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Abstract 
Measuring model performance of rating systems is a major task for banks. 
The concept of discrimination, i.e. the discriminative power, is used in credit 
risk modeling to assess the quality of a risk model concerning the separation 
of extreme events. For PD models CAP (Cumulative Accuracy Profile) or 
ROC (Receiver Operating Characteristic) curves are used to build a quantity 
called Accuracy Ratio, which is used to measure the discriminative power. 
These ideas are well known and broadly used in practice. Although such a 
measure is also desirable for models of the loss given default (LGD models), it 
is not documented in the literature. In this note we close this gap. We develop 
a measure for the discriminative power of LGD models based on Lorenz 
curves. We study first properties and introduce some alternatives for its cal-
culation from a practical point of view. 
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1. Introduction and Literature Review  

The Internal Rating Based Approach allows banks to determine their capital re-
quirements according to internal models for the risk parameters PD (=proba- 
bility of default), EAD (=exposure at default) and LGD (=loss given default). 
The underlying rules according to which this shall be done are contained in the 
Capital Requirements Regulation (CRR, [1]) and in the corresponding Regula-
tory Technical Standards (RTS). CRR specifies no requirements with regard to a 
model choice, in principle all types of models are allowed. This is also true for 
the new IFRS 9 Standard that will be authoritative for the determination of cre-
dit impairments from January 2018 on. Accurate estimates for risk parameters 
are essential in both cases. 

At the beginning of the century modeling of the risk parameter LGD was car-

How to cite this paper: Frontczak, R., 
Jaeger, M. and Schumacher, B. (2017) From 
Power Curves to Discriminative Power: Mea- 
suring Model Performance of LGD Models. 
Journal of Mathematical Finance, 7, 657- 
670. https://doi.org/10.4236/jmf.2017.73034  
 
Received: April 28, 2017 
Accepted: July 18, 2017 
Published: July 21, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/jmf
https://doi.org/10.4236/jmf.2017.73034
http://www.scirp.org
https://doi.org/10.4236/jmf.2017.73034
http://creativecommons.org/licenses/by/4.0/


R. Frontczak et al. 
 

658 

ried out in a rather simplified manner. Over the years banks have recognized its 
(PD equal) significance and advanced models have been developed. Basically the 
parameter can be separated into two categories: market LGD and workout LGD. 
A market LGD is usually calculated from market data, especially from data on 
defaulted bonds. The calculation of a workout LGD takes into account banks' 
internal support of defaulted customers and LGD is calculated using discounted 
cash flows over the whole workout period. In both cases modeling of accurate 
LGD estimators is ambitious for many reasons. One reason is the lack of data 
especially for low default portfolios. Another one is the general complexity in 
modeling LGD. In order to be able to predict losses accurately, banks must dif-
ferentiate LGD values on the basis of a wide set of transaction characteristics. 
The most important characteristics are borrower types, collateral types, product 
types and default scenarios. Another difficulty arises from some interaction of 
these characteristics over time, which results in an extremely heterogeneous and 
multidimensional estimation problem. The interaction produces, however, some 
stylized facts of historically observed LGDs. The maybe most important stylized 
fact is the bimodal (under some circumstances also a multimodal) structure of 
the empirical LGD distribution, which is displayed in the next Figure 1. 

The bimodal structure is a characteristic often observed in LGD data. The 
peaks at 0% and at 100% are generated for two main reasons: Firstly, for defaults 
that end with a cure event or are fully collateralized a loss realization of 0% (or 
nearly 0%) is the baseline case. On the other hand, banks also realize total losses 
from defaulted engagements quite often. Here, the most prominent explanations 
are for instance extremely unfavorable liquidations of collateral or long ongoing 
legal proceedings. Another explanation is a write off of the entire or a big pro-
portion of outstanding exposure without starting the workout process. These 
facts explain the bimodal loss structure very well.  
 

