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Abstract 
Drought Monitoring by remotely sensed moisture vegetation indexes is being 
an active research subject as the vegetation spectral responses are showed to 
be highly correlated to water content. The MODIS (MODerate resolution 
Imaging Spectro-radiometer) sensor of the Terra satellite provides MOD09A1 
product of BRDF (Bidirectional Reflectance Distribution Function) used in 
computing moisture vegetation indexes (MVI). The exploration of an MVI 
time-series in the Kroumirie forest in Northern Tunisia showed important 
noise due to both clouds contamination and sensor defaults that had to be 
removed. Amongst methods for removing these imperfections, TIMESAT tool 
was designed for correcting time-series of satellite data and also to retrieve 
seasonal parameters from smoothed vegetation indexes. The methodology of 
smoothing functions to fit the time series data is based on two stages. First, a 
least square fit to the upper envelope of the vegetation indices series is ap-
plied. The second stage is achieved by local and adaptive fitting functions. The 
corrections have been made by spikes removal due to abrupt change of MVI 
variations and by fitting the MVI time-series to the upper envelop to correct 
the negative biases of remote sensing vegetation indexes. The adaptive Savitsky- 
Golay function filter compared to local filtering process produces variations 
that conserve local variations for all the tested MVI. Seasonal vegetation pa-
rameters were extracted for each year of the time-series analysis and com-
pared to the Standardized Precipitation Index (SPI) calculated at meteorolog-
ical station level and for different time scales. Positive relations were found 
between SPI and the seasonal parameters expressed by the length and the am-
plitude of the season, indicating MODIS derived MVI sensitivity to water def-
icit or surplus conditions. The 6-month SPI showed the best performance 
when related to water sensitive indexes suggesting that MODIS derived in-
dexes are more correlated to the precipitation variations over seasons. 
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Mediterranean Forests 

 

1. Introduction 

Global and regional monitoring of drought is becoming an active research sub-
ject to determine the impacts of drought on water management and socio-eco- 
nomic development, especially in limited water resources regions where drought 
episodes highly control water availability and functioning of forested and culti-
vated ecosystems. Various approaches for drought definitions and drought in-
dexes were developed and synthesized in review studies such as [1]. On the other 
hand, during the last two decades, the models used in the assessment of drought 
causes and manifestations integrated more and more indicators from multi- 
sensors satellite images to study their correlation with drought indexes. The 
monitoring of vegetation moisture by remote sensing became an active research 
subject in various studies within natural and cultivated areas where the vegeta-
tion spectral responses are showed to be highly correlated to physical indicators 
of water content and consequently to drought episodes. These studies that are 
based on linking spectral vegetation response to meteorological drought indexes, 
and are carried out to overcome sparse and inadequate network of weather sta-
tions. For example, [2] proposed a comprehensive analysis to evaluate the per-
formance of remote sensing data towards drought conditions for fire prone ve-
getation in Australia. In [3] spectral vegetation response with thermal images 
and TRMM precipitation images (Tropical Rainfall Measuring Mission) was in-
tegrated in a unique drought spectral index that had been shown to be correlated 
with drought indexes such as SPI (Standardized Precipitation Index) and varia-
tion of crop yield in China. In the southern shore of the Mediterranean basin 
known as one of the most exposed regions to climate changes [4], there is a need 
of consistent drought monitoring to ensure a balanced ecohydrological func-
tioning and to help mitigate climate changes effects. In [5] hydric stress and 
drought impacts on ecohydrologic balance were studied in a forested ecosystem 
of northern Tunisia. 

