving an infinite-dimensional version of the 
variational problem (2a). The first approach reduces to constructing an infinite 
system of Lagrange equations of the second kind, which after truncation turns 
into a finite system of the form (16). As the generalized coordinates, the compo-
nents of the displacements of the centers of mass of rigid bodies, and their small 
angles of rotation with respect to the coordinate axes (or principal directions of 
inertia) are taken, as well as, the components of the expansion of the displace-
ments of the massive deformable elements from their elastic self-oscillations 
(here we mean the eigenmodes of the vibrations of an elastic isolated deformable 
element). In this case the variational problem (2a) reduces to a system of partial 
differential equations, which has been widely studied [10]: 

2
2

2
1

e
s

j i t
jk j j j

k

W
L W f

t
λρ ρ −

=

∂
± =

∂∑ ,              (19) 

wherе jW —components of the displacement vector of points jth massive of the 
deformable element; jρ —its linear density, depending on the coordinates; jf — 
components of complex amplitudes of mass forces, including portable inertia 
forces for a given vibration of a rigid base; jkL —linear combinations of diffe-
rentiation operators with respect to the spatial coordinate of the kth rod with 
complex coefficients. These coefficients in the case of natural oscillations depend 
on the real parts of the desired complex eigenfrequencies, and for the steady- 
state ones, on the actual frequency of the external action. The system (19) does 
not include masses and moments of inertia of absolutely rigid bodies and com-
plex stiffnesses of massless deformable elements of zero volume. These parame-
ters in the approach are taken into account, both in the boundary conditions and 
in the internal (depending on the location of the attached masses) points of the 
jth rod. As shearing forces and bending moments, the elastic forces of concen-
trated deformed elements, forces and moments of inertia forces (relative porta-
ble ones) applied to the absolute rigid body of the system will enter into the spe-
cified boundary conditions. The boundary conditions, for the system (19), in the 
general case are not written out in view of the extreme variety. Let us determine 
the dependence of the resonance amplitudes jkA  (jth number of the generalized 
coordinate, k is the number of the resonant frequency ) (18) from the system 
parameters. The algorithm for constructing this dependence includes the con-
struction of amplitude-frequency characteristics, for each generalized coordinate 

jq  and finding the maximums jkA  for each jλ . To find the maxima and mi-
nima on the resonance curve, the Mueller method is applied, which has been 
widely studied [10]. The amplitude-frequency response, this curve, is described 
by equation ( ) ( )j jA qλ λ= . Its maxima and minima satisfy equation 
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( )
0jA λ

λ
∂

=
∂

                      (20) 

It is necessary to have the roots of this equation (by the Muller method). 
To do this, we must calculate the left-hand sides of (20) for given values  

1 2, , , nλ λ λ λ=  . Having chosen 4 610 -10λ − −∆ = , we define the derivatives by 
the formula: 

( ) ( ) ( )
0

2
j j j jj A AA λ λ λ λλ

λ λ

+ ∆ − − ∆∂
= =

∂ ∆
. 

The first root is known 0λ =  , so you need to start looking for the second 
one. As an example, we consider a system with two degrees of freedom (Figure 
3) , which has been widely studied [11]. The values are accepted, the other pa-
rameters coincide with those adopted in the second task. Two variants of me-
chanical systems are considered. The results of the calculation of the first variant 
are shown in Figure 5(a). Addiction jkA  (j = 1, 2; k = 1, 2) of the parameter 2с  
monotonous. In the second variant, the first deformable element is elastic: 

1 0R = , the other parameters are the same as those used above. The results of 
the calculation are shown in Figure 5(b), according to which when the natural 
frequencies approach the corresponding amplitudes А11 and А12 becomes equal. 
Addiction jkA  from 2с  no monotonic. The damping properties of the system 
as a whole for forced oscillations are determined by the maximum resonance 
amplitude (we call it the global resonant amplitude). The intensity of dissipative 
processes in the system is higher the lower the global resonant amplitude (GRA): 

( )maxА jkA
λ

δ = . 
In a dissipative homogeneous system, the role of the global resonant ampli-

tude is fulfilled for all values of the parameter by the first resonance amplitude. 
In a dissipative inhomogeneous system, both the first and second resonant ampli-
tudes act as the GRA in terms of the magnitude of the parameter. “Change of roles” 
also occurs in the case of a global damping factor Аδ  with a characteristic value 
of the parameter at which the real parts of the natural frequencies are closest. 

At this value of the parameter, the global resonant amplitude (GRA) is mi-
nimal and, consequently, the dissipative processes in the system proceed most 
intensively, and the global damping coefficient has a pronounced maximum. 
This effect is a continuation of the effect of Troyanovsky-Safarov. To clarify the 
physical nature of the detected effect, we write the equations of motion of a sys-
tem with n degrees of freedom. In the case of a homogeneous system, all the re-
laxation nuclei ijR  is the same: ijR R= , since the matrix of generalized com-
plex rigidity ijс  is a positive definite real matrix ijс , multiplied by a complex 
scalar:

 
( ) ( )1 .С S

jk jk jk R jk Rс c iω ω = −Γ − Γ   

In the normal coordinates of the viscoelastic problem, the system (16) takes 
the form: 

( )2 1 c s
n n n niθ θ+Ω −Γ − Γ = Ψ                 (21) 
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(a) 

 
(b) 

Figure 5. Dependence of the resonance amplitude on с2; (a) 
Dissipatively homogeneous mechanical system; (b) Dissipa-
tively homogeneous mechanical system. 

 
where Ω —complex own frequency of elastic system; nΨ —generalized force 
corresponding to nth normal coordinate. The system (21) is divided into n sepa-
rate equations. This means that, the motion of a mechanical viscoelastic system 
is a superposition of independent normal vibrations decay, and the forced ones 
have a finite resonant amplitude. The main property of conservative systems— 
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the possibility of excitation of the vibration of one normal coordinate without 
excitation of the others—is completely preserved in the case of a homogeneous 
viscoelastic system. Therefore, in the case of an inhomogeneous system, the La-
grange equation in normal cords of an elastic system has the form

  
( )2 2

1

N
c s

n n n n nj nj j k
j

θ θ θ θ θ
=

+Ω −Ω + = Ψ∑                    (22) 

where ,c s
nj njθ θ —non-negative definition of a real matrix. The system (22) con-

sists of related equations. This mechanical coupling means that it is impossible 
to excite the oscillation of an individual normal coordinate. This effect has been 
widely studied [12] [13] [14]. Each motion of an inhomogeneous system is a su-
perposition of interacting oscillations of several normal coordinates, and this in-
teraction of different normal coordinates, the most intense at close natural fre-
quencies, leads to an intensification of the dissipative processes in the system. 
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