 
Figure 1. Bimodal shape of the empirical LGD distribution based on approximately 6.000 
default observations (source: bank internal loss data). 
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When modeling LGDs two main approaches may be distinguished: parame-
tric and non-parametric models. The non-parametric approach contains tree 
models, models based on neural networks ([2]) and option theoretic models ([3], 
[4] and [5]). Parametric LGD models are regression based. Besides OLS and logit 
regression new models have been developed recently: inflated beta regression 
([6]), generalized beta regression ([7]), censored gamma regression ([8]), zero- 
adjusted gamma regression ([9]), and mixture-models ([10] and [11]). In [12] 
the authors point out some problems that arise in LGD estimation and show 
how they may be solved. All these models have been developed to accurately take 
into account the special shape of the empirical LGD distribution. Moreover, 
meanwhile many empirical studies exist, which compare different LGD models: 
[13], [14], [15], [16] and [17]. 

If banks use internal models for regulatory capital estimation, these models 
must be compliant with CRR [1]. Two important requirements are concerned 
with usage of historical data for model building (Article 179 (1) CRR) and vali-
dation that must be done at least annually (Article 185 b) CRR). In addition, va-
lidation is required to be done both qualitatively and quantitatively. The quan-
titative part of the validation process is about assessing the predictive power of 
the model (backtesting), its stability and discriminative power. Backtesting and 
stability assessment are usually done by splitting the defaulted portfolio into an 
in-time and an out-of-time sample. The assessment of discriminative power is 
more challenging. For PD models, the assessment is usually based on the Accu-
racy Ratio. This measure is derived from ROC- (Receiver Operating Characteris-
tic) or CAP- (Cumulative Accuracy Profile) curves and is a common tool in the 
validation process (see [18], [19] and [20]). For that reason an equivalent meas-
ure for LGD models is desirable. However, such a performance measure is not 
documented in the literature. A direct transcription of the concept seems not to 
be possible. A major reason for this is that, in contrary to PD, LGD is not digital 
but a continuous parameter that takes values in the interval [0,1].  

In each of the above mentioned LGD studies the assessment of model quality 
relies on statistical criteria without properly taking into account the model's 
ability to discriminate between low and high LGD scores. These criteria are: 
mean absolute error (MAE), relative absolute error (RAE), mean squared error 
(MSE), root mean squared error (RMSE) and the coefficient of determination 
( 2R  or the adjusted 2R ). They are defined as follows 

1

1 ,N R P
i ii

MAE LGD LGD
N =

= −∑  

1

1

,
N R P

i ii
N R R

ii

LGD LGD
RAE

LGD E LGD
=

=

−
=

 −  

∑
∑
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MSE LGD LGD
N =

= −∑  

,RMSE MSE=  
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2 1 ,
R

MSER
Var LGD

= −
  

 

where N  is the sample size R
iLGD  is the realized (observed) and P

iLGD  is 
the predicted loss quota for an engagement i1. These measures are somewhat 
one-sided and biased as they are not able to account for concentrations, being 
obvious in the empirical LGD distribution. As a matter of fact they are limited in 
the assessment, whether a LGD model is able to distinguish between small and 
big losses or not. 

The aim of this paper is to close this gap. We develop a performance measure 
that is equivalent to the Accuracy Ratio known from PD models. The derivation 
is based on Lorenz curves and Gini coefficients. As there is a direct relationship 
between Lorenz curves and CAP curves, the measure may be regarded as a CAP- 
based measure. The results presented in this paper will enable banks to quantify, 
how well a model is able to predict concentrations observed in historical data. 
This in turn will enrich the tools used for a model assessment and finally help 
banks to validate their internal models more accurately. 

The remainder of the paper is structured as follows: Section 2 introduces the 
relevant concepts. Section 3 contains the main ideas of the paper. After defining 
the new measure, we state first properties and give some interpretations. Section 
4 focuses on providing alternatives for its calculation. These alternatives are im-
portant from a practical perspective. Section 5 concludes. 

2. Lorenz Curve and Gini Index 

The concept of Lorenz curves is well established in macroeconomics. The theory 
is profound and the idea has central applications in quantifying the growth of an 
economy and income inequality. The literature covering the topic is rich (see for 
instance [21], [22], [23] or [24]). Financial applications also exist ([25] and [26]). 
As we want to use the concept in the context of LGD validation, it will be neces-
sary to recall some theoretical basics. 