Vegetation indexes (VI) derived from remote sensing, which are empirical 
combination of BRDF (Bidirectional Reflectance Distribution Function) in var-
ious wavelengths, contribute in detecting both biomass driven by chlorophyll ac-
tivity and vegetation water content inducing various spectral responses in mid-
dle infra-red waves known as short wave infrared (SWIR). Time-series of re-
motely sensed VI are valuable sources of data for cultivated and natural vegeta-
tion landscapes environmental monitoring. In [6] an exhaustive literature review 
assessment was presented for prominent applications based on time-series of 
vegetation indexes. The time-series NDVI products have been widely used as 
different sensors afforded these data such as the 8-km resolution AVHRR- 
GIMMS (Advanced Very High Resolution Radiometer-Global Inventory Mod-
eling and Mapping Studies) launched in the end of the eighties and the 1-km 
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spatial resolution SPOT-VEGETATION program launched in the nineties. Since 
the early 2000 s, the availability of MODIS products has brought a breakthrough 
in time-series data with the 250-m spatial resolution NDVI product (MOD- 
13Q1). Many studies assessed the performance of MODIS (MOD erate resolu-
tion Imaging Spectro-radiometer) as a keystone satellite sensor system providing 
multiple products, such as MOD09A1 product, a near-daily coverage of the 
Earth surface, at 500 m in visible and infrared ranges. This product has also the 
advantage of two narrow discrete channels in the SWIR bands with a signal to 
noise ratio above 100 [7] which both could be useful for the monitoring of leaf 
water content [8]. MODIS bands 5, 6 and 7 are well suited for canopy water 
monitoring because of the plant water sensitivity in these wavelengths combined 
with the high atmospheric water vapor transmittance [9]. 

Despite the wide use of MODIS sensors, many users reported that MODIS 
time-series can be subject to errors due to gaps, clouds and noise (e.g. [10] [11] 
[12]). Therefore an adequate use of this product requires a correction of re-
motely sensed time-series data. Amongst the various approaches of time-series 
images smoothing, local and global fitting methods are widely used. Local fitting 
methods are based on surrounding value of data in a time-series determined by 
median smoothing approaches [13] or by Savitzky-Golay filter approach [14] 
[15]. Global approaches fit the data to long time scale of observations such as 
Fourier transform used in frequency analysis of a signal (for an extended review 
of filtering methods, refer to [11]). The elimination of noise by filtering process 
allow san estimation of vegetation seasonal patterns such as the length of the 
season and the seasonal amplitude. Therefore, most of time-series smoothing 
algorithms are compared for their phonologic metric detection such as start and 
end of the season [16] [17]. They also could bring valuable information on 
drought occurrence as addressed in [18] where Fourier transform was used on a 
time-series of NDVI to identify specific frequency components corresponding to 
dry years. 

In the present study, local approaches are tested within the tool TIMESAT 
developed by [15]. This tool was used in various time-series filtering (e.g. [11] 
[12] [19]). Our main objective was to compare different smoothing algorithms 
of time-series moisture vegetation indexes computed from MODIS spectral 
bands in a forested Mediterranean region of northern Tunisia. These algorithms 
are embedded in the TIMESAT software that was used principally for anomalies 
corrections of the vegetation indexes time-series. Fitting functions used in the 
different algorithms allow the determination of the start and the end of vegeta-
tion season in the study region. We hypothesized that these comparative outputs 
of the season length and the amplitude reached by vegetation indexes could be 
adequate indicators of vegetation response to water deficits or surplus when 
compared to the SPI drought index. 

The specific objectives of the present work are: 1) to make a time-series filter-
ing of various moisture vegetation indexes (MVI) derived from the BRDF prod-
uct MOD09A1 using the TIMESAT tool; 2) to evaluate the most performing 
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filtering functions to make necessary corrections of the imperfections of the used 
data; 3) to determine the vegetation seasonality parameters for the years of the 
time-series of the study; 4) to investigate the relationship between seasonal pa-
rameters derived from filtered MVI time-series and the drought meteorological 
index SPI within the study ecosystem. 

2. Study Area 

The research focuses on the northern ecoregion of Tunisia known as the 
Kroumirie Forest, belonging to the Mediterranean North African forests 
(7˚52'E-37˚29'N to 9˚33'E-36˚22'N) (Figure 1). This ecoregion covering an area 
of 255,000 ha, is characterized by deciduous forest mostly represented by tree 
layer of cork oak (Quercus suber), shrub layer (e.g. Erica arborea and Pistacial 
entiscus) and herbaceous litter layer. This region has an average annual precipi-
tation of 700 mm, but locally, precipitation can reach 1500 mm [20]. Isohyets of 
annual average precipitation illustrated in Figure 1 show an important gradient 
of precipitation decrease in the direction NW-SE. The Mediterranean climate of 
the study region is characterized by rainy autumns and winters where precipita-
tions are distributed between September and March. 

The deciduous forest of Kroumirie region is highly detected by MODIS sen-
sors. The processing of the Enhanced Vegetation Index (EVI) (MOD13Q1 
bi-weekly product: 250 m spatial resolution) allows the discrimination of agri-
culture (EVI < 0.1) and forested areas that we classify in 3 density classes as illu-
strated in Figure 1. 
 

 
Figure 1. Map of the Kroumirie Forest ecoregion showing the vegeation density 
from MODIS Enhanced Vegetation Index (No Forest: EVI < 0.1; Low density for-
est: 0.1 < EVI < 0.2; Medium density forest: 0.2 < EVI < 0.3; High density forest: 
0.3 < EVI < 0.38). Isohyets are computed from 30 years observations 1960-1990 
from INM (National Institute of Meteorology). 
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3. Times-Series Precipitation Data and MODIS Images 

The analysis period targeted in the present study covered the years between 2003 
and 2009. Both 8-daystime-series of MODIS images and daily precipitations of 
four meteorological stations within the study region were acquired and proce- 
ssed. Meteorological data were available in four stations (illustrated in Figure 1) 
between 2002 and 2009, whereas MODIS images were available since 2003. 

3.1. Drought Assessment by SPI 

The Standardized Precipitation Index (SPI) [21], is a common measure of me-
teorological drought calculated from in-situ precipitation data registered at a 
given station. SPI calculation requires monthly precipitations at a local station to 
capture the cumulated deficit or surplus of precipitations over a given timescale. 
SPI is based on fitting the total time-series precipitation to a gamma probability 
density function and, transforming the gamma distribution to a normal distri-
bution with zero as mean and 1 as standard deviation. Values of SPI allow the 
characterization of the meteorological drought in a station as this index 
represents the number of standard deviations of an observed precipitation from 
the long term mean precipitation value calculated for a long term period. On the 
basis of computed SPI values, a drought category is associated to the station as 
shown in Table 1. SPI can be estimated at a station level for different time scales 
(3 months, 6 months, 12 months and more) and for each month of the year. 
3-month SPI provides short and medium-term moisture conditions whereas 
6-month SPI shows effects over seasons. 12-month SPI and more are used to 
analyze long term precipitations patterns. 

In the Kroumirie region, records of four meteorological stations were used to 
calculate the SPI from monthly precipitations of the period 2002-2009, except 
for Feija station where records of 2002-2003 were missing (Figure 2). 

3.2. MODIS Time-Series Data 

The MOD09A1 product of the BRDF corresponds to 8 days with a spatial reso-
lution of 500 m. Images corresponding to the period 2003-2010 were  
 
Table 1. Drought classification based on SPI ranges [21]. 

SPI range Drought category 

>2 Extremely wet 

1.5 to 1.99 Severely wet 

1.0 to 1.49 Moderately wet 

0.99 to 0 Mildly wet 

0 to -0.99 Mild drought 

−1.0 to −1.49 Moderate drought 

−1.5 to −1.99 Severe drought 

<−2 Extreme drought 
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Figure 2. Annual precipitations in meteorological stations of the Kroumirie 
forest. (Data source: DGRE: General Department of Water Resources). 

 
provided as Hierarchical Data Format-Earth Observing System (HDF-EOS) 
downloaded from the online USGS Global Visualization Viewer (GloVis) [22]. 
Data were selected and ordered within a graphical interface. Tiles covering 
North Africa region were clipped to the extent of Tunisia. The images were rec-
tified from sinusoidal projection to geographic projection by the use of MODIS 
Reprojection Tool, and next they were converted to Universal Transverse Mer-
cator (UTM, zone 32 North). From visualization and profiles examination, we 
noticed important noise due to clouds contamination or sensor defaults that had 
to be removed. We also noticed that band 5 of the MOD09A1 product presents a 
regular strip effect. 

Monitoring of vegetation moisture is possible through water sensitive indexes 
(MVI) based on BRDF combination in the various spectral wavelengths. The 
most used MVI reported in the literature are 1) NDWI: Normalized Difference 
Water Index [8], 2) NDII: Normalized Difference Infrared Index [23], and 3) 
GVMI: Global Moisture Vegetation Index [24]. These MVI were developed from 
the combination of the near infrared (NIR) (B2 of MOD09A1) and the SWIR 
(B5, B6 and B7 of MOD09A1); the latter are particularly sensitive to the water 
content of vegetation [25] as shown in Figure 3. 