As usual, the random variable [ ]0,1LGD∈  is understood as a conditional 
quantity: 

| 1LGD LGD D= =  

where D  is the default indicator. The variable can take discrete values or be 
continuous. For the moment we will assume that LGD is continuous, predicted 
by an arbitrary but fixed model. Let ( ) ( )F x P LGD x= ≤  be the cumulative 
distribution function (c.d.f.). Since ( )F x  is continuous and monotonically in-
creasing, we can define its inverse or quantile function2: For [ ]0,1p∈ ,  

( ) ( )1F p q p− =  is the unique number x  with ( )F x p= . Then it is true that 
 ( )1F − ⋅  is monotonically increasing 

 

 

1In [15] the authors also use the correlation coefficient between realized and predicted LGDs as a 
performance criterion. 
2For a piecewise constant c.d.f. the inverse function is not defined. In this case a general inverse can 

be defined as ( ) ( ){ }1 inf :F p x F x p− = ∈ = . 
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 ( )( )1F F x x− ≤ . 
 ( )( )1F F p p− ≥ . 

If ( )F x  is continuously differentiable, we call the derivative a density func-

tion, ( ) ( )F x f x′ = . Then ( ) ( ) ( )
0

d d .
x x

F x f t t f t t
−∞

= =∫ ∫  The expected value 

of LGD equals 

[ ] ( ) ( ) ( )1 1

0 0
d d 1 d .E LGD xf x x xf x x F x x

∞

−∞
= = = −  ∫ ∫ ∫  

The expectation may also be determined using the quantile function ( )q p :  

[ ] ( ) ( ) ( )1 1 11
0 0 0

d d d .E LGD xf x x F p p q p p−= = =∫ ∫ ∫  

Now, we can define the Lorenz curve for the random variable LGD.  
Definition 2.1: Let [ ] 0.E LGD ≠  We define the Lorenz curve in two steps: 
1) Determine the p-quantile, i.e. solve the equation ( ) ( )

0
d .

x
p F x f t t= = ∫  

2) Set ( ) [ ] ( )
0

1 d .
x

L p tf t t
E LGD

= ⋅ ∫  

An immediate consequence is the following Lemma. 
Lemma 2.2: The Lorenz curve ( )L p  can be determined as  

( ) [ ] ( )
( )
( )

1
0
10 1
0

d1 d ,
d

p
p F t t

L p q t t
E LGD F t t

−

−
= ⋅ = ∫∫

∫
             (1) 

or 

( ) [ ] ( )( )( )1
1

0
| d .

F ppL p P LGD t LGD F p t
E LGD

−
−= ⋅ > ≤∫          (2) 

Proof: The first equation follows directly from ( )1 .x F p−=  To prove the 
second equation, we apply integration by parts ( )uv uv u v′ ′= −∫ ∫  with u t=  
and ( )v f t′ = . Using the definition we obtain 

( ) [ ] ( ) ( )( ) ( )
[ ]

( )
( )0 0

1 d 1 d .
x xF x F t

L p x F x F t t t
E LGD E LGD F x

 
= ⋅ − = −  

 
∫ ∫  

This completes the proof.                                         ∎ 
From the above statements we deduce the following properties of ( )L p : 

 Assuming an increasing ordering of LGDs (increasing ranking), the Lorenz 
curve ( )L p  quantifies, which proportion of total loss is assigned to the cu-
mulative proportion of the population. 

 ( )L p  is contained in the unit square with ( )0 0L =  and ( )1 1.L =  More-
over, ( )L p p≤  for all [ ]0,1 .p∈  

 ( )L p  is monotonically increasing and convex. The first two derivatives of 
( )L p  satisfy 

( ) ( ) ( )
[ ]

1d
0

d
L p F p

L p
p E LGD

−

′ = = >  

and 

( ) ( )
[ ] ( )

2

2

d 1 0.
d
L p

L p
E LGD f pp

′′ = = >
⋅
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Especially, the value ( )1 2L′  measures the ratio between the median and the 
expectation. 