In a previous research in the Kroumirie forest comparing field moisture data 
with MVI computed from MODIS [26], it has been shown that MVI are highly 
correlated to vegetation water content in this ecosystem. In other water limited 
ecosystems, a study led in Australia confirmed that MVI are sensitive to drought 
intensity and are highly correlated to SPI [27]. The expression of the various 
MVI of the present study is given in Table 2. 

4. Smoothing of MVI Time-Series by TIMESAT 

TIMESAT software is dedicated to analyze time series satellite sensor data [15]. 
A free version of TIMESAT is available at [28]. Thistool was designed primarily 
for analyzing time-series of satellite data and to extract seasonal information 
from any kind of time series. The program provides different smoothing func-
tions to fit the time-series satellite images. Figure 4 represents the general 
framework of MODIS time-series integration and processing stages in TIMESAT. 
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Figure 3. Leaf spectral reflectance simulated for MODIS and 
LANDSAT bands. Response in SWIR bandsis sensitive to relative 
water content (RWC) [25]. 

 
Table 2. Moisture vegetation indexes based on MODIS spectral bands (MOD09A1). 

MVI (Moisture Vegetation Indexes) 

NDWI = (B2 − B5)/(B2 + B5) 

NDII6 = (B2 – B6)/(B2 + B6) 

NDII7 = (B2 − B7)/(B2 + B7) 

GVMI6 = [(B2 + 0.1) − (B6 + 0.02)]/[(B2 + 0.1) + (B6 + 0.02)] 

GVMI7 = [(B2 + 0.1) − (B7 + 0.02)]/[(B2 + 0.1) + (B7 + 0.02)] 

4.1. Methodological Stages of TIMESAT 

The methodology of smoothing MVI time-series by TIMESAT is based on three 
stages to accomplish the correction of the synthesized as follows: 

The first step is based on a preliminary processing of data; it is applied to re-
move values of MVI corresponding to abrupt changes (spikes). This processing 
makes use of quality data available as additional band with the MODIS product. 

Secondly, a least square fits to the upper envelope of the MVI is used to over-
come the fact that vegetation indexes generated from remotely sensed data are 
negatively biased as proved for example for NDVI (Normalized Difference Ve-
getation Index) time series by [29]. 

For a time-series of vegetation index, data are organized in two-dimensional 
arrays where each array corresponds to a vegetation index at a given time. The 
fitting function is a weighted combination of the original vegetation index where 
weights could be adjusted during the processing. In the beginning of this stage, 
weights are derived from data quality product. Next, the weights are adjusted so 
that the highest data are influencing the correction process (values with small 
weights influence the fit less than values with large weights). Figure 5 shows the 
adaption the upper envelope through weights varying from a multi-step  
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Figure 4. Flowchart of MODIS time-series processing in TIMESAT. 

 

 
(a)                                          (b) 

Figure 5. Fitted functions to the upper envelope of NDVI time series. Thin solid line 
reprsents the original vegetation index data and the thick line displays the fitted function. 
(a) Fitted function from the first weights; (b) Fitted function from decreased weights for 
low NDVI [30]. 

 
procedure. The first step results in a fitted function affected by original lowest 
values of NDVI Figure 5(a), whereas Figure 5(b) shows the effect of low data 
weight decrease on the final fitted function. 

The third stage of time series corrections is achieved by one of the three fil-
tering methods: 1) adaptive Savitsky-Golay function, 2) local model Gaussian 
asymmetric function, and 3) local model double logistic function. 
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4.2. Filtering Methods 

The filters in TIMESAT tool are of two types: 1) local model fitting based on mi-
nima and maxima, and 2) adaptive filtering. 

In the first case, data are fitted to local model functions defined in intervals 
around maxima and minima in the time-series data. The local model functions 
have the general form given by Equation (1). The local fitting function uses two 
types of functions which are: the asymmetric Gaussian function Equation (2) 
and the double logistic function Equation (3). 

( ) ( )1 2 ;f t c c g t x= +                         (1) 

where (c1, c2) determine the base level and the amplitude of the fitting function 
f(t), “x” is the non linear parameter determining the shape of the basis function 
and “t” is the time variable. 
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where “x1” determines the position of the maximum or minimum with respect 
to the independent time variable t, (x2, x3) determine the width and flatness of 
the right function half, (x4, x5) determine the width and flatness of the left func-
tion half. 
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where “x1” determines the position of the left inflection point, “x2” gives the rate 
of change, (x3, x4) give the same parameters for the right inflection point. 

The second method is known as the adaptive Savitzky-Golay SG filter ([31] 
[32]) and uses a linear combination of nearby values in a window to fit locally a 
polynomial function by a least square method. The filtered value is then calcu-
lated to fit to a polynomial function while varying locally the size of the window 
to avoid getting very important variations between original value and filtered 
value. For a VI time-series, if we assume that at a date “t”, VI(t) is noted yi, this 
yi is replaced by a linear combination of nearby values of a window where “n” 
represents the size of the window. Equation (4) gives the SG filtered value of 
yi: 

( )
n

i j i jfiltered j ny C y +=−
= ∑                         (4) 

where yi is the original data series representing one date value of VI, Cj is the 
weight of the jth original data value yj in the smoothing window size equal to (2n 
+ 1). For example, for n = 1, the window size convolution is equal to 3, meaning 
that VI (t) is replaced by the filtered value combining VI(t − 1), VI(t) and VI(t + 1). 
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The window size “n” can be adjusted to avoid obtaining large variations around 
a given VI value. 

4.3. Seasonal Vegetation 

Considering a time-series of VI with one growing season per year, seasonality 
parameters resulting from fitting functions can be extracted for each full season 
of the time-series. Various parameters could be computed from the filtered MVI 
as shown in Figure 6: the start, the end and the length of the season; the seasonal 
amplitude and the integral of the function describing the season. These seasonal 
parameters allow the comparison of the vegetation response to water availability 
offering the possibility to investigate and explain inter-annual variations of the 
ecosystem vegetation status over space and time. 

4.4. Setting of TIMESAT Parameters 

The parameters that need to be set in the beginning of time-series filtering by 
TIMESAT are illustrated by the interface example of Figure 7. The main para-
meters that have to be specified are: 
• Amplitude cutoff value: time-series with smaller amplitude than the cutoff 

will not be processed; this parameter could be set to 0 to process all data. 
• Spike method: the median filter method assigns a zero weight to values that 

are substantially different from both the left and right-hand neighbors and 
from the median in a window. The difference from the median is measured 
in units of the standard deviation of the time-series that we set to 2 (“Spike 
Parameters” =2). 

• Number of envelope iterations: this setting allows two additional fits where 
the weights of the values below the fitted curve is decreased forcing the fitted 
function toward the upper envelope. 

 

 
Figure 6. Seasonality parameters extraction. Points (a) and (b) 
mark, respectively, start and end of the season; Points (c)and (d) 
give the 80% levels; (e) displays the point with the largest value; 
(f ) displays the seasonal amplitude and (g) the seasonal length. 
Finally; (h) and (i) are integrals showing the cumulative effect of 
vegetation growth during the season [30]. 
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Figure 7. An example of parameters setting for filtering an NDII6 eight years 
time-series in TIMESAT tool. 

 
• Adaptation strength: this number indicates also the strength of the upper 

envelope adaptation. After some trials, we set the value 3 for envelope itera-
tions and the strength adaptation was set to 2. 

5. Results and Discussion 
5.1. Analysis of MVI Time-Series Filtering 

The moisture vegetation indexes MVI were computed from the BRDF product 
covering the time-series period from January 2003 to December 2010. In each 
year, 46 images were acquired and processed on the basis of one image each 8 
days. Thus the total images proceeded in this data set are 368. Next, each time- 
series vegetation index had been processed in TIMESAT where local and adap-
tive filtering functions were tested. Results were first analyzed based on visual 
exploration of time-series profiles at various locations in the Kroumirie Forest 
region. Figure 8 shows original data and the three fitting functions of the NDII6 
time-series for “Ain Draham” and “Ouchtata” sites representing maximum and 
minimum time-series annual precipitation. The other MVI (non illustrated here) 
represent the same patterns of fitting functions with variations in the maximum 
reached by the MVI and the amplitude of the function over time. Compared to 
original values of NDII6, the fitting function process eliminated the extreme 
values (spikes) resulting in sensor imperfection or clouds. Moreover, data were 
fitted to the upper envelope to compensate for the negative biases of vegetation 
indexes. 