Remark 2.3: We will call the graph of ( )L p , i.e. the set of points  

( )( ) [ ]{ } ( ) ( )( ) [ ]{ } [ ] [ ], ; 0,1 , ; 0,1 0,1 0,1p L p p F x L x x= ∈ = ∈ ⊆ ×  

a Power curve.  
Next, we need the notion of a Gini index (Gini coefficient). The index is de-

fined in terms of ( )L p : 
Definition 2.4: The Gini index G  is defined by the following equation: 

( )( ) ( )1 1

0 0
2 d 1 2 d .G p L p p L p p= ⋅ − = − ⋅∫ ∫              (3) 

The definition has a clear geometric interpretation. It is twice the area be-
tween the bisection line and the Lorenz curve. The factor 2 is a scaling factor. It 
ensures that [ ]0,1 .G∈  It is worth noting that for a uniformly distributed ran-
dom variable 0.G ≠  If ( )~ 0,1 ,X U  then ( ) [ ], 0,1F x x x= ∈  and  
( ) 2.L p p=  Thus 1 3.G =  
The next result relates Gini indexes of two linearly transformed random va-

riables. 
Lemma 2.5: Let [ ]0,1X ∈  be a random variable with [ ] 0,E X ≠  c.d.f.  
( )XF x  and Gini index .XG G=  For 0a >  and 0b ≥  define the new ran-

dom variable .Y aX b= +  Then, the Gini index of Y  is given by 

[ ]
[ ]

.Y X

aE X
G G

aE X b
=

+
                    (4) 

Proof: We have ( ) ( )( ) ( ) ( )( ), 1Y X Y XF x F x b a f x a f x b a= − = ⋅ −  and  
( ) ( )1 1 .Y XF p a F p b− −= ⋅ +  Therefore,  

( ) [ ]
[ ] ( ) [ ]

.Y X

aE X bpL p L p
aE X b aE X b

= +
+ +

 

This proves the statement. ∎ 
From the case 0b =  it follows that the index G  is invariant under positive 

scaling.  
The next expression provides an important statistical interpretation of the Gi-

ni index. 
Lemma 2.6: Let [ ]0,1X ∈  be a random variable with [ ] 0,E X ≠  c.d.f.  
( ) ( ).XF x F x=  Then the Gini index admits the following representation: 

[ ] ( )( )2 , .G Cov x F x
E X

= ⋅                     (5) 

The Gini index equals a scaled covariance of the underlying variable and its 
rank.  

Proof: Applying integration by parts to the definition, it follows that 

( )1

0
1 2 d .G p L p p′= − + ⋅ ⋅∫  

The transformation ( )p F x=  together with ( ) ( ) [ ]1L p F p E X−′ =  gives 
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[ ] ( ) ( ) [ ]1

0

2 d .
2

E X
G x F x f x x

E X
 

= ⋅ ⋅ ⋅ − 
 
∫  

Now, from 

[ ] ( ) ( ) ( ) ( )1 1

0 0
( ) d 1 d ,E F x F x f x x F x f x x= ⋅ = − ⋅∫ ∫  

it follows that ( ) 1 2.E F x =    Thus,  

[ ] ( ) [ ] ( )( )2 ,G E xF x E X E F x
E X

= ⋅ − ⋅        

and the proof is completed. ∎ 
Remark 2.7: Since, 

( )( ) ( ) ( )( )1

0

1, 1 d ,
2

Cov x F x F x F x x= −∫               (6) 

the Gini index can be expressed as  

[ ] ( ) ( )( )1

0

1 1 d .G F x F x x
E X

= ⋅ −∫                 (7) 

In many cases the explicit determination of ( )L p  or G  is tedious. Howev-
er, closed-form expressions exist for some prominent distributions (e.g. the log-
normal, Pareto or Weibull distribution). As a final example we want to state the 
expression for the Gini index for the beta distribution. The result is established 
in [27]. The beta distribution is interesting in this context, since it has been pro-
posed recently for LGD modeling ([7], [11]). Let [ ]0,1X ∈  be a beta distributed 
random variable with parameters , 0.α β >  The density and c.d.f. of X  are 
given by 

( ) ( ) ( ) 111 1 ,
,

f x x x
B

βα

α β
−−= ⋅ −  

and 

( ) ( ) ( ) 11
0

1 1 d ,
,

x
F x t t t

B
βα

α β
−− ⋅= −∫  

where ( ),B α β  is the beta function. Then 

( )
( )2

2 , 22 .
,X

B
G G

B
α β

α α β
= = ⋅  

3. The Power Ratio 

In this section we are going to apply the ideas from the last section to define a 
new measure for LGD model performance. The measure may be seen as a coun-
terpart of the Accuracy Ratio, well known from PD modeling. Hereby, we make 
use of the following principle: an estimation model is usually developed on the 
basis of historical data. The historical experience is a vital model component and 
has a significant input on its development and calibration. This is also true for 
LGD models, as risk drivers and correlations are identified from historical loss 
data. Therefore, known realized losses must serve as a benchmark for an estima-
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tion model. This principle is completely in line with the PD model building and 
validation process. 