The SG adaptive filter Figure 8(a), Figure 8(c) compared to local filtering 
process Figure 8(b), Figure 8(d) produce variations in time-series that conserve 
local variations for all the tested MVI. This has also been reported in other 
works where the SG adaptive filter has been successfully used in minimizing 
noise in NDVI time-series [33] and [12] and Leaf area index time-series [11]. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Time-series plot of NDII6 values. Adpative SG filter for 
(a) Ouchtata (c)Ain Draham. Local filters for (b) Ouchtata (d)Ain 
Draham. (FMT1 is SG sadaptive filter; FMT2 is the asymmetric 
Gaussian function; FMT3 is the double logistic function. 

 
The local and adaptive filtering functions show seasonal cycle of typical deci-

duous forests with one curve by year. Local fitting functions (the asymmetric 
Gaussian function and the double logistic function) are fit to data in intervals 
around maxima and minima, and therefore they capture less local variations. 
This results in more obvious limits of start and end of the season. 
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The year 2003 presented the highest annual precipitations amongst the preci-
pitation time-series as illustrated in Figure 2; this explains that computed MVI 
for this year show highest values compared to the other years. 

5.2. Drought Analysis by SPI and MODIS Time Series 

The SPI for four meteorological stations within the study region were computed 
for each month of the period where daily precipitations are available (2002- 
2009), except for Feija station where records of 2002-2003 were missing. The SPI 
computed at the station level indicate that the study region experienced episodes 
of dry and wet conditions of different magnitude. To assess the possible relation 
between MVI derived from MODIS and drought intensity, the SPI values for the 
month of March were considered. For example, computation of 3-month SPI of 
March in a given year is based on the cumulative precipitations of January, Feb-
ruary and March and it is compared to the same 3-month period of the time se-
ries years. Figure 9 represents the SPI variations for 3, 6 and 12 months time 
scales showing the levels of drought affected to each station during the analysis 
period. From this analysis, we can conclude that the seasons 2002-2003 and 
2008-2009 are the wettest ones, whereas for the other seasons, conditions were 
rather normal or moderately dry. 

From smoothed MVI time-series by TIMESAT, the seasonal vegetation para-
meters were extracted around the positions of the meteorological stations and 
compared to the SPI variations. The length of the season and the amplitude of 
the smoothed MVI vary from one year to another suggesting that water deficit/ 
surplus conditions influence the seasonal vegetation parameters. In particular, 
the integral of the MVI-function describing the season from the start to the end 
L-INTEG-MVI (denoted “h” in Figure 6) was extracted as it integrates both the 
amplitude and the length of the vegetative season, and could be an interesting 
indicator of precipitation deficit or surplus effects on the canopy. 

For the explored stations, we noticed the existence of positive relations be-
tween SPI and L-INTEG-MVI indicating that it is possible to make a monitoring 
of seasonal variation response to climate by remote sensing. As a first approxi-
mation, a linear relation between SPI and L-INTEG-MVI was evaluated and the 
R2 coefficients were computed for each tested MVI (Table 3). Most significant 
results were obtained with 6-month SPI reflecting medium-term trends in preci-
pitation and more rarely with 3-month SPI which reflects short-term moisture 
conditions. This suggests that water sensitive indices are more correlated to the 
precipitation variations over seasons. 

Results show differential capacity of MVI to detect water surplus or deficit. 
Indeed in [26], it has been shown that in this peculiar ecosystem characterized 
by a gradient of vegetation density, the models linking water-sensitive indexes 
and the hydric status of the canopy are highly dependent of the biomass ex-
pressed by the LAI (Leaf Area Index). This could explain the variable perfor-
mance of MVI from one site to another as they had different sensitivities to the 
biomass as reported in other works [27]. 
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Figure 9. SPI values for the period 2002-2009 calculated for 3, 6 and 12 months. 

 
Table 3. Regression coefficients R2 of the linear relation between 6-month SPI (except 
underlined values obtained for 3-month SPI) and L-INTEG-MVI. 

Station NDII6 NDII7 GVMI6 GVMI7 NDWI 

AIN DRAHAM 0.78 0 0.79 0.67 0.74 

DAR FATMA 0.56 0 0 0 0.80 

OUCHTATA 0 0.45 0 0 0.40 

FEIJA 0.6 0 0.43 0 0.83 

 
In a second phase we tested a second degree relation between SPI and L- 

INTEG-MVI. Results reported in (Table 4) show that we have substantially the 
same relations but with increasing R2 coefficients. Figure 10 illustrates for each 
station the SPI and the time-course of the L-INTEG-MVI having the highest R2 
coefficients. 