Let V  be the historical loss portfolio that is used for model building or vali-
dation. We assume that V  consists of N  defaulted borrowers/agreements3. 
At time of default each borrower ( )1, ,i i N=   has an exposure iEAD . Let E  
denote the entire portfolio exposure, i.e. 1

N
ii

E EAD
=

= ∑ . At the end of the mod-
el building or validation process the bank is able to assign a realized ( R

iLGD ) 
and a predicted loss quota ( P

iLGD ) to each borrower i . For that reason the 
model is completely characterized by the following N  vectors:  

( ){ }, , , ; 1, , .R P
i i ii EAD LGD LGD i N=   

We define the new performance measure, which we call the Power Ratio (PR), 
as the ratio of predicted and realized Gini coefficients, which are associated with 
predicted and realized loss distributions, respectively: 

( )
( )

,
P

R

G LGD
PR

G LGD
=                          (8) 

assuming that ( ) 0RG LGD ≠  i.e. 0.RE LGD  ≠   Also an ascending ranking 
of the random variable LGD is assumed. In general, it holds true that 0 1.PR≤ ≤  
We have 1PR =  if the model is able to pattern the structure of realized LGDs 
over the entire spectrum of observations. This will tell us, that the model is able 
to predict concentrations caused by risk drivers in an exact manner. For a model 
that fails to do this, a Power Ratio of (nearly) zero will be the result. 

An equivalent expression for the Power Ratio that corresponds more accu-
rately to PD estimation is 

( )

( )

1

0

1

0

1 1d
2 2 .1 1d
2 2

P P

R R

L t t AUC
PR

L t t AUC

− −
= =

− −

∫

∫
               (9) 

Here, the quantity AUC  denotes the area under the Lorenz curve for esti-
mations and realizations, respectively. Since historical LGD realizations must be 
used as a benchmark model, the Lorenz curve for realized LGDs will be termed 
“the optimal curve”. The notion of AUC  is also commonly used in the context 
of PD validation.  

The Power Ratio as is defined above, allows a clear geometric interpretation: It 
is the ratio of two areas: PR A B= , where A  is the area between the bisection 
line and the Lorenz curve of the model and B  is the area between the bisection 
line and the Lorenz curve of the benchmark model.  

As both the numerator and the denominator in the defining equations depend 
on ordered LGD-levels (ascending ranking of LGDs), PR  measures, how ade-

 

 

3As banks offer a wide range of products, it is clear that a borrower may have several contracts with a 
bank. For instance, a customer may possess a mortgage loan account in package with a current ac-
count and a credit card account. Depending on the structure of collateralization these products will 
realize different losses. Since a LGD model can be built on different segmentation levels (customer 
types or product types) we will use these two terms as synonyms. 
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quate the model discriminates high realized losses from low realized losses. A 
PR  value of 1 is achieved, if predicted concentrations exactly cover realized 
concentrations. However, it must be mentioned that a PR  value of 1 is im-
possible to achieve for a CRR compliant LGD model. This is due to several re-
quirements for IRB-models. In accordance with Article 179 (1) a), Article 179 
(1) f), and Article 181 (1) of the CRR [1] banks are required to incorporate mar-
gins of conservatism in their LGD estimates. These margins cover different is-
sues: economic downturn scenarios, statistical uncertainty and/or data quality. 
The compliance of these requirements leads to a direct impact on model per-
formance. This will be explained using the following argument: Let us assume 
that the defaulted portfolio V  is composed of 50% of cured borrowers. In case 
of cure a loss of zero is realized ( , 0R CLGD = ). The other proportion of V  is 
assumed to be terminated agreements with a total loss realization ( , 1R TLGD = ). 
By construction V  exhibits a bimodal structure that should be taken into ac-
count by a model. However, to meet the CRR requirements, for the cured pro-
portion of V  a conservative (positive) LGD estimation must be valid ex ante. 
Let , 0P CLGD a= >  be the predicted LGD in case of cure. Then a simple calcu- 

lation shows that 1 1.
1

aPR
a

−
= <

+
  

This rather simple example shows that regulatory requirements directly im-
pact LGD model performance. This is true for all performance criteria. From 
practical experience models with PR  values around 0.5 turn out to be suffi-
ciently risk differentiating. Also, a PR  value of nearly 1 may indicate an over-
fitting of the model.  

From Lemma 2.6 we get the following equation for the Power Ratio: 

( )( )
( )( )

,
,

,

P R

PR

Cov LGD F x E LGD
PR

E LGDCov LGD F x

  =
  



               (10) 

where PE LGD    is the model mean, RE LGD    is the empirical mean and 
( )F x  denotes the empirical distribution function. If a model is calibrated on 

the ex post level ( )P RE LGD E LGD   =    , which may be plausible for im-
pairment purposes, then PR  allows the interpretation as a ratio of two cova-
riances.  

Another theoretical aspect of PR  is concerned with its sensitivity. Let  

( )RG LGD  be fixed. Recalling the expression for the Gini index 

( ) ( ) ( )( )1

0

1 1 d ,P
P

G LGD F x F x x
E LGD

= ⋅ −
  

∫            (11) 

we see that the measure PR  is robust to extreme values of the distribution. The 
function ( ) ( ) ( )( )1I x F x F x= −  with ( ) ( )0 1 0I I= =  attains the maximum 
value for ( )1 1 2x F −= , meaning that PR  is most sensitive to changes near the 
median of the LGD distribution.  

4. PR Calculation in Practice 

On the next pages we will give guidance concerning PR calculation in the bank-
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ing practice. From the previous analysis it is clear that PR can be calculated in 
many different ways. We will focus on the two most important alternatives: 
 default-weighted PR calculation. 
 exposure-weighted PR calculation. 

The first alternative is crucial for banks that use IRB-models. In accordance 
with Article 181 (1) a) of CRR banks are required to use default-weighted LGD 
estimates. Hence, model validation should be compliant with the requirement. 
Exposure-weighted estimation is important for impairment and economic capi-
tal calculation, since it may help to identify risks that are driven by exposure 
concentrations. 

Let V  be the defaulted portfolio consisting of N  borrowers. V  is charac-
terized by the vectors: ( ){ }, , , ; 1, , .R P

i i ii EAD LGD LGD i N=   First, let us focus 
on LGD realizations. We point out that realized LGDs do not necessarily lie in 
the unit interval, i.e. [ ],RLGD a b∈  with [ ] [ ]0,1 , .a b⊆  Unfavorable liquida-
tions of collateral may lead to LGD values above 1. Also, negative LGD values 
are possible for specific portfolios. For instance, defaulted leasing contracts may 
lead to negative LGDs. In this case we have ( ) 1.RG LGD >   

Let the realized LGDs be ranked, i.e. ( ) ( )( )1, , 1, ,

R R
i ii N i M

LGD LGD
= =

→




 with 

( ) ( ) ( ) ( )1 1 .R R R R
i i MLGD LGD LGD LGD+< < < < <   

Since different borrowers may realize equal losses ( ), ,R R
i jLGD LGD i j= ≠  it 

holds that 1 .M N≤ ≤  If each LGD class (rank) ( )i  is weighted equally, then 
the empirical distribution is given by 

( ) { } ( ){ }
( )

( ) ( )

( )

1

1

0,

1 # 1, , : ,

1, .

R

R R R
i k k

R
M

x LGD

kF x i M LGD x LGD x LGD
M M

LGD x

+

 <

= ∈ ≤ = ≤ <

 ≤




  

Thus, 
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=
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Finally, with ( ) ( )0 0,0RL =  

( ) ( )

( )

1

1

, ; 1, , .
k R

iiR
M R

ii

LGDkL k k M
M LGD

=

=

    = =     

∑
∑

             (12) 

Obviously, since N  and M  are finite, ( )RL k  is piecewise linear. For each 
line segment ( ), 1 ,k k +  the slope of ( )RL k , 

( )RL k
∆ , equals 

( ) ( )
( )

1

1

.R
R
k ML k R

ii

MLGD
LGD+

=

∆ = ⋅
∑

                 (13) 
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In accordance with the findings of the last section, we may write this result as 

( )
( )

( )

1 , 0,1, , 1,R

R
k

L k R
i
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k M

E LGD
+= = −

 
 

∆               (14) 

where the mean LGD is computed as ( ) ( )1
1 .MR R

i ii
E LGD M LGD

=
  =  ∑  Observe 

that if a fraction of LGD realizations is negative, so is the Lorenz curve for small 
k . Hence, 

( )RL k
∆  may also be negative.  