The strong relation between L-INTEG-NDWI, where NDWI is computed 
from MODIS B2 and B5, and the 6-month SPI is explained by nil values of the  
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Table 4. Regression coefficients R2 of the second degree relation between 6-month SPI 
(except underlined values obtained for 3-month SPI) and L-INTEG-MVI. 

Station NDII6 NDII7 GVMI6 GVMI7 NDWI 

AIN DRAHAM 0.91 0 0.79 0.67 0.98 

DAR FATMA 0.91 0 0 0 0.99 

OUCHTATA 0 0 0 0 0.77 

FEIJA 0.66 0 0.46 0 0.97 

 

 
Figure 10. SPI at multiple time scales and L-INTEG-MVI variation between 
2003 and 2009. 

 
integral function of this index for moderately dry years. The fact that NDWI va-
nishes when climate conditions are normal to dry is explained by the vegetation 
spectral response in bands B2 and B5 used for its computation which are rela-
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tively close in these bands (Table 2, Figure 3). On the other hand, the NDII and 
the GVMI indexes, computed from MODIS B2, B6 and B7, generate low but not 
zero values of L-INTEG-MVI for these years. The amplitude variation of L- 
INTEG-NDWI is small compared to that computed from NDII6, NDII7, 
GVMI6 and GVMI7 (Figure 10). Therefore, despite the high R2 coefficients val-
ues obtained with first and second degree relations between SPI and L-INTEG- 
NDWI, this B5-based MVI is not recommended for vegetation response to cli-
mate conditions in the study region. 

From the previous analysis, our hypothesis that the season length and the am-
plitude reached by remotely sensed vegetation indexes could be adequate indi-
cators of vegetation response to water deficits or surplus is validated in the sites 
where SPI were calculated. It will be possible to improve these preliminary re-
sults by spatial correlations between SPI extended to the whole region and the 
seasonal parameters extracted from the fitted MVI time-series fitted functions. 

6. Conclusions 

This study presented moisture vegetation indexes time-series corresponding to 
8-days images acquired from 2003 to 2009 and calculated from MODIS spectral 
bands after anomalies corrections by filtering functions in TIMESAT tool. All 
the tested filtering functions had eliminated spikes and the time-series data were 
fitted to the upper envelope thus overcoming the negative biases of vegetation 
indices. Amongst the three methods tested in this tool, it has been shown that 
adaptive Savitzky-Golay fitting function is more appropriate because it simulta-
neously corrects the imperfections represented by spikes while keeping the vari-
ations due to a natural evolution of the moisture vegetation indices. Local filter-
ing asymmetric Gaussian function and double logistic function capture less local 
variations; however they generate more obvious limits of start and end of vegeta-
tive season. 

Analysis of the SPI computed from an eight-year history (2002-2009) of pre-
cipitation records demonstrated that smoothed moisture vegetation indexes 
have the capacity to detect wet and drought conditions characterized either by a 
deficit or a surplus of precipitations. Seasonal functions integrating both the 
amplitude and the length of the vegetative season were analyzed in comparison 
to the SPI within each station at different time scales. Regression coefficients of 
the (SPI, L-INTEG-MVI) linear and polynomial positive relations show different 
performances for the tested MVI, but at least one MVI performs for each tested 
station. Moisture vegetation indexes computed from MODIS short wave infra 
red bands 6 and 7 outperformed the index computed from band 5. The best 
agreement between drought index SPI computed for three time scales (3, 6 and 
12 months) and the seasonal parameters were with 6-month SPI suggesting that 
MODIS derived indices are more correlated to the precipitation variations over 
seasons. 

The contribution of this study is that the hypothesis of correlation between 
time-series vegetation indexes, seasonal parameters and drought conditions had 
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been addressed and verified in the Mediterranean peculiar ecosystem. The inter-
est of remote sensing indexes lies in the fact that the information is already spa-
tialized and allows a monitoring of an ecosystem response to drought conditions 
via time-series moisture vegetation indices after their corrections by adequate 
filtering methods. These preliminary results should be improved by in-situ data 
on seasonal parameters as well as spatial correlations between SPI and spectral 
vegetation indexes extended to the whole region. 
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