In the same manner we can construct the Lorenz curve for predicted LGDs. 
Let us assume that we have fixed a prediction model. This model will produce a 
LGD ranking of the form ( ) ( )( )1, , 1, ,

P P
i ii N i Q

LGD LGD
= =

→




 with 1 Q N≤ ≤ . 
Hence, with ( ) ( )0 0,0PL = , 
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and 
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P
m

L m P
i

LGD
m Q
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where the mean LGD is computed as ( ) ( )1
1 .QP P

i ii
E LGD Q LGD

=
  =  ∑  Since LGD 

estimates will be non negative, so will be 
( )PL m

∆ . 
We also see that the following results are true: 
Proposition 4.1: The following statements hold: 

 A LGD estimation model with a single rank ( )1, 1Q M= >  possesses no dis-
criminative power ( )0PR = . 

 Let 1.M Q= >  If LGD estimations are linear transformations of realized 
LGDs, , 0, 0,P RLGD aLGD b a b= + > ≥  then the discriminative power of the 
model equals 

.
R

R

aE LGD
PR

aE LGD b

  =
  + 

                   (17) 

Proof: Part one is trivial. The second part follows from Lemma 2.5.        ∎ 
Next, we show how unequal weighting of LGD classes can be integrated into 

PR calculations. The starting point is an ordered sequence of LGD realizations:  
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
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Let ( ) ( ){ }# |R R R
j in i j LGD LGD= =  be the number of borrowers contained in 

a LGD class ( )i . Then 

( )
( )
( )

( ) ( )

( ) ( )

11

1 1

, ; 1, , ,
kk R RR

iiR i
M MR R R

ii i

n i LGDn i
L k k M

n i n i LGD
==

= =

  ⋅  = =  ⋅   

∑∑
∑ ∑

      (18) 

and 
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where the mean realized LGD is now computed as 

( ) ( ) ( )1
,MR R

i i ii
E LGD w LGD

=
⋅  =  ∑                  (20) 

with ( ) ( ) ( ) ( )1 .MR R R
i iw n i n i n i N

=
= =∑  It is clear that the weights ( )iw  allow 

an interpretation as the probabilities of sorting a borrower i  into a LGD class 
( )i . 

Analogously, we get for ( )PL m  
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and 
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with ( ) ( ){ }# | .P P P
j in i j LGD LGD= =  

It is interesting to compare the two approaches, i.e. especially equations (12) 
with (18). They coincide if the underlying portfolios are either completely or 
sufficiently heterogeneous. In the first case, we have M N=  and ( ) 1Rn i =  for 
all i . For a sufficiently heterogeneous portfolio we would expect that each LGD  

class has an equal weight in the sense that M N< , ( )R Nn i
M

≈  and  

( )lim 1R
M n i→∞ = . Therefore,  
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Finally, we state the expressions for RL  and PL  assuming an exposure- 
weighted calculation: 
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with ( )1 1
.N Q

i ii i
E EAD EAD

= =
= =∑ ∑  In both cases the equations for the slopes in  

a line segment ( ), 1j j + , allow an interpretation as a fraction of the ( )1j + -th 
LGD class to the exposure-weighted portfolio mean. 
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5. Conclusion 

In this paper, we have developed a new measure to evaluate LGD model perfor-
mance. The measure, which we term the Power Ratio, is a counterpart of the 
Accuracy Ratio known from PD modeling, and accounts for concentrations in 
the LGD distribution. Since the measure is model independent, it has universal 
applicability. This means that it can be applied likewise to Through-The-Cycle 
and Point-In-Time models. After presenting the background of the new meas-
ure, we derived its analytical properties. Finally we have focused on practical is-
sues and stated alternatives for its explicit calculation from a banking perspec-
tive. We see two main fields of application: Firstly, the new measure must be re-
garded as an extension of existing validation tools. It will support banks to 
achieve a more multifaceted model assessment and finally help practitioners to 
validate their models more accurately. Secondly, the new tool will also help to 
assess the quality of new models proposed for LGD modeling.  
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